NEC UPC2711TB_1

DATA SHEET
SHEET
DATA
BIPOLAR ANALOG INTEGRATED CIRCUITS
µPC2711TB, µPC2712TB
5 V, SUPER MINIMOLD SILICON MMIC
WIDEBAND AMPLIFIER
DESCRIPTION
The µPC2711TB and µPC2712TB are silicon monolithic integrated circuits designed as buffer amplifier for DBS
tuners. These ICs are packaged in super minimold package which is smaller than conventional minimold.
The
µPC2711TB
and
µPC2712TB
have
each
compatible
µPC2711T/µPC2712T of conventional minimold version.
pin
connections
and
performance
to
So, in the case of reducing your system size,
µPC2711TB/µPC2712TB are suitable to replace from µPC2711T/µPC2712T.
These ICs are manufactured using NEC’s 20 GHz fT NESATIII silicon bipolar process. This process uses silicon
nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and
prevent corrosion/migration. Thus, these IC have excellent performance, uniformity and reliability.
FEATURES
•
High-density surface mounting : 6-pin super minimold package (2.0 × 1.25 × 0.9 mm)
•
Supply voltage
: VCC = 4.5 to 5.5 V
•
Wideband response
: fu = 2.9 GHz TYP. @µPC2711TB
fu = 2.6 GHz TYP. @µPC2712TB
•
: GP = 13 dB TYP. @µPC2711TB
Power gain variation
GP = 20 dB TYP. @µPC2712TB
APPLICATIONS
: µPC2711TB
•
Local buffer in DBS tuners, etc.
•
RF stage buffer in DBS tuners, etc. : µPC2712TB
ORDERING INFORMATION
Part Number
µPC2711TB-E3
Package
6-pin super minimold
µPC2712TB-E3
Remark
Marking
C1G
C1H
Supplying Form
Embossed tape 8 mm wide.
1, 2, 3 pins face the perforation side of the tape.
Qty 3 kpcs/reel.
To order evaluation samples, please contact your local NEC sales office (Part number for sample
order: µPC2711TB, µPC2712TB).
Caution Electro-static sensitive devices
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. P11510EJ3V0DS00 (3rd edition)
Date Published November 2000 N CP(K)
Printed in Japan
The mark
shows major revised points.
©
1996, 2000
µPC2711TB, µPC2712TB
PIN CONNECTIONS
(Bottom View)
C1G
(Top View)
3
2
1
Pin No.
4
4
3
5
5
2
6
6
1
Marking is an example of µ PC2711TB
Pin Name
1
INPUT
2
GND
3
GND
4
OUTPUT
5
GND
6
VCC
PRODUCT LINE-UP OF 5V-BIAS SILICON MMIC WIDEBAND AMPLIFIERS
(TA = +25°°C, VCC = 5.0 V, ZS = ZL = 50 Ω)
Part No.
µPC2711T
fu (GHz)
PO(sat) (dBm)
GP (dB)
NF (dB)
ICC (mA)
2.9
+1
13
5.0
12
µPC2711TB
µPC2712T
Package
6-pin minimold
Marking
C1G
6-pin super minimold
2.6
+3
20
4.5
12
µPC2712TB
6-pin minimold
C1H
6-pin super minimold
µPC2713T
1.2
+7.0
29
3.2
@f = 0.5 GHz
12
6-pin minimold
C1J
µPC2791TB
1.9
+4.0
12
5.5
@f = 0.5 GHz
17
6-pin super minimold
C2S
µPC2792TB
1.2
+5.0
20
3.5
@f = 0.5 GHz
19
C2T
µPC3215TB
2.9
+3.5
20.5
2.3
@f = 1.5 GHz
14
C3H
2
Remark
Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
Caution
The package size distinguish between minimold and super minimold.
Data Sheet P11510EJ3V0DS00
µPC2711TB, µPC2712TB
SYSTEM APPLICATION EXAMPLE
RF unit block of DBS tuners
1st IF input from
DBS converter
Baseband
output
Mixer
BPF
SAW
AGC Amp.
FM Demod.
µ PC2712TB
µ PC2711TB
OSC
µ PC2711TB
Prescaler
PLL Synth.
LPF
PIN EXPLANATIONS
Pin
No.
1
Pin Name
INPUT
Applied
Voltage
(V)
Pin
Voltage
Note
(V)

1.00
0.97
4
OUTPUT

4.40
4.12
6
VCC
2
3
5
GND
Function and Applications
Internal Equivalent Circuit
Signal input pin. A internal matching circuit,
configured with resistors, enables 50 Ω
connection over a wide band. A multifeedback circuit is designed to cancel the
deviations of hFE and resistance. This pin
must be coupled to signal source with
capacitor for DC cut.
Signal output pin. A internal matching circuit,
configured with resistors, enables 50 Ω
connection over a wide band. This pin must
be coupled to next stage with capacitor for DC
cut.
4.5 to 5.5

Power supply pin. This pin should be
externally equipped with bypass capacitor to
minimize ground impedance.
0

Ground pin. This pin should be connected to
system ground with minimum inductance.
Ground pattern on the board should be formed
as wide as possible. All the ground pins must
be connected together with wide ground
pattern to decrease impedance difference.
6
4
1
2
3
5
Note Pin voltage is measured at VCC = 5.0 V, Above: µPC2711TB, Below: µPC2712TB
Data Sheet P11510EJ3V0DS00
3
µPC2711TB, µPC2712TB
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Conditions
Ratings
Unit
Supply Voltage
VCC
TA = +25°C
6
V
Total Circuit Current
ICC
TA = +25°C
30
mA
Power Dissipation
PD
Mounted on double sided copper clad
50 × 50 × 1.6 mm epoxy glass PWB (TA = +85°C)
270
mW
Operating Ambient
Temperature
TA
−40 to +85
°C
Storage Temperature
Tstg
−55 to +150
°C
Input Power
Pin
+10
dBm
TA = +25°C
RECOMMENDED OPERATING RANGE
Parameter
Symbol
MIN.
TYP.
MAX.
Unit
Supply Voltage
VCC
4.5
5.0
5.5
V
Operating Ambient
Temperature
TA
−40
+25
+85
°C
ELECTRICAL CHARACTERISTICS (TA = +25°°C, VCC = 5.0 V, ZS = ZL = 50 Ω)
µPC2711TB
Parameter
µPC2712TB
Test Conditions
Unit
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
Circuit Current
ICC
No signal
9
12
15
9
12
15
mA
Power Gain
GP
f = 1 GHz
11
13
16.5
18
20
23.5
dB
f = 1 GHz,
Pin = 0 dBm
−2
+1

0
+3

dBm
f = 1 GHz

5
6.5

4.5
6
dB
3 dB down below from
gain at f = 0.1 GHz
2.7
2.9

2.2
2.6

GHz
Saturated Output Power
Noise Figure
Upper Limit Operating
Frequency
4
Symbol
PO(sat)
NF
fu
Isolation
ISL
f = 1 GHz
25
30

28
33

dB
Input Return Loss
RLin
f = 1 GHz
20
25

9
12

dB
Output Return Loss
RLout
f = 1 GHz
9
12

10
13

dB
Gain Flatness
∆GP
f = 0.1 to 2.5 GHz
@µPC2711TB
f = 0.1 to 2.0 GHz
@µPC2712TB

±0.8


±0.8

dB
Data Sheet P11510EJ3V0DS00
µPC2711TB, µPC2712TB
TEST CIRCUIT
VCC
1 000 pF
C3
6
50 Ω
C1
1
IN
C2
4
50 Ω
OUT
1 000 pF
1 000 pF
2, 3, 5
EXAMPLE OF APPLICATION CIRCUIT
VCC
1 000 pF
1 000 pF
C3
C6
6
50 Ω
C1
IN
6
1
4
1 000 pF
C4
C5
1 000 pF
1 000 pF
R1
50 to 200 Ω
1
2, 3, 5
4
C2
50 Ω
OUT
1 000 pF
2, 3, 5
To stabilize operation,
please connect R1, C5
The application circuits and their parameters are for references only and are not intended for use in actual design-ins.
CAPACITORS FOR VCC, INPUT AND OUTPUT PINS
1 000 pF capacitors are recommendable as bypass capacitor for VCC pin and coupling capacitors for input/output
pins.
Bypass capacitor for VCC pin is intended to minimize VCC pin’s ground impedance. Therefore, stable bias can be
supplied against VCC fluctuation.
Coupling capacitors for input/output pins are intended to minimize RF serial impedance and cut DC.
To get flat gain from 100 MHz up, 1 000 pF capacitors are assembled on the test circuit. [Actually, 1 000 pF
capacitors give flat gain at least 10 MHz. In the case of under 10 MHz operation, increase the value of coupling
capacitor such as 2 200 pF. Because the coupling capacitors are determined by the equation of C = 1/(2 π fZs).]
Data Sheet P11510EJ3V0DS00
5
µPC2711TB, µPC2712TB
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD
AMP-2
Top View
3
2
1
IN
OUT
C
1G
C
C
6
5
4
Mounting direction
(Marking is an example for µ PC2711TB)
VCC
C
COMPONENT LIST
Notes
1. 30 × 30 × 0.4 mm double sided copper clad polyimide board.
C
Value
2. Back side: GND pattern
1 000 pF
3. Solder plated on pattern
4.
: Through holes
For more information on the use of this IC, refer to the following application note: USAGE AND APPLICATIONS
OF 6-PIN MINI-MOLD, 6-PIN SUPER MINI-MOLD SILICON HIGH-FREQUENCY WIDEBAND AMPLIFIER MMIC
(P11976E).
6
Data Sheet P11510EJ3V0DS00
µPC2711TB, µPC2712TB
TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C)
 µPC2711TB 
CIRCUIT CURRENT vs.
OPERATING AMBIENT TEMPERATURE
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
20
20
No input signal
16
14
12
10
8
6
16
14
12
10
8
6
4
4
2
2
0
0
1
No input signal
VCC = 5.0 V
18
Circuit Current ICC (mA)
Circuit Current ICC (mA)
18
4
2
3
Supply Voltage VCC (V)
5
0
–60 –40 –20
0
+20 +40 +60 +80 +100
Operating Ambient Temperature TA (°C)
6
NOISE FIGURE, POWER GAIN vs.
FREQUENCY
POWER GAIN vs. FREQUENCY
15
20
TA = –40°C
TA = +25°C
TA = +85°C
VCC = 5.5 V VCC = 5.0 V
Power Gain GP (dB)
6
10
5
VCC = 4.5 V
VCC = 5.5 V
TA = –40°C
TA = +85°C
TA = +25°C
10
0
5
VCC = 4.5 V
NF
VCC = 5.0 V
VCC = 5.0 V
4
–5
0.1
0.3
1.0
Frequency f (GHz)
5
0.1
3.0
0.3
1.0
Frequency f (GHz)
0
0
VCC = 5.0 V
Input Return Loss RLin (dB)
Output Return Loss RLout (dB)
VCC = 5.0 V
–10
–20
–30
–40
–50
0.1
3.0
INPUT RETURN LOSS, OUTPUT
RETURN LOSS vs. FREQUENCY
ISOLATION vs. FREQUENCY
Isolation ISL (dB)
Noise Figure NF (dB)
7
GP
Power Gain GP (dB)
15
8
0.3
1.0
Frequency f (GHz)
3.0
–10
RLout
–20
RLin
–30
–40
0.1
Data Sheet P11510EJ3V0DS00
0.3
1.0
Frequency f (GHz)
3.0
7
µPC2711TB, µPC2712TB
 µPC2711TB 
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
+5
+5
0
Output Power Pout (dBm)
Output Power Pout (dBm)
VCC = 5.0 V
f = 1.0 GHz
5.5 V
f = 1.0 GHz
VCC = 5.0 V
–5
4.5 V
–10
–15
0
TA = +25°C
–40°C
–20°C
–5
–10
–15
–20
–35 –30 –25 –20 –15 –10
–5
0
–20
–35 –30 –25 –20 –15 –10
+5
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
5.5 V
0
Output Power Pout (dBm)
Output Power Pout (dBm)
+5
f = 0.5 GHz
VCC = 5.0 V
VCC = 5.0 V
–5
4.5 V
–10
–15
0
f = 1.0 GHz
f = 2.0 GHz
–5
f = 2.9 GHz
–10
–15
–20
–35 –30 –25 –20 –15 –10
–5
0
–20
–35 –30 –25 –20 –15 –10
+5
Input Power Pin (dBm)
Pin = 0 dBm
5.5 V
VCC = 5.0 V
+5
0
4.5 V
–5
–10
–15
0.1
0.3
1.0
3.0
Frequency f (GHz)
Remark
0
+5
3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
3rd Order Intermodulation Distortion IM3 (dBc)
+10
–5
Input Power Pin (dBm)
SATURATED OUTPUT POWER vs.
FREQUENCY
Saturated Output Power PO(sat) (dBm)
0
OUTPUT POWER vs. INPUT POWER
+5
f = 2.0 GHz
–5
Input Power Pin (dBm)
+5
8
+85°C
50
f1 = 1.000 GHz
f2 = 1.002 GHz
40
VCC = 5.0 V
30
5.5 V
20
4.5 V
10
0
–20 –18 –16 –14 –12 –10 –8
–6
–4
–2
Output Power of Each Tone PO(each) (dBm)
The graphs indicate nominal characteristics.
Data Sheet P11510EJ3V0DS00
0
0.39
0.11
0.40
0.10
0.4
1
0.0
9
-100
-90
-80
0.38
0.12
0.37
0.13
0.36
0.14
0.35
0.15
4
0.3
6
0.1
1.6
30
1.8
2.0
1.
0
2.9 G
50
20
10
5.0
4.0
3.0
1.8
2.0
1.6
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0
2.0
1.8
1.4
1.2
1.0
0.9
0.8
0.7
1.6
0.6
1.4
1.2
1.0
0.9
0.8
1.6
0.7
0.6
P
OM
EC
NC 
TA
AC JX 
RE  – o
E
Z
V

TI
40
-1
ON E
0
1.
NT
5.0
50
20
10
4.0
3.0
1.8
2.0
1.6
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
2.0
1.8
0.5
30
0.2
1.
0.5
0
0.
0. 43
07
3
0.3 7
0.1
-1
32
0. 18
0.
NE
GA
0.4
0.4
0.0 2
8
-110
-70
0
1.4
0
-12
-60
0.2
0
1.2
0.6
3.
1.0
0.8
4.0
0.9
1.0
5.0
0.3
1.0
5.0
0.1 G
0.2
0.2 9
1
0.8
0.4
10
20
0.2
3.
0.2
8
0.2
2
0.
0. 31
19
0.7
-20
0
0.6
8
0.
0.27
0.23
4
-4
0.5
RESISTANCE COMPONENT
R
0.2
 Zo 
50
0.40
0.10
0.4
1
0.0
9
-100
-90
-80
0.39
0.11
0.38
0.12
0.37
0.13
0.36
0.14
0.35
0.15
4
0.3
6
0.1
14
0
ER
EA C
T
 AN
 + JX CE C
O
Zo 
MP
O

0.8
0.
0. 43
07
0.4
0.0 2
8
-110
-70
-1
0.2
-12
3
0.3 7
0.1
POS
ITIV
0.6
0.3
4.0
0.6
0.1
10
0.4
20
-10
NT
20
0.26
0.24
ON E
50
0.3
0.2 0
0
Data Sheet P11510EJ3V0DS00
0.1
0.3 7
3
-5
60
0
P
OM
EC
NC 
TA
AC JX 
RE – o
E
Z
V

TI
0.6
10
0.25
0.25
40
0
0.1
0.4
2.9 G
0.24
0.26
0.2
1.0 G
-60
0.2
0.1
6
0.3
4
32
0. 18
0.
5
0.4 5
0.0
0.6
3.
44
0. 06
0.
1.0
0.
0. 06
44
0.2
0
1.
POS
ITIV
5.0
10
-1
0.
8
0.23
0.27
0.1
0.1 G
0
70
20
0.6
0.15
0.35
2
0.2
8
0.2
0
14
0
ER
EA C
T
 AN
 +JX CE C
O
Zo 
MP
O

4.0
0.26
0.24
-15
3.
0.25
0.25
0.14
0.36
-30
44
0. 06
0.
0.4
1
0.2 9
0.2
0.
4
0.
8
0.
4
6
0.4 4
0.0
1.0
0.2
0.2 9
1
0.8
30
0.3
4.0
0.3
0.8
0.2
8
0.2
2
0.4
40
5
0.4 5
0.0
0.4
0
0.2 0
0.3
0.1
5.0
NE
GA
0.4
→WAVELENG
0
0.01 THS TOW
0.49
ARD
0.02
0.48
0
0.49
0.01
0.0 GENE
0.48
←
7
3
0.02
RA
0.4
N
O
COEFFICIENT IN D
I
T
C
E
0.4
.
F REFL
EGREE
7
0.0 TOR
.03
NGLE O
6
0
A
S
→
0.4 4
0.4 4
0
6
-1
0
6
0.0
0.0
0.4 5
15
0
0
5
-15
8
0.
-20
→WAVELENG
0
0.01 THS TOW
0.49
ARD
0.02
0.48
0
0.49
0.01
0.0 GENE
0.48
←
3
0.02
RA
N
O
COEFFICIENT IN D
I
T
C
E
0.4
OF REFL
EGREE
7
0.0 TOR
ANGLE
S
→
0.4 4
0
6
-1
0
6
0.0
0.4 5
15
0
5
0.6
19
0. 31
0.
NT
80
0.
0. 06
44
2.0
0.5
1.4
1.2
1.0
0.9
0.8
0.7
1.6
0.6
1.8
50
0.24
0.26
0.6
0.27
0.23
90
0.1
0.3 7
3
-10
100
60
0
0.13
0.37
-5
0.2
0.1
6
0.3
4
0.
0. 31
19
S22-FREQUENCY
0.12
0.38
0
0.11
0.39
70
10
0.3
0.23
0.27
0.1
0.15
0.35
20
RESISTANCE COMPONENT
R
0.2
 Zo 
0.14
0.36
2
0.2
8
0.2
1.0 G
10
20
NT
50
0
80
1
0.2 9
0.2
4
-4
0.
NE
110
90
0.3
0.2 0
0
0
13
0
100
-30
12
0.10
0.40
0.13
0.37
30
07
0. 43
0.
8
0.0 2
0.4
9
0.0
1
0.4
110
0.12
0.38
40
0.2
0.
NE
0.11
0.39
0
0.2 0
0.3
0.2
13
0
12
0.10
0.40
0.2
07
0. 43
0.
8
0.0 2
0.4
9
0.0
1
0.4
19
0. 31
0.
7
0.4
3.
0.0
µPC2711TB, µPC2712TB
S-PARAMETERS (TA = +25°°C, VCC = 5.0 V)
 µPC2711TB 
S11-FREQUENCY
0.
0. 18
32
0
50
0.
0. 18
32
0
50
9
µPC2711TB, µPC2712TB
TYPICAL S-PARAMETER VALUES (TA = +25°°C)
µPC2711TB
VCC = 5.0 V, ICC = 13.8 mA
FREQUENCY
10
S11
S21
S12
S22
K
MHz
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
100.0000
0.085
−22.4
4.447
−14.9
0.035
−12.7
0.113
−3.1
3.18
200.0000
0.086
−25.0
4.468
−30.1
0.035
−23.0
0.119
1.2
3.21
300.0000
0.098
−29.2
4.491
−44.9
0.034
−32.1
0.136
1.6
3.23
400.0000
0.081
−29.4
4.510
−60.3
0.033
−42.5
0.142
6.5
3.34
500.0000
0.066
−33.9
4.540
−74.9
0.033
−50.1
0.156
10.1
3.32
600.0000
0.041
−54.5
4.572
−90.2
0.033
−59.6
0.161
12.7
3.34
700.0000
0.053
−104.3
4.624
−105.3
0.032
−69.3
0.161
8.8
3.33
800.0000
0.070
−119.7
4.664
−120.7
0.031
−78.4
0.176
6.2
3.36
900.0000
0.098
−121.9
4.729
−136.1
0.032
−86.6
0.192
1.9
3.27
1000.0000
0.101
−112.5
4.781
−152.0
0.031
−94.9
0.228
0.1
3.29
1100.0000
0.090
−108.5
4.843
−167.9
0.031
−103.9
0.256
−0.6
3.15
1200.0000
0.060
−95.6
4.945
175.8
0.029
−111.0
0.290
−1.1
3.24
1300.0000
0.019
−79.2
4.999
159.5
0.029
−120.2
0.308
−0.3
3.16
1400.0000
0.023
54.8
5.062
143.0
0.028
−128.9
0.322
−1.4
3.18
1500.0000
0.062
80.7
5.114
126.4
0.029
−133.1
0.327
−2.2
3.08
1600.0000
0.087
80.4
5.142
109.5
0.029
−140.9
0.333
−4.8
3.07
1700.0000
0.113
78.7
5.160
92.7
0.029
−146.2
0.344
−7.0
3.02
1800.0000
0.126
72.0
5.146
75.4
0.030
−151.4
0.356
−9.7
2.88
1900.0000
0.154
63.5
5.123
58.0
0.032
−159.7
0.371
−11.1
2.70
2000.0000
0.178
59.0
5.113
41.3
0.035
−168.3
0.378
−12.0
2.51
2100.0000
0.212
54.2
5.063
24.0
0.036
−175.7
0.383
−12.8
2.39
2200.0000
0.232
55.2
5.006
6.9
0.038
175.2
0.378
−13.6
2.27
2300.0000
0.246
53.8
4.954
−10.4
0.041
165.2
0.367
−16.1
2.13
2400.0000
0.248
53.6
4.865
−27.7
0.045
155.3
0.359
−18.0
1.99
2500.0000
0.240
49.2
4.783
−45.0
0.048
143.6
0.356
−21.1
1.88
2600.0000
0.238
43.7
4.664
−62.3
0.049
131.2
0.359
−23.6
1.85
2700.0000
0.240
36.2
4.529
−79.6
0.052
119.8
0.366
−26.2
1.76
2800.0000
0.262
31.7
4.384
−96.6
0.054
108.7
0.374
−28.6
1.72
2900.0000
0.285
28.8
4.255
−113.1
0.056
95.5
0.372
−31.1
1.68
3000.0000
0.316
29.7
4.117
−129.6
0.057
83.6
0.361
−35.0
1.69
Data Sheet P11510EJ3V0DS00
µPC2711TB, µPC2712TB
TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C)
 µPC2712TB 
CIRCUIT CURRENT vs.
OPERATING AMBIENT TEMPERATURE
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
20
16
14
12
10
8
6
16
14
12
10
8
6
4
4
2
2
0
1
No input signal
VCC = 5.0 V
18
Circuit Current ICC (mA)
Circuit Current ICC (mA)
18
20
No input signal
4
2
3
Supply Voltage VCC (V)
5
0
–60
6
NOISE FIGURE, POWER GAIN vs.
FREQUENCY
–40 –20
0
+20 +40 +60 +80 +100
Operating Ambient Temperature TA (˚C)
POWER GAIN vs. FREQUENCY
25
30
VCC = 5.0 V
Power Gain GP (dB)
6
2
VCC = 4.5 V
VCC = 5.5 V
GP
20
15
VCC = 4.5 V
NF
10
4
5
0.1
VCC = 5.5 V
–40°C
+25°C
20
TA = +85°C
VCC = 5.0 V
0.3
1.0
Frequency f (GHz)
15
0.1
3.0
0.3
1.0
Frequency f (GHz)
0
0
VCC = 5.0 V
Input Return Loss RLin (dB)
Output Return Loss RLout (dB)
VCC = 5.0 V
–10
–20
–30
–40
–50
0.1
3.0
INPUT RETURN LOSS, OUTPUT
RETURN LOSS vs. FREQUENCY
ISOLATION vs. FREQUENCY
Isolation ISL (dB)
Noise Figure NF (dB)
8
VCC = 5.0 V
Power Gain GP (dB)
25
10
0.3
1.0
Frequency f (GHz)
3.0
RLin
–10
–20
RLout
–30
–40
0.1
Data Sheet P11510EJ3V0DS00
0.3
1.0
Frequency f (GHz)
3.0
11
µPC2711TB, µPC2712TB
 µPC2712TB 
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
+10
+10
f = 1.0 GHz
5.5 V
+5
Output Power Pout (dBm)
Output Power Pout (dBm)
+5
0
VCC = 5.0 V
4.5 V
–5
–10
–15
–20
VCC = 5.0 V
f = 1.0 GHz
0
TA = +25°C
–10
–15
0
–25
–40 –35 –30 –25 –20 –15 –10 –5
+5
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
+5
OUTPUT POWER vs. INPUT POWER
+10
f = 2.0 GHz
VCC = 5.0 V
5.5 V
0
VCC = 5.0 V
–5
4.5 V
–10
f = 0.5 GHz
+5
Output Power Pout (dBm)
+5
Output Power Pout (dBm)
0
Input Power Pin (dBm)
+10
–15
–20
0
f = 1.0 GHz
–5
f = 2.0 GHz
–10
–15
–20
–25
–40 –35 –30 –25 –20 –15 –10 –5
0
–25
–45 –40 –35 –30 –25 –20 –15 –10 –5
+5
Input Power Pin (dBm)
Pin = –2 dBm
5.5 V
+5
0
4.5 V
VCC = 5.0 V
–5
–10
0.1
0.3
1
3
Frequency f (GHz)
Remark
+5
3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
3rd Order Intermodulation Distortion IM3 (dBc)
+10
0
Input Power Pin (dBm)
SATURATED OUTPUT POWER vs.
FREQUENCY
Saturated Output Power PO(sat) (dBm)
–40°C
–5
–20
–25
–45 –40 –35 –30 –25 –20 –15 –10 –5
12
+85°C
50
f1 = 1.000 GHz
f2 = 1.002 GHz
40
VCC = 5.0 V
5.5 V
30
20
4.5 V
10
0
–16 –14 –12 –10
–8
–6
–4
–2
Output Power of Each Tone PO(each) (dBm)
The graphs indicate nominal characteristics.
Data Sheet P11510EJ3V0DS00
0
-100
0.4
1
0.0
9
0.40
0.10
0.39
0.11
0.38
0.12
0.37
0.13
0.36
0.14
-90
-80
4
0.3
6
0.1
1.4
1.2
3
0.3 7
0.1
1.6
1.8
0.6
NE
GA
0.4
30
2.0
-1
32
0. 18
0.
0.35
0.15
1.0
0.8
0.
0. 43
07
0.9
1.0
0.4
0.0 2
8
-110
-70
0
-12
-60
0.2
0
0
1.
1.2
1.0
0.9
0.8
0.7
0.6
0.5
1.0 G
50
20
10
5.0
4.0
3.0
1.8
2.0
1.6
1.4
0.6
0.1
0.4
3.0 G
0.2
0.2 9
1
0
0.4
0
2.0
0.5
1.8
1.4
1.2
1.0
0.9
0.8
0.7
1.6
0.6
1.4
1.2
1.0
0.9
0.8
1.6
0.7
0.6
0
1.
NT
ONE
MP
CO
CE
AN
CT JX  
A
E –
E R  Zo

TI V
5.0
50
20
10
4.0
3.0
1.8
2.0
1.6
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
2.0
1.8
0.5
30
40
NE
GA
0.2
1.
5.0
0.2
8
0.2
2
0.
0. 31
19
0.8
-20
0
0.7
8
0.
0.27
0.23
3.
0.3
4.0
10
20
-10
4
-4
0.6
1.0
0.26
0.24
4.0
0.3
3.
0
5.0
0.2
0.6
0.3
0.2 0
0
0.5
0.4
0.25
0.25
0.6
10
20
0.1
0.4
20
0.24
0.26
RESISTANCE COMPONENT
R
0.2
 Zo 
50
0.40
0.10
0.4
1
0.0
9
-100
-90
0.39
0.11
0.4
0.0 2
8
-80
0.38
0.12
0.37
0.13
0.36
0.14
0.35
0.15
0.
0. 43
07
0
-12
-1
1.0
14
0
ER
E AC
T
 AN
 +JX CE C
O
Zo 
MP
O

0
-110
-70
POS
ITIV
0.6
3.
-1
0.2
5
0.4 5
0.0
0.8
4.0
44
0. 06
0.
0.6
10
10
ENT
PON
OM
EC
NC 
TA
AC –JX 
E
E R  Zo

TIV
0.
8
0.23
0.27
40
-1
50
-30
Data Sheet P11510EJ3V0DS00
0.1
0.3 7
3
-5
60
20
0.2
0.1 G
4
0.3
6
0.1
0.2
0.1
6
0.3
4
3
0.3 7
0.1
70
-60
0.15
0.35
0
80
-5
0.14
0.36
2
0.2
8
0.2
0.4
0.2
0
1.
POS
ITIV
5.0
0.26
0.24
0.3
14
0
ER
E AC
T
 AN
 + JX CE C
Zo  OM
PO

4.0
0.25
0.25
0.
0. 06
44
1.0 G
1
0.2 9
0.2
2.5 G
0.27
0.23
2.0
G
0.6
0.2
0.2 9
1
0.8
30
0.1
1.0
0.2
8
0.2
2
NT
3.
-10
0
0.
4
40
0.1
0.13
0.37
5.0
0.3
0.8
0
0.2 0
0.3
5
0.4 5
0.0
0.6
19
0. 31
0.
44
0. 06
0.
8
0.
-20
0.4
→WAVELEN
NG
G HSS
0
0.01 TTH
TTO W
0.49
AARRD
0.02 OW
DG
0.48
0
0.49
0.01
0.0 GEENNEE
0.48
←
7
3
0.02
RRAA
0.4
O
N
E
O
C
I
F
FICIENT IN D
T
0.4
.
F REFLECT
EGREE
7
0.0 TOORR→
.03
NGLE O
6
0
A
S
→
0.4 4
0.4 4
0
6
-1
0
6
0.0
0.0
0.4 5
15
0
5
0
5
-1
0.4
0
100
90
32
0. 18
0.
0.4
0.
0. 06
44
2.0
0.5
1.4
1.2
1.0
0.9
0.8
0.7
1.6
0.6
1.8
50
0.24
0.26
3.0 G
0.1
0.3 7
3
10
110
0.12
0.38
0.
8
0.23
0.27
RESISTANCE COMPONENT
R
0.2
 Zo 
0.1 G
60
0.
0. 31
19
0.11
0.39
0
0.
NE
0
0.2
0.1
6
0.3
4
20
0.3
70
2
0.2
8
0.2
4
-4
13
NT
0.15
0.35
1
0.2 9
0.2
0.1
80
10
20
0
0.14
0.36
0.3
0.2 0
0
12
0.10
0.40
0.13
0.37
-30
07
0. 43
0.
8
0.0 2
0.4
9
0.0
1
0.4
100
90
30
0.
0.
4
NE
110
0.12
0.38
40
0.2
13
0
0.11
0.39
0
0.2 0
0.3
0.2
12
0.10
0.40
50
07
0. 43
0.
8
0.0 2
0.4
9
0.0
1
0.4
19
0. 31
0.
→WAVELEN
NG
G HSS
0
0.01 TTH
TTO W
0.49
AARRD
0.02 OW
DG
0.48
0
0.49
0.01
0.0 GEENNEE
0.48
←
7
3
0.02
RRAA
0.4
O
N
E
O
C
I
F
T
F
C
I
CIENT IN DE
T
.
F REFLE
GREES 0.47
0.0 TOORR
.03
NGLE O
6
0
A
→
→
0.4 4
0.4 4
0
6
-1
0
6
0.0
0.0
0.4 5
15
0
5
0
5
-1
µPC2711TB, µPC2712TB
S-PARAMETERS (TA = +25°°C, VCC = 5.0 V)
 µPC2712TB 
S11-FREQUENCY
0.
0. 18
32
0
0.2
50
S22-FREQUENCY
0.
0. 18
32
0
50
13
µPC2711TB, µPC2712TB
TYPICAL S-PARAMETER VALUES (TA = +25°°C)
µPC2712TB
VCC = 5.0 V, ICC = 13.9 mA
FREQUENCY
14
S11
MHz
MAG.
100.0000
200.0000
S21
S12
S22
K
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
0.303
−8.1
8.864
−16.7
0.023
−11.4
0.043
2.3
2.32
0.291
−10.1
8.827
−33.5
0.023
−19.2
0.055
11.5
2.35
300.0000
0.295
−11.8
8.936
−49.5
0.022
−25.5
0.078
8.5
2.38
400.0000
0.276
−11.3
9.044
−67.6
0.023
−34.6
0.095
13.4
2.33
500.0000
0.265
−11.0
9.051
−82.2
0.023
−42.8
0.112
13.6
2.37
600.0000
0.243
−12.3
9.096
−98.8
0.023
−50.0
0.120
11.1
2.35
700.0000
0.222
−20.3
9.089
−115.2
0.023
−59.8
0.120
1.7
2.37
800.0000
0.219
−25.4
9.080
−131.5
0.023
−66.2
0.136
−6.0
2.38
900.0000
0.230
−33.9
9.096
−147.6
0.023
−73.0
0.155
−14.4
2.39
1000.0000
0.267
−35.5
9.044
−164.2
0.024
−82.9
0.189
−17.5
2.26
1100.0000
0.290
−35.5
9.197
179.5
0.024
−89.5
0.212
−19.9
2.12
1200.0000
0.316
−33.2
9.421
162.4
0.024
−98.4
0.240
−21.4
2.02
1300.0000
0.317
−30.6
9.524
144.9
0.024
−107.0
0.245
−23.2
1.94
1400.0000
0.314
−29.4
9.512
126.6
0.026
−115.7
0.248
−27.1
1.82
1500.0000
0.296
−28.1
9.574
109.1
0.026
−122.3
0.236
−31.8
1.78
1600.0000
0.290
−29.4
9.598
91.1
0.027
−133.2
0.231
−38.0
1.74
1700.0000
0.278
−31.1
9.480
72.9
0.028
−139.4
0.221
−43.8
1.72
1800.0000
0.282
−34.9
9.372
54.3
0.029
−148.1
0.215
−49.8
1.69
1900.0000
0.284
−35.5
9.193
35.6
0.030
−157.6
0.199
−53.0
1.70
2000.0000
0.280
−36.6
9.198
18.4
0.031
−167.4
0.170
−55.3
1.69
2100.0000
0.273
−36.0
9.011
0.1
0.033
−175.1
0.134
−56.2
1.68
2200.0000
0.244
−38.2
8.784
−17.9
0.033
176.5
0.090
−55.2
1.74
2300.0000
0.222
−40.0
8.717
−35.1
0.034
164.8
0.050
−53.7
1.74
2400.0000
0.189
−45.7
8.388
−52.9
0.036
154.8
0.025
1.8
1.75
2500.0000
0.177
−52.9
8.217
−70.1
0.037
143.5
0.039
33.4
1.74
2600.0000
0.164
−57.4
7.890
−87.4
0.039
133.3
0.071
39.3
1.72
2700.0000
0.158
−59.6
7.597
−104.6
0.041
123.8
0.099
34.3
1.70
2800.0000
0.143
−53.9
7.313
−121.4
0.041
114.0
0.131
26.0
1.72
2900.0000
0.128
−44.3
7.078
−138.4
0.043
101.4
0.149
22.8
1.70
3000.0000
0.111
−22.2
6.806
−154.9
0.046
90.2
0.157
19.4
1.70
Data Sheet P11510EJ3V0DS00
µPC2711TB, µPC2712TB
PACKAGE DIMENSIONS
6-PIN SUPER MINIMOLD (UNIT : mm)
2.1±0.1
0.2+0.1
–0.05
0.65
0.65
1.3
Data Sheet P11510EJ3V0DS00
0.15+0.1
–0.05
0 to 0.1
0.7
0.1 MIN.
0.9±0.1
2.0±0.2
1.25±0.1
15
µPC2711TB, µPC2712TB
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).
All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to VCC line.
(4) The DC cut capacitor must be each attached to input and output pin.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered in the following recommended conditions.
Other soldering methods and
conditions than the recommended conditions are to be consulted with our sales representatives.
Soldering Method
Soldering Conditions
Recommended Condition Symbol
Infrared Reflow
Package peak temperature: 235°C or below
Time: 30 seconds or less (at 210°C)
Note
Count: 3, Exposure limit : None
IR35-00-3
VPS
Package peak temperature: 215°C or below
Time: 40 seconds or less (at 200°C)
Note
Count: 3, Exposure limit : None
VP15-00-3
Wave Soldering
Soldering bath temperature: 260°C or below
Time: 10 seconds or less
Note
Count: 1, Exposure limit : None
WS60-00-1
Partial Heating
Pin temperature: 300°C
Time: 3 seconds or less (per side of device)
Note
Exposure limit : None
–
Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.
Caution
Do not use different soldering methods together (except for partial heating).
For details of recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
16
Data Sheet P11510EJ3V0DS00
µPC2711TB, µPC2712TB
[MEMO]
Data Sheet P11510EJ3V0DS00
17
µPC2711TB, µPC2712TB
[MEMO]
18
Data Sheet P11510EJ3V0DS00
µPC2711TB, µPC2712TB
[MEMO]
Data Sheet P11510EJ3V0DS00
19
µPC2711TB, µPC2712TB
ATTENTION
OBSERVE PRECAUTIONS
FOR HANDLING
ELECTROSTATIC
SENSITIVE
DEVICES
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.
• The information in this document is current as of November, 2000. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
• No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
• NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
• While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
• NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).
M8E 00. 4