SEMIHOW HFH7N80

BVDSS = 800 V
RDS(on) typ = 1.55 Ω
HFH7N80
ID = 7.0 A
800V N-Channel MOSFET
TO-3P
FEATURES
 Originative New Design
1
2
3
 Superior Avalanche Rugged Technology
 Robust Gate Oxide Technology
1.Gate 2. Drain 3. Source
 Very Low Intrinsic Capacitances
 Excellent Switching Characteristics
 Unrivalled Gate Charge : 35 nC (Typ.)
 Extended Safe Operating Area
 Lower RDS(ON) : 1.55 Ω (Typ.) @VGS=10V
 100% Avalanche Tested
Absolute Maximum Ratings
Symbol
TC=25℃ unless otherwise specified
Parameter
Value
Units
800
V
VDSS
Drain-Source Voltage
ID
Drain Current
– Continuous (TC = 25℃)
7.0
A
Drain Current
– Continuous (TC = 100℃)
4.4
A
IDM
Drain Current
– Pulsed
28
A
VGS
Gate-Source Voltage
±30
V
EAS
Single Pulsed Avalanche Energy
(Note 2)
580
mJ
IAR
Avalanche Current
(Note 1)
7.0
A
EAR
Repetitive Avalanche Energy
(Note 1)
19.8
mJ
dv/dt
Peak Diode Recovery dv/dt
(Note 3)
4.5
V/ns
PD
Power Dissipation (TC = 25℃)
- Derate above 25℃
198
W
TJ, TSTG
Operating and Storage Temperature Range
TL
Maximum lead temperature for soldering purposes,
1/8” from case for 5 seconds
(Note 1)
1.59
W/℃
-55 to +150
℃
300
℃
Thermal Resistance Characteristics
Symbol
Parameter
RθJC
Junction-to-Case
RθCS
Case-to-Sink
RθJA
Junction-to-Ambient
Typ.
Max.
--
0.63
0.24
--
--
40
Units
℃/W
◎ SEMIHOW REV.A0,Mar 2010
HFH7N80
Mar 2010
Symbol
Parameter
unless otherwise specified
Test Conditions
Min
Typ
Max
Units
On Characteristics
VGS
RDS(ON)
Gate Threshold Voltage
VDS = VGS, ID = 250 ㎂
2.5
--
4.5
V
Static Drain-Source
On-Resistance
VGS = 10 V, ID = 3.0 A
--
1.55
1.9
Ω
VGS = 0 V, ID = 250 ㎂
800
--
--
V
ID = 250 ㎂, Referenced to25℃
--
0.93
--
V/℃
VDS = 800 V, VGS = 0 V
--
--
1
㎂
VDS = 640 V, TC = 125℃
--
--
10
㎂
Off Characteristics
BVDSS
Drain-Source Breakdown Voltage
ΔBVDSS Breakdown Voltage Temperature
Coefficient
/ΔTJ
IDSS
Zero Gate Voltage Drain Current
IGSSF
Gate-Body Leakage Current,
Forward
VGS = 30 V, VDS = 0 V
--
--
100
㎁
IGSSR
Gate-Body Leakage Current,
Reverse
VGS = -30 V, VDS = 0 V
--
--
-100
㎁
--
1500
1950
㎊
--
120
155
㎊
--
18
24
㎊
--
40
80
㎱
--
120
240
㎱
--
60
120
㎱
--
70
140
㎱
--
35
45
nC
--
10
--
nC
--
13
--
nC
Dynamic Characteristics
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
VDS = 25 V, VGS = 0 V,
f = 1.0 MHz
Switching Characteristics
td(on)
Turn-On Time
tr
Turn-On Rise Time
td(off)
Turn-Off Delay Time
tf
Turn-Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
VDS = 400 V, ID = 7.0 A,
RG = 25 Ω
(Note 4,5)
VDS = 640V, ID = 7.0 A,
VGS = 10 V
(Note 4,5)
Gate-Drain Charge
Source-Drain Diode Maximum Ratings and Characteristics
IS
Continuous Source-Drain Diode Forward Current
--
--
7.0
ISM
Pulsed Source-Drain Diode Forward Current
--
--
28
VSD
Source-Drain Diode Forward Voltage
IS = 7.0 A, VGS = 0 V
--
--
1.4
V
trr
Reverse Recovery Time
--
780
--
㎱
Qrr
Reverse Recovery Charge
IS = 7.0 A, VGS = 0 V
diF/dt = 100 A/μs (Note 4)
--
9.0
--
μC
A
Notes ;
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. L=22.2mH, IAS=7.0A, VDD=50V, RG=25Ω, Starting TJ =25°C
3. ISD≤7.0A, di/dt≤200A/μs, VDD≤BVDSS , Starting TJ =25 °C
4. Pulse Test : Pulse Width ≤ 300μs, Duty Cycle ≤ 2%
5. Essentially Independent of Operating Temperature
◎ SEMIHOW REV.A0,Mar 2010
HFH7N80
Electrical Characteristics TC=25 °C
HFH7N80
Typical Characteristics
VGS
15.0 V
10.0 V
8.0 V
7.0 V
6.5 V
6.0 V
Bottom : 5.5 V
Top :
ID, Drain Current [A]
0
1
10
ID, Drain Current [A]
1
10
10
-1
10
※ Notes :
1. 250μ s Pulse Test
2. TC = 25 ℃
-2
150oC
-55oC
o
25 C
0
10
※ Notes :
1. VDS = 50V
2. 250μ s Pulse Test
-1
10
-1
0
10
10
1
10
2
10
4
6
8
10
VGS, Gate-Source Voltage [V]
VDS, Drain-Source Voltage [V]
Figure 1. On Region Characteristics
Figure 2. Transfer Characteristics
3.0
IDR, Reverse Drain Current [A]
3.5
VGS = 10V
VGS = 20V
2.5
2.0
1.5
※ Note : TJ = 25 ℃
1.0
3
6
9
0
10
150 ℃
25℃
※ Notes :
1. VGS = 0V
2. 250μ s Pulse Test
12
15
10
18
0.2
0.4
0.6
0.8
1.0
1.2
1.4
ID, Drain Current [A]
VSD, Source-Drain voltage [V]
Figure 3. On Resistance Variation vs
Drain Current and Gate Voltage
Figure 4. Body Diode Forward Voltage
Variation with Source Current
and Temperature
2500
12
Ciss = Cgs + Cgd (Cds = shorted)
Coss = Cds + Cgd
Crss = Cgd
2000
Capacitance [pF]
1
10
-1
0
Ciss
1500
Coss
1000
※ Notes :
1. VGS = 0 V
2. f = 1 MHz
500
Crss
VDS = 160V
VGS, Gate-Source Voltage [V]
RDS(ON) [Ω ],
Drain-Source On-Resistance
4.0
10
VDS = 400V
VDS = 640V
8
6
4
2
※ Note : ID = 7.0A
0
-1
10
0
0
10
1
10
0
5
10
15
20
25
30
35
40
VDS, Drain-Source Voltage [V]
QG, Total Gate Charge [nC]
Figure 5. Capacitance Characteristics
Figure 6. Gate Charge Characteristics
◎ SEMIHOW REV.A0,Mar 2010
(continued)
1.2
3.0
RDS(ON), (Normalized)
Drain-Source On-Resistance
BVDSS, (Normalized)
Drain-Source Breakdown Voltage
HFH7N80
Typical Characteristics
1.1
1.0
※ Notes :
1. VGS = 0 V
2. ID = 250 μ A
0.9
0.8
-100
-50
0
50
100
150
2.5
2.0
1.5
1.0
* Notes :
1. VGS = 10 V
2. ID = 3.5 A
0.5
0.0
-100
200
-50
100
150
Figure 7. Breakdown Voltage Variation
vs Temperature
Figure 8. On-Resistance Variation
vs Temperature
200
8
2
Operation in This Area
is Limited by R DS(on)
10 µs
10
ID, Drain Current [A]
100 µs
1
1 ms
10 ms
DC
0
10
-1
10
※ Notes :
o
1. TC = 25 C
o
2. TJ = 150 C
3. Single Pulse
0
10
1
2
10
3
10
6
4
2
0
25
-2
10
50
75
100
125
150
TC, Case Temperature [ ℃]
VDS, Drain-Source Voltage [V]
Figure 9. Maximum Safe Operating Area
Figure 10. Maximum Drain Current
vs Case Temperature
100
ZθJC(t), Thermal Response
ID, Drain Current [A]
50
TJ, Junction Temperature [ C]
10
10
0
TJ, Junction Temperature [oC]
o
D=0.5
* Notes :
1. ZθJC(t) = 0.63 oC/W Max.
2. Duty Factor, D=t1/t2
3. TJM - TC = PDM * ZθJC(t)
0.2
10-1
0.1
0.05
0.02
0.01
10-2
10-5
PDM
single pulse
t1
10-4
10-3
10-2
10-1
t2
100
101
t1, Square Wave Pulse Duration [sec]
Figure 11. Transient Thermal Response Curve
◎ SEMIHOW REV.A0,Mar 2010
(continued)
1.2
3.0
RDS(ON), (Normalized)
Drain-Source On-Resistance
BVDSS, (Normalized)
Drain-Source Breakdown Voltage
HFH7N80
Typical Characteristics
1.1
1.0
※ Notes :
1. VGS = 0 V
2. ID = 250 μ A
0.9
0.8
-100
-50
0
50
100
150
2.5
2.0
1.5
1.0
※ Notes :
1. VGS = 10 V
2. ID = 3.0 A
0.5
0.0
-100
200
-50
50
100
150
200
TJ, Junction Temperature [ C]
TJ, Junction Temperature [ C]
Figure 8. On-Resistance Variation
vs Temperature
Figure 7. Breakdown Voltage Variation
vs Temperature
102
0
o
o
6
Operation in This Area
is Limited by R DS(on)
1 ms
10 ms
100
DC
10-1
4
2
* Notes :
1. TC = 25 oC
10-2
100
2. TJ = 150 oC
3. Single Pulse
101
102
0
25
103
50
75
100
125
150
TC, Case Temperature [ ℃]
VDS, Drain-Source Voltage [V]
Figure 9. Maximum Safe Operating Area
Figure 10. Maximum Drain Current
vs Case Temperature
100
ZθJC(t), Thermal Response
ID, Drain Current [A]
ID, Drain Current [A]
100 µs
101
D=0.5
* Notes :
1. ZθJC(t) = 0.63 oC/W Max.
2. Duty Factor, D=t1/t2
3. TJM - TC = PDM * ZθJC(t)
0.2
10-1
0.1
0.05
PDM
0.02
0.01
10-2
10-5
t1
single pulse
10-4
10-3
10-2
10-1
t2
100
101
t1, Square Wave Pulse Duration [sec]
Figure 11. Transient Thermal Response Curve
◎ SEMIHOW REV.A0,Mar 2010
HFH7N80
Fig 12. Gate Charge Test Circuit & Waveform
50KΩ
12V
VGS
Same Type
as DUT
Qg
200nF
10V
300nF
VDS
VGS
Qgs
Qgd
DUT
3mA
Charge
Fig 13. Resistive Switching Test Circuit & Waveforms
RL
VDS
VDS
90%
VDD
RG
( 0.5 rated VDS )
Vin
DUT
10V
10%
tr
td(on)
td(off)
t on
tf
t off
Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms
BVDSS
1
EAS = ---- LL IAS2 -------------------2
BVDSS -- VDD
L
VDS
VDD
ID
BVDSS
IAS
RG
10V
ID (t)
DUT
VDS (t)
VDD
tp
Time
◎ SEMIHOW REV.A0,Mar 2010
HFH7N80
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms
DUT
+
VDS
_
IS
L
Driver
RG
VGS
VGS
( Driver )
Same Type
as DUT
VDD
• dv/dt controlled by RG
• IS controlled by pulse period
Gate Pulse Width
D = -------------------------Gate Pulse Period
10V
IFM , Body Diode Forward Current
IS
( DUT )
di/dt
IRM
Body Diode Reverse Current
VDS
( DUT )
Body Diode Recovery dv/dt
Vf
VDD
Body Diode
Forward Voltage Drop
◎ SEMIHOW REV.A0,Mar 2010
HFH7N80
Package Dimension
TO-3P
4.8±0.20
.20
1.5±0.20
18.7±0.20
±0
.2
φ3
13.9±0.20
14.9±0.20
19.9±0.20
15.6±0.20
13.6±0.20
9.6±0.20
5.45typ
3.5±0.20
3±0.20
2±0.20
1±0.20
16.5±0.20
1.4±0.20
0.6±0.20
5.45typ
◎ SEMIHOW REV.A0,Mar 2010