DATA SHEET SHEET DATA BIPOLAR ANALOG INTEGRATED CIRCUITS µPC2711TB, µPC2712TB 5 V, SUPER MINIMOLD SILICON MMIC WIDEBAND AMPLIFIER DESCRIPTION The µPC2711TB and µPC2712TB are silicon monolithic integrated circuits designed as buffer amplifier for DBS tuners. These ICs are packaged in super minimold package which is smaller than conventional minimold. The µPC2711TB and µPC2712TB have each compatible µPC2711T/µPC2712T of conventional minimold version. pin connections and performance to So, in the case of reducing your system size, µPC2711TB/µPC2712TB are suitable to replace from µPC2711T/µPC2712T. These ICs are manufactured using NEC’s 20 GHz fT NESATIII silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, these IC have excellent performance, uniformity and reliability. FEATURES • High-density surface mounting : 6-pin super minimold package (2.0 × 1.25 × 0.9 mm) • Supply voltage : VCC = 4.5 to 5.5 V • Wideband response : fu = 2.9 GHz TYP. @µPC2711TB fu = 2.6 GHz TYP. @µPC2712TB • : GP = 13 dB TYP. @µPC2711TB Power gain variation GP = 20 dB TYP. @µPC2712TB APPLICATIONS : µPC2711TB • Local buffer in DBS tuners, etc. • RF stage buffer in DBS tuners, etc. : µPC2712TB ORDERING INFORMATION Part Number µPC2711TB-E3 Package 6-pin super minimold µPC2712TB-E3 Remark Marking C1G C1H Supplying Form Embossed tape 8 mm wide. 1, 2, 3 pins face the perforation side of the tape. Qty 3 kpcs/reel. To order evaluation samples, please contact your local NEC sales office (Part number for sample order: µPC2711TB, µPC2712TB). Caution Electro-static sensitive devices The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. P11510EJ3V0DS00 (3rd edition) Date Published November 2000 N CP(K) Printed in Japan The mark shows major revised points. © 1996, 2000 µPC2711TB, µPC2712TB PIN CONNECTIONS (Bottom View) C1G (Top View) 3 2 1 Pin No. 4 4 3 5 5 2 6 6 1 Marking is an example of µ PC2711TB Pin Name 1 INPUT 2 GND 3 GND 4 OUTPUT 5 GND 6 VCC PRODUCT LINE-UP OF 5V-BIAS SILICON MMIC WIDEBAND AMPLIFIERS (TA = +25°°C, VCC = 5.0 V, ZS = ZL = 50 Ω) Part No. µPC2711T fu (GHz) PO(sat) (dBm) GP (dB) NF (dB) ICC (mA) 2.9 +1 13 5.0 12 µPC2711TB µPC2712T Package 6-pin minimold Marking C1G 6-pin super minimold 2.6 +3 20 4.5 12 µPC2712TB 6-pin minimold C1H 6-pin super minimold µPC2713T 1.2 +7.0 29 3.2 @f = 0.5 GHz 12 6-pin minimold C1J µPC2791TB 1.9 +4.0 12 5.5 @f = 0.5 GHz 17 6-pin super minimold C2S µPC2792TB 1.2 +5.0 20 3.5 @f = 0.5 GHz 19 C2T µPC3215TB 2.9 +3.5 20.5 2.3 @f = 1.5 GHz 14 C3H 2 Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. Caution The package size distinguish between minimold and super minimold. Data Sheet P11510EJ3V0DS00 µPC2711TB, µPC2712TB SYSTEM APPLICATION EXAMPLE RF unit block of DBS tuners 1st IF input from DBS converter Baseband output Mixer BPF SAW AGC Amp. FM Demod. µ PC2712TB µ PC2711TB OSC µ PC2711TB Prescaler PLL Synth. LPF PIN EXPLANATIONS Pin No. 1 Pin Name INPUT Applied Voltage (V) Pin Voltage Note (V) 1.00 0.97 4 OUTPUT 4.40 4.12 6 VCC 2 3 5 GND Function and Applications Internal Equivalent Circuit Signal input pin. A internal matching circuit, configured with resistors, enables 50 Ω connection over a wide band. A multifeedback circuit is designed to cancel the deviations of hFE and resistance. This pin must be coupled to signal source with capacitor for DC cut. Signal output pin. A internal matching circuit, configured with resistors, enables 50 Ω connection over a wide band. This pin must be coupled to next stage with capacitor for DC cut. 4.5 to 5.5 Power supply pin. This pin should be externally equipped with bypass capacitor to minimize ground impedance. 0 Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to decrease impedance difference. 6 4 1 2 3 5 Note Pin voltage is measured at VCC = 5.0 V, Above: µPC2711TB, Below: µPC2712TB Data Sheet P11510EJ3V0DS00 3 µPC2711TB, µPC2712TB ABSOLUTE MAXIMUM RATINGS Parameter Symbol Conditions Ratings Unit Supply Voltage VCC TA = +25°C 6 V Total Circuit Current ICC TA = +25°C 30 mA Power Dissipation PD Mounted on double sided copper clad 50 × 50 × 1.6 mm epoxy glass PWB (TA = +85°C) 270 mW Operating Ambient Temperature TA −40 to +85 °C Storage Temperature Tstg −55 to +150 °C Input Power Pin +10 dBm TA = +25°C RECOMMENDED OPERATING RANGE Parameter Symbol MIN. TYP. MAX. Unit Supply Voltage VCC 4.5 5.0 5.5 V Operating Ambient Temperature TA −40 +25 +85 °C ELECTRICAL CHARACTERISTICS (TA = +25°°C, VCC = 5.0 V, ZS = ZL = 50 Ω) µPC2711TB Parameter µPC2712TB Test Conditions Unit MIN. TYP. MAX. MIN. TYP. MAX. Circuit Current ICC No signal 9 12 15 9 12 15 mA Power Gain GP f = 1 GHz 11 13 16.5 18 20 23.5 dB f = 1 GHz, Pin = 0 dBm −2 +1 0 +3 dBm f = 1 GHz 5 6.5 4.5 6 dB 3 dB down below from gain at f = 0.1 GHz 2.7 2.9 2.2 2.6 GHz Saturated Output Power Noise Figure Upper Limit Operating Frequency 4 Symbol PO(sat) NF fu Isolation ISL f = 1 GHz 25 30 28 33 dB Input Return Loss RLin f = 1 GHz 20 25 9 12 dB Output Return Loss RLout f = 1 GHz 9 12 10 13 dB Gain Flatness ∆GP f = 0.1 to 2.5 GHz @µPC2711TB f = 0.1 to 2.0 GHz @µPC2712TB ±0.8 ±0.8 dB Data Sheet P11510EJ3V0DS00 µPC2711TB, µPC2712TB TEST CIRCUIT VCC 1 000 pF C3 6 50 Ω C1 1 IN C2 4 50 Ω OUT 1 000 pF 1 000 pF 2, 3, 5 EXAMPLE OF APPLICATION CIRCUIT VCC 1 000 pF 1 000 pF C3 C6 6 50 Ω C1 IN 6 1 4 1 000 pF C4 C5 1 000 pF 1 000 pF R1 50 to 200 Ω 1 2, 3, 5 4 C2 50 Ω OUT 1 000 pF 2, 3, 5 To stabilize operation, please connect R1, C5 The application circuits and their parameters are for references only and are not intended for use in actual design-ins. CAPACITORS FOR VCC, INPUT AND OUTPUT PINS 1 000 pF capacitors are recommendable as bypass capacitor for VCC pin and coupling capacitors for input/output pins. Bypass capacitor for VCC pin is intended to minimize VCC pin’s ground impedance. Therefore, stable bias can be supplied against VCC fluctuation. Coupling capacitors for input/output pins are intended to minimize RF serial impedance and cut DC. To get flat gain from 100 MHz up, 1 000 pF capacitors are assembled on the test circuit. [Actually, 1 000 pF capacitors give flat gain at least 10 MHz. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 2 200 pF. Because the coupling capacitors are determined by the equation of C = 1/(2 π fZs).] Data Sheet P11510EJ3V0DS00 5 µPC2711TB, µPC2712TB ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD AMP-2 Top View 3 2 1 IN OUT C 1G C C 6 5 4 Mounting direction (Marking is an example for µ PC2711TB) VCC C COMPONENT LIST Notes 1. 30 × 30 × 0.4 mm double sided copper clad polyimide board. C Value 2. Back side: GND pattern 1 000 pF 3. Solder plated on pattern 4. : Through holes For more information on the use of this IC, refer to the following application note: USAGE AND APPLICATIONS OF 6-PIN MINI-MOLD, 6-PIN SUPER MINI-MOLD SILICON HIGH-FREQUENCY WIDEBAND AMPLIFIER MMIC (P11976E). 6 Data Sheet P11510EJ3V0DS00 µPC2711TB, µPC2712TB TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C) µPC2711TB CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE CIRCUIT CURRENT vs. SUPPLY VOLTAGE 20 20 No input signal 16 14 12 10 8 6 16 14 12 10 8 6 4 4 2 2 0 0 1 No input signal VCC = 5.0 V 18 Circuit Current ICC (mA) Circuit Current ICC (mA) 18 4 2 3 Supply Voltage VCC (V) 5 0 –60 –40 –20 0 +20 +40 +60 +80 +100 Operating Ambient Temperature TA (°C) 6 NOISE FIGURE, POWER GAIN vs. FREQUENCY POWER GAIN vs. FREQUENCY 15 20 TA = –40°C TA = +25°C TA = +85°C VCC = 5.5 V VCC = 5.0 V Power Gain GP (dB) 6 10 5 VCC = 4.5 V VCC = 5.5 V TA = –40°C TA = +85°C TA = +25°C 10 0 5 VCC = 4.5 V NF VCC = 5.0 V VCC = 5.0 V 4 –5 0.1 0.3 1.0 Frequency f (GHz) 5 0.1 3.0 0.3 1.0 Frequency f (GHz) 0 0 VCC = 5.0 V Input Return Loss RLin (dB) Output Return Loss RLout (dB) VCC = 5.0 V –10 –20 –30 –40 –50 0.1 3.0 INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY ISOLATION vs. FREQUENCY Isolation ISL (dB) Noise Figure NF (dB) 7 GP Power Gain GP (dB) 15 8 0.3 1.0 Frequency f (GHz) 3.0 –10 RLout –20 RLin –30 –40 0.1 Data Sheet P11510EJ3V0DS00 0.3 1.0 Frequency f (GHz) 3.0 7 µPC2711TB, µPC2712TB µPC2711TB OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER +5 +5 0 Output Power Pout (dBm) Output Power Pout (dBm) VCC = 5.0 V f = 1.0 GHz 5.5 V f = 1.0 GHz VCC = 5.0 V –5 4.5 V –10 –15 0 TA = +25°C –40°C –20°C –5 –10 –15 –20 –35 –30 –25 –20 –15 –10 –5 0 –20 –35 –30 –25 –20 –15 –10 +5 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER 5.5 V 0 Output Power Pout (dBm) Output Power Pout (dBm) +5 f = 0.5 GHz VCC = 5.0 V VCC = 5.0 V –5 4.5 V –10 –15 0 f = 1.0 GHz f = 2.0 GHz –5 f = 2.9 GHz –10 –15 –20 –35 –30 –25 –20 –15 –10 –5 0 –20 –35 –30 –25 –20 –15 –10 +5 Input Power Pin (dBm) Pin = 0 dBm 5.5 V VCC = 5.0 V +5 0 4.5 V –5 –10 –15 0.1 0.3 1.0 3.0 Frequency f (GHz) Remark 0 +5 3RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE 3rd Order Intermodulation Distortion IM3 (dBc) +10 –5 Input Power Pin (dBm) SATURATED OUTPUT POWER vs. FREQUENCY Saturated Output Power PO(sat) (dBm) 0 OUTPUT POWER vs. INPUT POWER +5 f = 2.0 GHz –5 Input Power Pin (dBm) +5 8 +85°C 50 f1 = 1.000 GHz f2 = 1.002 GHz 40 VCC = 5.0 V 30 5.5 V 20 4.5 V 10 0 –20 –18 –16 –14 –12 –10 –8 –6 –4 –2 Output Power of Each Tone PO(each) (dBm) The graphs indicate nominal characteristics. Data Sheet P11510EJ3V0DS00 0 0.39 0.11 0.40 0.10 0.4 1 0.0 9 -100 -90 -80 0.38 0.12 0.37 0.13 0.36 0.14 0.35 0.15 4 0.3 6 0.1 1.6 30 1.8 2.0 1. 0 2.9 G 50 20 10 5.0 4.0 3.0 1.8 2.0 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0 2.0 1.8 1.4 1.2 1.0 0.9 0.8 0.7 1.6 0.6 1.4 1.2 1.0 0.9 0.8 1.6 0.7 0.6 P OM EC NC TA AC JX RE – o E Z V TI 40 -1 ON E 0 1. NT 5.0 50 20 10 4.0 3.0 1.8 2.0 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 2.0 1.8 0.5 30 0.2 1. 0.5 0 0. 0. 43 07 3 0.3 7 0.1 -1 32 0. 18 0. NE GA 0.4 0.4 0.0 2 8 -110 -70 0 1.4 0 -12 -60 0.2 0 1.2 0.6 3. 1.0 0.8 4.0 0.9 1.0 5.0 0.3 1.0 5.0 0.1 G 0.2 0.2 9 1 0.8 0.4 10 20 0.2 3. 0.2 8 0.2 2 0. 0. 31 19 0.7 -20 0 0.6 8 0. 0.27 0.23 4 -4 0.5 RESISTANCE COMPONENT R 0.2 Zo 50 0.40 0.10 0.4 1 0.0 9 -100 -90 -80 0.39 0.11 0.38 0.12 0.37 0.13 0.36 0.14 0.35 0.15 4 0.3 6 0.1 14 0 ER EA C T AN + JX CE C O Zo MP O 0.8 0. 0. 43 07 0.4 0.0 2 8 -110 -70 -1 0.2 -12 3 0.3 7 0.1 POS ITIV 0.6 0.3 4.0 0.6 0.1 10 0.4 20 -10 NT 20 0.26 0.24 ON E 50 0.3 0.2 0 0 Data Sheet P11510EJ3V0DS00 0.1 0.3 7 3 -5 60 0 P OM EC NC TA AC JX RE – o E Z V TI 0.6 10 0.25 0.25 40 0 0.1 0.4 2.9 G 0.24 0.26 0.2 1.0 G -60 0.2 0.1 6 0.3 4 32 0. 18 0. 5 0.4 5 0.0 0.6 3. 44 0. 06 0. 1.0 0. 0. 06 44 0.2 0 1. POS ITIV 5.0 10 -1 0. 8 0.23 0.27 0.1 0.1 G 0 70 20 0.6 0.15 0.35 2 0.2 8 0.2 0 14 0 ER EA C T AN +JX CE C O Zo MP O 4.0 0.26 0.24 -15 3. 0.25 0.25 0.14 0.36 -30 44 0. 06 0. 0.4 1 0.2 9 0.2 0. 4 0. 8 0. 4 6 0.4 4 0.0 1.0 0.2 0.2 9 1 0.8 30 0.3 4.0 0.3 0.8 0.2 8 0.2 2 0.4 40 5 0.4 5 0.0 0.4 0 0.2 0 0.3 0.1 5.0 NE GA 0.4 →WAVELENG 0 0.01 THS TOW 0.49 ARD 0.02 0.48 0 0.49 0.01 0.0 GENE 0.48 ← 7 3 0.02 RA 0.4 N O COEFFICIENT IN D I T C E 0.4 . F REFL EGREE 7 0.0 TOR .03 NGLE O 6 0 A S → 0.4 4 0.4 4 0 6 -1 0 6 0.0 0.0 0.4 5 15 0 0 5 -15 8 0. -20 →WAVELENG 0 0.01 THS TOW 0.49 ARD 0.02 0.48 0 0.49 0.01 0.0 GENE 0.48 ← 3 0.02 RA N O COEFFICIENT IN D I T C E 0.4 OF REFL EGREE 7 0.0 TOR ANGLE S → 0.4 4 0 6 -1 0 6 0.0 0.4 5 15 0 5 0.6 19 0. 31 0. NT 80 0. 0. 06 44 2.0 0.5 1.4 1.2 1.0 0.9 0.8 0.7 1.6 0.6 1.8 50 0.24 0.26 0.6 0.27 0.23 90 0.1 0.3 7 3 -10 100 60 0 0.13 0.37 -5 0.2 0.1 6 0.3 4 0. 0. 31 19 S22-FREQUENCY 0.12 0.38 0 0.11 0.39 70 10 0.3 0.23 0.27 0.1 0.15 0.35 20 RESISTANCE COMPONENT R 0.2 Zo 0.14 0.36 2 0.2 8 0.2 1.0 G 10 20 NT 50 0 80 1 0.2 9 0.2 4 -4 0. NE 110 90 0.3 0.2 0 0 0 13 0 100 -30 12 0.10 0.40 0.13 0.37 30 07 0. 43 0. 8 0.0 2 0.4 9 0.0 1 0.4 110 0.12 0.38 40 0.2 0. NE 0.11 0.39 0 0.2 0 0.3 0.2 13 0 12 0.10 0.40 0.2 07 0. 43 0. 8 0.0 2 0.4 9 0.0 1 0.4 19 0. 31 0. 7 0.4 3. 0.0 µPC2711TB, µPC2712TB S-PARAMETERS (TA = +25°°C, VCC = 5.0 V) µPC2711TB S11-FREQUENCY 0. 0. 18 32 0 50 0. 0. 18 32 0 50 9 µPC2711TB, µPC2712TB TYPICAL S-PARAMETER VALUES (TA = +25°°C) µPC2711TB VCC = 5.0 V, ICC = 13.8 mA FREQUENCY 10 S11 S21 S12 S22 K MHz MAG. ANG. MAG. ANG. MAG. ANG. MAG. ANG. 100.0000 0.085 −22.4 4.447 −14.9 0.035 −12.7 0.113 −3.1 3.18 200.0000 0.086 −25.0 4.468 −30.1 0.035 −23.0 0.119 1.2 3.21 300.0000 0.098 −29.2 4.491 −44.9 0.034 −32.1 0.136 1.6 3.23 400.0000 0.081 −29.4 4.510 −60.3 0.033 −42.5 0.142 6.5 3.34 500.0000 0.066 −33.9 4.540 −74.9 0.033 −50.1 0.156 10.1 3.32 600.0000 0.041 −54.5 4.572 −90.2 0.033 −59.6 0.161 12.7 3.34 700.0000 0.053 −104.3 4.624 −105.3 0.032 −69.3 0.161 8.8 3.33 800.0000 0.070 −119.7 4.664 −120.7 0.031 −78.4 0.176 6.2 3.36 900.0000 0.098 −121.9 4.729 −136.1 0.032 −86.6 0.192 1.9 3.27 1000.0000 0.101 −112.5 4.781 −152.0 0.031 −94.9 0.228 0.1 3.29 1100.0000 0.090 −108.5 4.843 −167.9 0.031 −103.9 0.256 −0.6 3.15 1200.0000 0.060 −95.6 4.945 175.8 0.029 −111.0 0.290 −1.1 3.24 1300.0000 0.019 −79.2 4.999 159.5 0.029 −120.2 0.308 −0.3 3.16 1400.0000 0.023 54.8 5.062 143.0 0.028 −128.9 0.322 −1.4 3.18 1500.0000 0.062 80.7 5.114 126.4 0.029 −133.1 0.327 −2.2 3.08 1600.0000 0.087 80.4 5.142 109.5 0.029 −140.9 0.333 −4.8 3.07 1700.0000 0.113 78.7 5.160 92.7 0.029 −146.2 0.344 −7.0 3.02 1800.0000 0.126 72.0 5.146 75.4 0.030 −151.4 0.356 −9.7 2.88 1900.0000 0.154 63.5 5.123 58.0 0.032 −159.7 0.371 −11.1 2.70 2000.0000 0.178 59.0 5.113 41.3 0.035 −168.3 0.378 −12.0 2.51 2100.0000 0.212 54.2 5.063 24.0 0.036 −175.7 0.383 −12.8 2.39 2200.0000 0.232 55.2 5.006 6.9 0.038 175.2 0.378 −13.6 2.27 2300.0000 0.246 53.8 4.954 −10.4 0.041 165.2 0.367 −16.1 2.13 2400.0000 0.248 53.6 4.865 −27.7 0.045 155.3 0.359 −18.0 1.99 2500.0000 0.240 49.2 4.783 −45.0 0.048 143.6 0.356 −21.1 1.88 2600.0000 0.238 43.7 4.664 −62.3 0.049 131.2 0.359 −23.6 1.85 2700.0000 0.240 36.2 4.529 −79.6 0.052 119.8 0.366 −26.2 1.76 2800.0000 0.262 31.7 4.384 −96.6 0.054 108.7 0.374 −28.6 1.72 2900.0000 0.285 28.8 4.255 −113.1 0.056 95.5 0.372 −31.1 1.68 3000.0000 0.316 29.7 4.117 −129.6 0.057 83.6 0.361 −35.0 1.69 Data Sheet P11510EJ3V0DS00 µPC2711TB, µPC2712TB TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C) µPC2712TB CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE CIRCUIT CURRENT vs. SUPPLY VOLTAGE 20 16 14 12 10 8 6 16 14 12 10 8 6 4 4 2 2 0 1 No input signal VCC = 5.0 V 18 Circuit Current ICC (mA) Circuit Current ICC (mA) 18 20 No input signal 4 2 3 Supply Voltage VCC (V) 5 0 –60 6 NOISE FIGURE, POWER GAIN vs. FREQUENCY –40 –20 0 +20 +40 +60 +80 +100 Operating Ambient Temperature TA (˚C) POWER GAIN vs. FREQUENCY 25 30 VCC = 5.0 V Power Gain GP (dB) 6 2 VCC = 4.5 V VCC = 5.5 V GP 20 15 VCC = 4.5 V NF 10 4 5 0.1 VCC = 5.5 V –40°C +25°C 20 TA = +85°C VCC = 5.0 V 0.3 1.0 Frequency f (GHz) 15 0.1 3.0 0.3 1.0 Frequency f (GHz) 0 0 VCC = 5.0 V Input Return Loss RLin (dB) Output Return Loss RLout (dB) VCC = 5.0 V –10 –20 –30 –40 –50 0.1 3.0 INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY ISOLATION vs. FREQUENCY Isolation ISL (dB) Noise Figure NF (dB) 8 VCC = 5.0 V Power Gain GP (dB) 25 10 0.3 1.0 Frequency f (GHz) 3.0 RLin –10 –20 RLout –30 –40 0.1 Data Sheet P11510EJ3V0DS00 0.3 1.0 Frequency f (GHz) 3.0 11 µPC2711TB, µPC2712TB µPC2712TB OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER +10 +10 f = 1.0 GHz 5.5 V +5 Output Power Pout (dBm) Output Power Pout (dBm) +5 0 VCC = 5.0 V 4.5 V –5 –10 –15 –20 VCC = 5.0 V f = 1.0 GHz 0 TA = +25°C –10 –15 0 –25 –40 –35 –30 –25 –20 –15 –10 –5 +5 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +5 OUTPUT POWER vs. INPUT POWER +10 f = 2.0 GHz VCC = 5.0 V 5.5 V 0 VCC = 5.0 V –5 4.5 V –10 f = 0.5 GHz +5 Output Power Pout (dBm) +5 Output Power Pout (dBm) 0 Input Power Pin (dBm) +10 –15 –20 0 f = 1.0 GHz –5 f = 2.0 GHz –10 –15 –20 –25 –40 –35 –30 –25 –20 –15 –10 –5 0 –25 –45 –40 –35 –30 –25 –20 –15 –10 –5 +5 Input Power Pin (dBm) Pin = –2 dBm 5.5 V +5 0 4.5 V VCC = 5.0 V –5 –10 0.1 0.3 1 3 Frequency f (GHz) Remark +5 3RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE 3rd Order Intermodulation Distortion IM3 (dBc) +10 0 Input Power Pin (dBm) SATURATED OUTPUT POWER vs. FREQUENCY Saturated Output Power PO(sat) (dBm) –40°C –5 –20 –25 –45 –40 –35 –30 –25 –20 –15 –10 –5 12 +85°C 50 f1 = 1.000 GHz f2 = 1.002 GHz 40 VCC = 5.0 V 5.5 V 30 20 4.5 V 10 0 –16 –14 –12 –10 –8 –6 –4 –2 Output Power of Each Tone PO(each) (dBm) The graphs indicate nominal characteristics. Data Sheet P11510EJ3V0DS00 0 -100 0.4 1 0.0 9 0.40 0.10 0.39 0.11 0.38 0.12 0.37 0.13 0.36 0.14 -90 -80 4 0.3 6 0.1 1.4 1.2 3 0.3 7 0.1 1.6 1.8 0.6 NE GA 0.4 30 2.0 -1 32 0. 18 0. 0.35 0.15 1.0 0.8 0. 0. 43 07 0.9 1.0 0.4 0.0 2 8 -110 -70 0 -12 -60 0.2 0 0 1. 1.2 1.0 0.9 0.8 0.7 0.6 0.5 1.0 G 50 20 10 5.0 4.0 3.0 1.8 2.0 1.6 1.4 0.6 0.1 0.4 3.0 G 0.2 0.2 9 1 0 0.4 0 2.0 0.5 1.8 1.4 1.2 1.0 0.9 0.8 0.7 1.6 0.6 1.4 1.2 1.0 0.9 0.8 1.6 0.7 0.6 0 1. NT ONE MP CO CE AN CT JX A E – E R Zo TI V 5.0 50 20 10 4.0 3.0 1.8 2.0 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 2.0 1.8 0.5 30 40 NE GA 0.2 1. 5.0 0.2 8 0.2 2 0. 0. 31 19 0.8 -20 0 0.7 8 0. 0.27 0.23 3. 0.3 4.0 10 20 -10 4 -4 0.6 1.0 0.26 0.24 4.0 0.3 3. 0 5.0 0.2 0.6 0.3 0.2 0 0 0.5 0.4 0.25 0.25 0.6 10 20 0.1 0.4 20 0.24 0.26 RESISTANCE COMPONENT R 0.2 Zo 50 0.40 0.10 0.4 1 0.0 9 -100 -90 0.39 0.11 0.4 0.0 2 8 -80 0.38 0.12 0.37 0.13 0.36 0.14 0.35 0.15 0. 0. 43 07 0 -12 -1 1.0 14 0 ER E AC T AN +JX CE C O Zo MP O 0 -110 -70 POS ITIV 0.6 3. -1 0.2 5 0.4 5 0.0 0.8 4.0 44 0. 06 0. 0.6 10 10 ENT PON OM EC NC TA AC –JX E E R Zo TIV 0. 8 0.23 0.27 40 -1 50 -30 Data Sheet P11510EJ3V0DS00 0.1 0.3 7 3 -5 60 20 0.2 0.1 G 4 0.3 6 0.1 0.2 0.1 6 0.3 4 3 0.3 7 0.1 70 -60 0.15 0.35 0 80 -5 0.14 0.36 2 0.2 8 0.2 0.4 0.2 0 1. POS ITIV 5.0 0.26 0.24 0.3 14 0 ER E AC T AN + JX CE C Zo OM PO 4.0 0.25 0.25 0. 0. 06 44 1.0 G 1 0.2 9 0.2 2.5 G 0.27 0.23 2.0 G 0.6 0.2 0.2 9 1 0.8 30 0.1 1.0 0.2 8 0.2 2 NT 3. -10 0 0. 4 40 0.1 0.13 0.37 5.0 0.3 0.8 0 0.2 0 0.3 5 0.4 5 0.0 0.6 19 0. 31 0. 44 0. 06 0. 8 0. -20 0.4 →WAVELEN NG G HSS 0 0.01 TTH TTO W 0.49 AARRD 0.02 OW DG 0.48 0 0.49 0.01 0.0 GEENNEE 0.48 ← 7 3 0.02 RRAA 0.4 O N E O C I F FICIENT IN D T 0.4 . F REFLECT EGREE 7 0.0 TOORR→ .03 NGLE O 6 0 A S → 0.4 4 0.4 4 0 6 -1 0 6 0.0 0.0 0.4 5 15 0 5 0 5 -1 0.4 0 100 90 32 0. 18 0. 0.4 0. 0. 06 44 2.0 0.5 1.4 1.2 1.0 0.9 0.8 0.7 1.6 0.6 1.8 50 0.24 0.26 3.0 G 0.1 0.3 7 3 10 110 0.12 0.38 0. 8 0.23 0.27 RESISTANCE COMPONENT R 0.2 Zo 0.1 G 60 0. 0. 31 19 0.11 0.39 0 0. NE 0 0.2 0.1 6 0.3 4 20 0.3 70 2 0.2 8 0.2 4 -4 13 NT 0.15 0.35 1 0.2 9 0.2 0.1 80 10 20 0 0.14 0.36 0.3 0.2 0 0 12 0.10 0.40 0.13 0.37 -30 07 0. 43 0. 8 0.0 2 0.4 9 0.0 1 0.4 100 90 30 0. 0. 4 NE 110 0.12 0.38 40 0.2 13 0 0.11 0.39 0 0.2 0 0.3 0.2 12 0.10 0.40 50 07 0. 43 0. 8 0.0 2 0.4 9 0.0 1 0.4 19 0. 31 0. →WAVELEN NG G HSS 0 0.01 TTH TTO W 0.49 AARRD 0.02 OW DG 0.48 0 0.49 0.01 0.0 GEENNEE 0.48 ← 7 3 0.02 RRAA 0.4 O N E O C I F T F C I CIENT IN DE T . F REFLE GREES 0.47 0.0 TOORR .03 NGLE O 6 0 A → → 0.4 4 0.4 4 0 6 -1 0 6 0.0 0.0 0.4 5 15 0 5 0 5 -1 µPC2711TB, µPC2712TB S-PARAMETERS (TA = +25°°C, VCC = 5.0 V) µPC2712TB S11-FREQUENCY 0. 0. 18 32 0 0.2 50 S22-FREQUENCY 0. 0. 18 32 0 50 13 µPC2711TB, µPC2712TB TYPICAL S-PARAMETER VALUES (TA = +25°°C) µPC2712TB VCC = 5.0 V, ICC = 13.9 mA FREQUENCY 14 S11 MHz MAG. 100.0000 200.0000 S21 S12 S22 K ANG. MAG. ANG. MAG. ANG. MAG. ANG. 0.303 −8.1 8.864 −16.7 0.023 −11.4 0.043 2.3 2.32 0.291 −10.1 8.827 −33.5 0.023 −19.2 0.055 11.5 2.35 300.0000 0.295 −11.8 8.936 −49.5 0.022 −25.5 0.078 8.5 2.38 400.0000 0.276 −11.3 9.044 −67.6 0.023 −34.6 0.095 13.4 2.33 500.0000 0.265 −11.0 9.051 −82.2 0.023 −42.8 0.112 13.6 2.37 600.0000 0.243 −12.3 9.096 −98.8 0.023 −50.0 0.120 11.1 2.35 700.0000 0.222 −20.3 9.089 −115.2 0.023 −59.8 0.120 1.7 2.37 800.0000 0.219 −25.4 9.080 −131.5 0.023 −66.2 0.136 −6.0 2.38 900.0000 0.230 −33.9 9.096 −147.6 0.023 −73.0 0.155 −14.4 2.39 1000.0000 0.267 −35.5 9.044 −164.2 0.024 −82.9 0.189 −17.5 2.26 1100.0000 0.290 −35.5 9.197 179.5 0.024 −89.5 0.212 −19.9 2.12 1200.0000 0.316 −33.2 9.421 162.4 0.024 −98.4 0.240 −21.4 2.02 1300.0000 0.317 −30.6 9.524 144.9 0.024 −107.0 0.245 −23.2 1.94 1400.0000 0.314 −29.4 9.512 126.6 0.026 −115.7 0.248 −27.1 1.82 1500.0000 0.296 −28.1 9.574 109.1 0.026 −122.3 0.236 −31.8 1.78 1600.0000 0.290 −29.4 9.598 91.1 0.027 −133.2 0.231 −38.0 1.74 1700.0000 0.278 −31.1 9.480 72.9 0.028 −139.4 0.221 −43.8 1.72 1800.0000 0.282 −34.9 9.372 54.3 0.029 −148.1 0.215 −49.8 1.69 1900.0000 0.284 −35.5 9.193 35.6 0.030 −157.6 0.199 −53.0 1.70 2000.0000 0.280 −36.6 9.198 18.4 0.031 −167.4 0.170 −55.3 1.69 2100.0000 0.273 −36.0 9.011 0.1 0.033 −175.1 0.134 −56.2 1.68 2200.0000 0.244 −38.2 8.784 −17.9 0.033 176.5 0.090 −55.2 1.74 2300.0000 0.222 −40.0 8.717 −35.1 0.034 164.8 0.050 −53.7 1.74 2400.0000 0.189 −45.7 8.388 −52.9 0.036 154.8 0.025 1.8 1.75 2500.0000 0.177 −52.9 8.217 −70.1 0.037 143.5 0.039 33.4 1.74 2600.0000 0.164 −57.4 7.890 −87.4 0.039 133.3 0.071 39.3 1.72 2700.0000 0.158 −59.6 7.597 −104.6 0.041 123.8 0.099 34.3 1.70 2800.0000 0.143 −53.9 7.313 −121.4 0.041 114.0 0.131 26.0 1.72 2900.0000 0.128 −44.3 7.078 −138.4 0.043 101.4 0.149 22.8 1.70 3000.0000 0.111 −22.2 6.806 −154.9 0.046 90.2 0.157 19.4 1.70 Data Sheet P11510EJ3V0DS00 µPC2711TB, µPC2712TB PACKAGE DIMENSIONS 6-PIN SUPER MINIMOLD (UNIT : mm) 2.1±0.1 0.2+0.1 –0.05 0.65 0.65 1.3 Data Sheet P11510EJ3V0DS00 0.15+0.1 –0.05 0 to 0.1 0.7 0.1 MIN. 0.9±0.1 2.0±0.2 1.25±0.1 15 µPC2711TB, µPC2712TB NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor should be attached to VCC line. (4) The DC cut capacitor must be each attached to input and output pin. RECOMMENDED SOLDERING CONDITIONS This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives. Soldering Method Soldering Conditions Recommended Condition Symbol Infrared Reflow Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Note Count: 3, Exposure limit : None IR35-00-3 VPS Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Note Count: 3, Exposure limit : None VP15-00-3 Wave Soldering Soldering bath temperature: 260°C or below Time: 10 seconds or less Note Count: 1, Exposure limit : None WS60-00-1 Partial Heating Pin temperature: 300°C Time: 3 seconds or less (per side of device) Note Exposure limit : None – Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 16 Data Sheet P11510EJ3V0DS00 µPC2711TB, µPC2712TB [MEMO] Data Sheet P11510EJ3V0DS00 17 µPC2711TB, µPC2712TB [MEMO] 18 Data Sheet P11510EJ3V0DS00 µPC2711TB, µPC2712TB [MEMO] Data Sheet P11510EJ3V0DS00 19 µPC2711TB, µPC2712TB ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation. • The information in this document is current as of November, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. • No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. • NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. • Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. • While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features. • NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note) (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above). M8E 00. 4