SITRONIX ST7575

Sitronix
ST7575
66 x 102 Dot Matrix LCD Controller/Driver
1. INTRODUCTION
ST7575 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102-segment and
65-common with 1-icon-common driver circuits. This chip is connected directly to a microprocessor which accepts 3-line
or 4-line serial peripheral interface (SPI) or 8-bit parallel interface. Display data stores in an on-chip display data RAM
(DDRAM) of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize
power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a
display system with the fewest components.
2. FEATURES
Single-chip LCD Controller & Driver
Low Power Consumption Analog Circuit
Driver Output Circuits
-
Voltage booster (X4, X5)
102-segment / 65-common+1-icon-common (1/66 duty)
-
Voltage regulator generates LCD operating voltage
On-chip Display Data Ram
-
(Temperature Gradient: -0.11%/°C)
Capacity: 66X102= 6,732 bits
Microprocessor Interface
-
-
8-bit
parallel
bi-directional
interface
-
Electronic contrast control (128 steps)
-
Voltage follower generates LCD bias voltages
supports
(1/4 ~ 1/11 bias)
6800-series or 8080-series MPU
Wide supply voltage range
3-line & 4-line SPI (serial peripheral interface) are
-
VDD1 – VSS1 : 1.8 ~ 3.3V
available (write only)
-
VDD2 – VSS2 : 2.4 ~ 3.3V
External RESB (reset) pin
Display supply voltage range
Built-in oscillation circuit
-
Application Vop range : 8V ~ 9.5V
-
-
Programmable voltage (Vop) : 10.56V (max)
Oscillator requires no external component
°
Temperature range: -30 to +85 C
Support LCD Module Size up to 1.8”
ST7575
6800 , 8080 , 4-Line , 3-Line interface
Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.
Ver 1.3
1/51
2007/09/12
ST7575
3-1. ST7575 Pad Arrangement
Chip Size: 5570 um ×770 um
Bump Height: 15 um
Chip Thickness: 480 um
Bump Pitch: (minimum)
PAD Number
Unit: um
Pitch
PAD Number
Pitch
1~27, 130~156, 157~163, 243~250
37.20
212~213
46.65
28~129
33.00
213~216,218~221
33.30
27~28
62.90
216~217,217~218
38.80
129~130
60.69
221~222
46.30
163~164
329.57
228~229
66.40
164~207, 208~211,222~228,229~235,236~242
59.30
235~236
62.45
207~208
131.83
242~243
79.90
211~212
71.30
* Refer to “Pad Center Coordinates” section for ITO layout.
Fig 1.
Ver 1.3
2/51
2007/09/12
ST7575
3-2. Pad Center Coordinates
66 Duty (TMY=0)
PAD NO.
PIN Name
X
Y
1
COM[59]
2695.50
293.00
2
COM[58]
2658.30
293.00
3
COM[57]
2621.10
293.00
4
COM[56]
2583.90
293.00
5
COM[55]
2546.70
293.00
6
COM[54]
2509.50
293.00
7
COM[53]
2472.30
293.00
8
COM[52]
2435.10
293.00
9
COM[51]
2397.90
293.00
10
COM[50]
2360.70
293.00
11
COM[49]
2323.50
293.00
12
COM[48]
2286.30
293.00
13
COM[47]
2249.10
293.00
14
COM[46]
2211.90
293.00
15
COM[45]
2174.70
293.00
16
COM[44]
2137.50
293.00
17
COM[43]
2100.30
293.00
18
COM[42]
2063.10
293.00
19
COM[41]
2025.90
293.00
20
COM[40]
1988.70
293.00
21
COM[39]
1951.50
293.00
22
COM[38]
1914.30
293.00
23
COM[37]
1877.10
293.00
24
COM[36]
1839.90
293.00
25
COM[35]
1802.70
293.00
26
COM[34]
1765.50
293.00
27
COM[33]
1728.30
293.00
28
SEG[0]
1665.39
282.75
29
SEG[1]
1632.39
282.75
30
SEG[2]
1599.39
282.75
Fig 2. MX=0, MY=0
Ver 1.3
3/51
2007/09/12
ST7575
PAD NO.
PIN Name
X
Y
PAD NO.
PIN Name
X
Y
31
SEG[3]
1566.39
282.75
61
SEG[33]
576.39
282.75
32
SEG[4]
1533.39
282.75
62
SEG[34]
543.39
282.75
33
SEG[5]
1500.39
282.75
63
SEG[35]
510.39
282.75
34
SEG[6]
1467.39
282.75
64
SEG[36]
477.39
282.75
35
SEG[7]
1434.39
282.75
65
SEG[37]
444.39
282.75
36
SEG[8]
1401.39
282.75
66
SEG[38]
411.39
282.75
37
SEG[9]
1368.39
282.75
67
SEG[39]
378.39
282.75
38
SEG[10]
1335.39
282.75
68
SEG[40]
345.39
282.75
39
SEG[11]
1302.39
282.75
69
SEG[41]
312.39
282.75
40
SEG[12]
1269.39
282.75
70
SEG[42]
279.39
282.75
41
SEG[13]
1236.39
282.75
71
SEG[43]
246.39
282.75
42
SEG[14]
1203.39
282.75
72
SEG[44]
213.39
282.75
43
SEG[15]
1170.39
282.75
73
SEG[45]
180.39
282.75
44
SEG[16]
1137.39
282.75
74
SEG[46]
147.39
282.75
45
SEG[17]
1104.39
282.75
75
SEG[47]
114.39
282.75
46
SEG[18]
1071.39
282.75
76
SEG[48]
81.39
282.75
47
SEG[19]
1038.39
282.75
77
SEG[49]
48.39
282.75
48
SEG[20]
1005.39
282.75
78
SEG[50]
15.39
282.75
49
SEG[21]
972.39
282.75
79
SEG[51]
-17.60
282.75
50
SEG[22]
939.39
282.75
80
SEG[52]
-50.60
282.75
51
SEG[23]
906.39
282.75
81
SEG[53]
-83.60
282.75
52
SEG[24]
873.39
282.75
82
SEG[54]
-116.60
282.75
53
SEG[25]
840.39
282.75
83
SEG[55]
-149.60
282.75
54
SEG[26]
807.39
282.75
84
SEG[56]
-182.60
282.75
55
SEG[27]
774.39
282.75
85
SEG[57]
-215.60
282.75
56
SEG[28]
741.39
282.75
86
SEG[58]
-248.60
282.75
57
SEG[29]
708.39
282.75
87
SEG[59]
-281.60
282.75
58
SEG[30]
675.39
282.75
88
SEG[60]
-314.60
282.75
59
SEG[31]
642.39
282.75
89
SEG[61]
-347.60
282.75
60
SEG[32]
609.39
282.75
90
SEG[62]
-380.60
282.75
Ver 1.3
4/51
2007/09/12
ST7575
PAD NO.
PIN Name
X
Y
PAD NO.
PIN Name
X
Y
91
SEG[63]
-413.60
282.75
121
SEG[93]
-1403.60
282.75
92
SEG[64]
-446.60
282.75
122
SEG[94]
-1436.60
282.75
93
SEG[65]
-479.60
282.75
123
SEG[95]
-1469.60
282.75
94
SEG[66]
-512.60
282.75
124
SEG[96]
-1502.60
282.75
95
SEG[67]
-545.60
282.75
125
SEG[97]
-1535.60
282.75
96
SEG[68]
-578.60
282.75
126
SEG[98]
-1568.60
282.75
97
SEG[69]
-611.60
282.75
127
SEG[99]
-1601.60
282.75
98
SEG[70]
-644.60
282.75
128
SEG[100]
-1634.60
282.75
99
SEG[71]
-677.60
282.75
129
SEG[101]
-1667.60
282.75
100
SEG[72]
-710.60
282.75
130
COMS1
-1728.30
293.00
101
SEG[73]
-743.60
282.75
131
COM[0]
-1765.50
293.00
102
SEG[74]
-776.60
282.75
132
COM[1]
-1802.70
293.00
103
SEG[75]
-809.60
282.75
133
COM[2]
-1839.90
293.00
104
SEG[76]
-842.60
282.75
134
COM[3]
-1877.10
293.00
105
SEG[77]
-875.60
282.75
135
COM[4]
-1914.30
293.00
106
SEG[78]
-908.60
282.75
136
COM[5]
-1951.50
293.00
107
SEG[79]
-941.60
282.75
137
COM[6]
-1988.70
293.00
108
SEG[80]
-974.60
282.75
138
COM[7]
-2025.90
293.00
109
SEG[81]
-1007.60
282.75
139
COM[8]
-2063.10
293.00
110
SEG[82]
-1040.60
282.75
140
COM[9]
-2100.30
293.00
111
SEG[83]
-1073.60
282.75
141
COM[10]
-2137.50
293.00
112
SEG[84]
-1106.60
282.75
142
COM[11]
-2174.70
293.00
113
SEG[85]
-1139.60
282.75
143
COM[12]
-2211.90
293.00
114
SEG[86]
-1172.60
282.75
144
COM[13]
-2249.10
293.00
115
SEG[87]
-1205.60
282.75
145
COM[14]
-2286.30
293.00
116
SEG[88]
-1238.60
282.75
146
COM[15]
-2323.50
293.00
117
SEG[89]
-1271.60
282.75
147
COM[16]
-2360.70
293.00
118
SEG[90]
-1304.60
282.75
148
COM[17]
-2397.90
293.00
119
SEG[91]
-1337.60
282.75
149
COM[18]
-2435.10
293.00
120
SEG[92]
-1370.60
282.75
150
COM[19]
-2472.30
293.00
Ver 1.3
5/51
2007/09/12
ST7575
PAD NO.
PIN Name
X
Y
PAD NO.
PIN Name
X
Y
151
COM[20]
-2509.50
293.00
181
VDD1
-1134.54
-311.50
152
COM[21]
-2546.70
293.00
182
VDD1
-1075.23
-311.50
153
COM[22]
-2583.90
293.00
183
VDD1
-1015.92
-311.50
154
COM[23]
-2621.10
293.00
184
VDD1
-956.62
-311.50
155
COM[24]
-2658.30
293.00
185
VDD2
-897.32
-311.50
156
COM[25]
-2695.50
293.00
186
VDD2
-838.01
-311.50
157
COM[32]
-2695.50
-293.00
187
VDD2
-778.70
-311.50
158
COM[31]
-2658.30
-293.00
188
VDD2
-719.40
-311.50
159
COM[30]
-2621.10
-293.00
189
RESB
-660.09
-311.50
160
COM[29]
-2583.90
-293.00
190
CSB
-600.79
-311.50
161
COM[28]
-2546.70
-293.00
191
RWR
-541.48
-311.50
162
COM[27]
-2509.50
-293.00
192
ERD
-482.18
-311.50
163
COM[26]
-2472.30
-293.00
193
A0
-422.88
-311.50
164
VDX2O
-2142.72
-311.50
194
VDD1
-363.57
-311.50
165
VDX2O
-2083.42
-311.50
195
D7
-304.27
-311.50
166
VDX2O
-2024.11
-311.50
196
D6
-244.96
-311.50
167
VSS1
-1964.81
-311.50
197
D5
-185.66
-311.50
168
T11
-1905.50
-311.50
198
D4
-126.35
-311.50
169
T12
-1846.19
-311.50
199
D3
-67.05
-311.50
170
BR
-1786.89
-311.50
200
D2
-7.74
-311.50
171
CP
-1727.58
-311.50
201
D1
51.56
-311.50
172
TMX
-1668.28
-311.50
202
D0
110.87
-311.50
173
TMY
-1608.97
-311.50
203
OSC
170.17
-311.50
174
PS2
-1549.67
-311.50
204
VSS2
229.47
-311.50
175
PS1
-1490.36
-311.50
205
VSS2
288.78
-311.50
176
PS0
-1431.06
-311.50
206
VSS2
348.09
-311.50
177
VMO
-1371.75
-311.50
207
VSS2
407.39
-311.50
178
VMO
-1312.45
-311.50
208
VSS1
539.23
-311.50
179
VMO
-1253.14
-311.50
209
VSS1
598.53
-311.50
180
VSS1
-1193.84
-311.50
210
VSS1
657.84
-311.50
Ver 1.3
6/51
2007/09/12
ST7575
PAD NO.
PIN Name
X
Y
PAD NO.
PIN Name
X
Y
211
VSS1
717.15
-311.50
241
XV0I
2295.89
-311.50
212
VRS
786.52
-311.50
242
XV0S
2355.20
-311.50
213
T1
835.10
-307.75
243
COMS2
2435.10
-293.00
214
T2
868.40
-307.75
244
COM[60]
2472.30
-293.00
215
T3
901.70
-307.75
245
COM[61]
2509.50
-293.00
216
T4
935.00
-307.75
246
COM[62]
2546.70
-293.00
217
T0
973.80
-307.75
247
COM[63]
2583.90
-293.00
218
T5
1012.60
-307.75
248
COM[64]
2621.10
-293.00
219
T6
1045.90
-307.75
249
Reserved
2658.30
-293.00
220
T7
1079.20
-307.75
250
Reserved
2695.50
-293.00
221
T8
1112.50
-307.75
222
VGO
1158.81
-311.50
223
VGO
1218.11
-311.50
224
VGI
1277.42
-311.50
225
VGI
1336.72
-311.50
226
VGI
1396.03
-311.50
227
VGI
1455.33
-311.50
228
VGS
1514.64
-311.50
229
V0O
1581.08
-309.75
230
V0O
1640.38
-309.75
231
V0I
1699.69
-309.75
232
V0I
1759.00
-309.75
233
V0I
1818.30
-309.75
234
V0I
1877.60
-311.50
235
V0S
1936.91
-311.50
236
XV0O
1999.36
-311.50
237
XV0O
2058.67
-311.50
238
XV0I
2117.98
-311.50
239
XV0I
2177.28
-311.50
240
XV0I
2236.58
-311.50
Ver 1.3
7/51
2007/09/12
ST7575
66 Duty (TMY=1)
PAD NO.
PIN Name
X
Y
PAD NO.
PIN Name
X
Y
1
COM[5]
2695.50
293.00
31
SEG[3]
1566.39
282.75
2
COM[6]
2658.30
293.00
32
SEG[4]
1533.39
282.75
3
COM[7]
2621.10
293.00
33
SEG[5]
1500.39
282.75
4
COM[8]
2583.90
293.00
34
SEG[6]
1467.39
282.75
5
COM[9]
2546.70
293.00
35
SEG[7]
1434.39
282.75
6
COM[10]
2509.50
293.00
36
SEG[8]
1401.39
282.75
7
COM[11]
2472.30
293.00
37
SEG[9]
1368.39
282.75
8
COM[12]
2435.10
293.00
38
SEG[10]
1335.39
282.75
9
COM[13]
2397.90
293.00
39
SEG[11]
1302.39
282.75
10
COM[14]
2360.70
293.00
40
SEG[12]
1269.39
282.75
11
COM[15]
2323.50
293.00
41
SEG[13]
1236.39
282.75
12
COM[16]
2286.30
293.00
42
SEG[14]
1203.39
282.75
13
COM[17]
2249.10
293.00
43
SEG[15]
1170.39
282.75
14
COM[18]
2211.90
293.00
44
SEG[16]
1137.39
282.75
15
COM[19]
2174.70
293.00
45
SEG[17]
1104.39
282.75
16
COM[20]
2137.50
293.00
46
SEG[18]
1071.39
282.75
17
COM[21]
2100.30
293.00
47
SEG[19]
1038.39
282.75
18
COM[22]
2063.10
293.00
48
SEG[20]
1005.39
282.75
19
COM[23]
2025.90
293.00
49
SEG[21]
972.39
282.75
20
COM[24]
1988.70
293.00
50
SEG[22]
939.39
282.75
21
COM[25]
1951.50
293.00
51
SEG[23]
906.39
282.75
22
COM[26]
1914.30
293.00
52
SEG[24]
873.39
282.75
23
COM[27]
1877.10
293.00
53
SEG[25]
840.39
282.75
24
COM[28]
1839.90
293.00
54
SEG[26]
807.39
282.75
25
COM[29]
1802.70
293.00
55
SEG[27]
774.39
282.75
26
COM[30]
1765.50
293.00
56
SEG[28]
741.39
282.75
27
COM[31]
1728.30
293.00
57
SEG[29]
708.39
282.75
28
SEG[0]
1665.39
282.75
58
SEG[30]
675.39
282.75
29
SEG[1]
1632.39
282.75
59
SEG[31]
642.39
282.75
30
SEG[2]
1599.39
282.75
60
SEG[32]
609.39
282.75
Ver 1.3
8/51
2007/09/12
ST7575
PAD NO.
PIN Name
X
Y
PAD NO.
PIN Name
X
Y
61
SEG[33]
576.39
282.75
91
SEG[63]
-413.60
282.75
62
SEG[34]
543.39
282.75
92
SEG[64]
-446.60
282.75
63
SEG[35]
510.39
282.75
93
SEG[65]
-479.60
282.75
64
SEG[36]
477.39
282.75
94
SEG[66]
-512.60
282.75
65
SEG[37]
444.39
282.75
95
SEG[67]
-545.60
282.75
66
SEG[38]
411.39
282.75
96
SEG[68]
-578.60
282.75
67
SEG[39]
378.39
282.75
97
SEG[69]
-611.60
282.75
68
SEG[40]
345.39
282.75
98
SEG[70]
-644.60
282.75
69
SEG[41]
312.39
282.75
99
SEG[71]
-677.60
282.75
70
SEG[42]
279.39
282.75
100
SEG[72]
-710.60
282.75
71
SEG[43]
246.39
282.75
101
SEG[73]
-743.60
282.75
72
SEG[44]
213.39
282.75
102
SEG[74]
-776.60
282.75
73
SEG[45]
180.39
282.75
103
SEG[75]
-809.60
282.75
74
SEG[46]
147.39
282.75
104
SEG[76]
-842.60
282.75
75
SEG[47]
114.39
282.75
105
SEG[77]
-875.60
282.75
76
SEG[48]
81.39
282.75
106
SEG[78]
-908.60
282.75
77
SEG[49]
48.39
282.75
107
SEG[79]
-941.60
282.75
78
SEG[50]
15.39
282.75
108
SEG[80]
-974.60
282.75
79
SEG[51]
-17.60
282.75
109
SEG[81]
-1007.60
282.75
80
SEG[52]
-50.60
282.75
110
SEG[82]
-1040.60
282.75
81
SEG[53]
-83.60
282.75
111
SEG[83]
-1073.60
282.75
82
SEG[54]
-116.60
282.75
112
SEG[84]
-1106.60
282.75
83
SEG[55]
-149.60
282.75
113
SEG[85]
-1139.60
282.75
84
SEG[56]
-182.60
282.75
114
SEG[86]
-1172.60
282.75
85
SEG[57]
-215.60
282.75
115
SEG[87]
-1205.60
282.75
86
SEG[58]
-248.60
282.75
116
SEG[88]
-1238.60
282.75
87
SEG[59]
-281.60
282.75
117
SEG[89]
-1271.60
282.75
88
SEG[60]
-314.60
282.75
118
SEG[90]
-1304.60
282.75
89
SEG[61]
-347.60
282.75
119
SEG[91]
-1337.60
282.75
90
SEG[62]
-380.60
282.75
120
SEG[92]
-1370.60
282.75
Ver 1.3
9/51
2007/09/12
ST7575
PAD NO.
PIN Name
X
Y
PAD NO.
PIN Name
X
Y
121
SEG[93]
-1403.60
282.75
151
COM[44]
-2509.50
293.00
122
SEG[94]
-1436.60
282.75
152
COM[43]
-2546.70
293.00
123
SEG[95]
-1469.60
282.75
153
COM[42]
-2583.90
293.00
124
SEG[96]
-1502.60
282.75
154
COM[41]
-2621.10
293.00
125
SEG[97]
-1535.60
282.75
155
COM[40]
-2658.30
293.00
126
SEG[98]
-1568.60
282.75
156
COM[39]
-2695.50
293.00
127
SEG[99]
-1601.60
282.75
157
COM[32]
-2695.50
-293.00
128
SEG[100]
-1634.60
282.75
158
COM[33]
-2658.30
-293.00
129
SEG[101]
-1667.60
282.75
159
COM[34]
-2621.10
-293.00
130
COMS1
-1728.30
293.00
160
COM[35]
-2583.90
-293.00
131
COM[64]
-1765.50
293.00
161
COM[36]
-2546.70
-293.00
132
COM[63]
-1802.70
293.00
162
COM[37]
-2509.50
-293.00
133
COM[62]
-1839.90
293.00
163
COM[38]
-2472.30
-293.00
134
COM[61]
-1877.10
293.00
164
VDX2O
-2142.72
-311.50
135
COM[660
-1914.30
293.00
165
VDX2O
-2083.42
-311.50
136
COM[59]
-1951.50
293.00
166
VDX2O
-2024.11
-311.50
137
COM[58]
-1988.70
293.00
167
VSS1
-1964.81
-311.50
138
COM[57]
-2025.90
293.00
168
T11
-1905.50
-311.50
139
COM[56]
-2063.10
293.00
169
T12
-1846.19
-311.50
140
COM[55]
-2100.30
293.00
170
BR
-1786.89
-311.50
141
COM[54]
-2137.50
293.00
171
CP
-1727.58
-311.50
142
COM[53]
-2174.70
293.00
172
TMX
-1668.28
-311.50
143
COM[52]
-2211.90
293.00
173
TMY
-1608.97
-311.50
144
COM[51]
-2249.10
293.00
174
PS2
-1549.67
-311.50
145
COM[50]
-2286.30
293.00
175
PS1
-1490.36
-311.50
146
COM[49]
-2323.50
293.00
176
PS0
-1431.06
-311.50
147
COM[48]
-2360.70
293.00
177
VMO
-1371.75
-311.50
148
COM[47]
-2397.90
293.00
178
VMO
-1312.45
-311.50
149
COM[46]
-2435.10
293.00
179
VMO
-1253.14
-311.50
150
COM[45]
-2472.30
293.00
180
VSS1
-1193.84
-311.50
Ver 1.3
10/51
2007/09/12
ST7575
PAD NO.
PIN Name
X
Y
PAD NO.
PIN Name
X
Y
181
VDD1
-1134.54
-311.50
211
VSS1
717.15
-311.50
182
VDD1
-1075.23
-311.50
212
VRS
786.52
-311.50
183
VDD1
-1015.92
-311.50
213
T1
835.10
-307.75
184
VDD1
-956.62
-311.50
214
T2
868.40
-307.75
185
VDD2
-897.32
-311.50
215
T3
901.70
-307.75
186
VDD2
-838.01
-311.50
216
T4
935.00
-307.75
187
VDD2
-778.70
-311.50
217
T0
973.80
-307.75
188
VDD2
-719.40
-311.50
218
T5
1012.60
-307.75
189
RESB
-660.09
-311.50
219
T6
1045.90
-307.75
190
CSB
-600.79
-311.50
220
T7
1079.20
-307.75
191
RWR
-541.48
-311.50
221
T8
1112.50
-307.75
192
ERD
-482.18
-311.50
222
VGO
1158.81
-311.50
193
A0
-422.88
-311.50
223
VGO
1218.11
-311.50
194
VDD1
-363.57
-311.50
224
VGI
1277.42
-311.50
195
D7
-304.27
-311.50
225
VGI
1336.72
-311.50
196
D6
-244.96
-311.50
226
VGI
1396.03
-311.50
197
D5
-185.66
-311.50
227
VGI
1455.33
-311.50
198
D4
-126.35
-311.50
228
VGS
1514.64
-311.50
199
D3
-67.05
-311.50
229
V0O
1581.08
-309.75
200
D2
-7.74
-311.50
230
V0O
1640.38
-309.75
201
D1
51.56
-311.50
231
V0I
1699.69
-309.75
202
D0
110.87
-311.50
232
V0I
1759.00
-309.75
203
OSC
170.17
-311.50
233
V0I
1818.30
-309.75
204
VSS2
229.47
-311.50
234
V0I
1877.60
-311.50
205
VSS2
288.78
-311.50
235
V0S
1936.91
-311.50
206
VSS2
348.09
-311.50
236
XV0O
1999.36
-311.50
207
VSS2
407.39
-311.50
237
XV0O
2058.67
-311.50
208
VSS1
539.23
-311.50
238
XV0I
2117.98
-311.50
209
VSS1
598.53
-311.50
239
XV0I
2177.28
-311.50
210
VSS1
657.84
-311.50
240
XV0I
2236.58
-311.50
Ver 1.3
11/51
2007/09/12
ST7575
PAD NO.
PIN Name
X
Y
241
XV0I
2295.89
-311.50
242
XV0S
2355.20
-311.50
243
COMS2
2435.10
-293.00
244
COM[4]
2472.30
-293.00
245
COM[3]
2509.50
-293.00
246
COM[2]
2546.70
-293.00
247
COM[1]
2583.90
-293.00
248
COM[0]
2621.10
-293.00
249
Reserved
2658.30
-293.00
250
Reserved
2695.50
-293.00
Ver 1.3
12/51
2007/09/12
ST7575
4. BLOCK DIAGRAM
Fig 3.
Ver 1.3
Block Diagram
13/51
2007/09/12
ST7575
5. PINNING DESCRIPTIONS
LCD Driver Output Pins
Pin Name
Type
Description
No. of Pins
LCD segment driver outputs.
The display data and the frame control the output voltage.
SEG0 to SEG101
Display data
Frame
H
O
Segment driver output voltage
Normal display
Reverse display
+
VG
VSS
H
-
VSS
VG
L
+
VSS
VG
L
-
VG
VSS
VSS
VSS
Display OFF, Power Save
102
LCD common driver outputs.
The internal scanning signal and the frame control the output voltage.
COM0 to COM64
Common driver output voltage
Scan signal
Frame
H
+
XV0
H
-
V0
L
+
VM
L
-
VM
O
Normal display
Display OFF, Power Save
COMS1,COMS2
(COMS)
Reverse display
65
VSS
LCD common driver outputs for icons.
O
The output signals of these two pins are the same.
2
When icon feature is not used, these pins should be left open.
Microprocessor Interface Pins
Pin Name
Type
Description
No. of Pins
Microprocessor interface select pins.
PS[2:0]
I
PS2
PS1
PS0
Selected Interface
“L”
“L”
“L”
4 Pin-SPI MPU interface
“H”
“L”
“L”
3 Pin-SPI MPU interface
“L”
“H”
“L”
8080-series parallel MPU interface
“H”
“H”
“L”
6800-series parallel MPU interface
3
Chip select input pin.
CSB
I
Interface access is enabled when CSB is “L”.
When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance.
1
CSB is not used in serial interfaces and should fix to “H” by VDD1.
RESB
I
Reset input pin.
When RESB is “L”, internal initialization is executed.
1
It determines whether the access is related to data or command.
A0
I
A0=“H” : Indicates that D[7:0] are display data.
A0=“L” : Indicates that D[7:0] are control data.
1
A0 is not used in serial interfaces and should fix to “H” by VDD1.
Ver 1.3
14/51
2007/09/12
ST7575
Pin Name
Type
Description
No. of Pins
Read/Write execution control pin. When PS[1:0]=(H,L),
PS2
H
RWR
I
L
MPU Type
6800
series
8080
series
RWR
Description
Read/Write control input pin.
R/W
R/W=“H”: read.
R/W=“L”: write.
1
Write enable input pin.
/WR
Signals on D[7:0] will be latched at the rising
edge of /WR signal.
RWR is not used in serial interfaces and should fix to “H” by VDD1.
Read/Write execution control pin. When PS[1:0]=(H,L),
PS2
MPU Type
ERD
Description
Read/Write control input pin.
ERD
I
H
6800
series
R/W=”H“: When E is “H”, D[7:0] are in an
E
output status.
R/W=”L“: Signals on D[7:0] are latched at the
1
falling edge of E signal.
L
8080
series
/RD
Read enable input pin.
When /RD is “L”, D[7:0] are in output status.
ERD is not used in serial interfaces and should fix to “H” by VDD1.
When using 8-bit parallel interface: 6800 or 8080 mode
I/O
8-bit bi-directional data bus. Connect to the data bus of 8-bit microprocessor.
When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance.
When using serial interface: 4-LINE or 3-LINE
D[7:0]
8
D7=SCLK : Serial clock input.
I
D6=SDA : Serial data input.
D5=A0 : Command / Data selection (unused in 3-Line SPI; fix to H by VDD1).
D4=CSB : Chip select pin.
D[3:0] : Not used and should fix to “H” by VDD1.
Note:
1.
After VDD1 is turned ON, any MPU interface pins cannot be left floating.
Clock System Input
Pin Name
Type
Description
No. of Pins
OSC=“H” : On-chip oscillator is used. Connect to VDD1 to set OSC=“H”.
OSC=External clock :
Use external clock. Connect external clock to this pin.
OSC=“L” : Stop system clock. The whole circuit is stopped except the logical
OSC
I
and DDRAM circuits.
It is not recommended to stop the system clock. When system clock is stopped,
1
the driver outputs (SEGx & COMx) will be hold at the last state (like DC output)
and the liquid crystal maybe polarized. To avoid this, never stop system clock
before entering Power Down Mode.
Ver 1.3
15/51
2007/09/12
ST7575
Power System Pins
Pin Name
Type
Description
VSS1
Power
VSS2
Power
Analog ground. Connect to VSS1 externally.
6
VDX2O
Power
Power for test mode. Left this pin floating.
3
VDD1
Power
VDD2
Power
Digital ground. Connect to VSS2 externally.
For pins that are set to be “L”, connect them to this power (use VSS1 for “L”).
Digital power. If VDD1=VDD2, connect to VDD2 externally.
For pins that are set to be “H”, connect them to this power (use VDD1 for “H”).
Analog power. If VDD1=VDD2, connect to VDD1 externally.
No. of Pins
4
5
4
LCD driving voltage for commons at negative frame.
V0
(V0O, V0I, V0S)
Power
V0 ≥ VG > VM > VSS ≥ XV0
V0O, V0I & V0S should be separated in ITO layout.
7
V0O, V0I & V0S should be connected together in FPC layout.
XV0
(XV0O, XV0I,
LCD driving voltage for commons at positive frame.
Power
XV0S)
XV0O, XV0I & XV0S should be separated in ITO layout.
7
XV0O, XV0I & XV0S should be connected together in FPC layout.
LCD driving voltage for segments.
VG
(VGO, VGI, VGS)
Power
VGO, VGI & VGS should be separated in ITO layout.
VGO, VGI & VGS should be connected together in FPC layout.
7
1.24 ≤ VG < VDD2.
VMO
Power
VRS
Power
CP
I
VM output. LCD driving voltage for commons.
0.62V ≤ VM < VDD2.
Test pin for monitoring voltage reference level.
This pin must be left open (without any kinds of connection).
Booster configuration pin for default setting : “L”=4X; “H”=5X.
This pin set the default booster stage after reset.
4
1
1
Bias circuit configuration pin for default setting : “L”=1/7; “H”=1/9.
BR
I
This pin set the default value of bias ratio after reset.
1
The bias ratio can be changed by software instruction.
Configuration Pins
Pin Name
Type
Description
No. of Pins
Select SEG output direction.
TMX
I
TMX=“L” : Normal direction (SEG0 ~ SEG101).
1
TMX=“H” : Reverse direction (SEG101 ~ SEG0).
Select COM output direction.
TMY
I
TMY=“L” : Normal direction.
TMY=“H” : Reverse direction.
1
Refer to “PAD Center Coordinates”.
Ver 1.3
16/51
2007/09/12
ST7575
Test Pins
Pin Name
Type
T0~T8
T
T11
T
T12
T
Description
No. of Pins
Do NOT use. Reserved for testing.
9
Must be floating.
Do NOT use. Reserved for testing.
1
Must be “L”. Connect to VSS1 for pull-low.
Do NOT use. Reserved for testing.
1
Must be “L”. Connect to VSS1 for pull-low.
Recommend ITO Resistance
Pin Name
ITO Resistance
T[0:8], VRS, VDX2O
Floating
VDD1, VDD2, VSS1, VSS2
< 100Ω
V0(V0I, V0O, V0S), VG(VGI, VGO, VGS), XV0(XV0I, XV0O, XV0S), VMO
A0, RWR, ERD, CSB, D[7:0]
*1
< 1KΩ
*2
PS[2:0], OSC , CP, BR, TMX, TMY, T11, T12
RESB
< 300Ω
< 5KΩ
*3
< 10KΩ
Note:
1.
If using 3-Line or 4-Line SPI interface with VDD1 less than 2.4V, the SDA signal resistance should be less than 500Ω.
2.
If using internal clock, OSC is connect to VDD1 and the limitation of ITO resistance will be “No Limitation”.
If using external clock, the ITO resistance of OSC should be kept lower than 300Ω to keep the clock signal quality.
3.
To prevent the ESD pulse resetting the internal register, applications should increase the resistance of RESB signal
(add a series resistor or increase ITO resistance). The value is different from modules.
4.
The option setting to be “H” should connect to VDD1.
5.
The option setting to be “L” should connect to VSS1.
Ver 1.3
17/51
2007/09/12
ST7575
6. FUNCTIONS DESCRIPTION
Microprocessor Interface
Chip Select Input
CSB pin is used for chip selection. ST7575 can interface with an MPU when CSB is "L". When CSB is “H”, the inputs of A0,
ERD and RWR with any combination will be ignored and D[7:0] are high impedance. In 3-Line and 4-Line serial interface,
the internal shift register and serial counter are reset when CSB is “H”.
Parallel / Serial Interface
ST7575 has types of interface for kinds of MPU. The MPU interface is selected by PS[2:0] pins as shown in table 1.
Table 1. Parallel/Serial Interface Mode
PS2
PS1
PS0
CSB
A0
ERD
RWR
D[7:0]
“L”
“L”
“L”
--------Refer to serial interface.
“H”
“L”
“L”
“L”
“H”
“L”
/RD
/WR
CSB
A0
D[7:0]
“H”
“H”
“L”
E
R/W
* The un-used pins are marked as “---” and should be fixed to “H” by VDD1.
MPU Interface
4-Line SPI interface
3-Line SPI interface
8080-series parallel interface
6800-series parallel interface
Parallel Interface
The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS2 (fix PS1=H, PS0=L) as
shown in table 2. The data transfer type is determined by signals of A0, ERD and RWR as shown in table 3.
Table 2. Microprocessor Selection for Parallel Interface
PS2
“L”
“H”
PS1
“H”
“H”
PS0
“L”
“L”
CSB
A0
CSB
A0
ERD
/RD
E
RWR
/WR
R/W
D[7:0]
D[7:0]
MPU Interface
8080-series
6800-series
Table 3. Parallel Data Transfer
Common
6800-series
8080-series
Description
A0
E (ERD)
R/W (RWR) /RD (ERD) /WR (RWR)
“H”
“H”
“H”
“L”
“H”
Display data read out
“H”
“H”
“L”
“H”
“L”
Display data write
“L”
“H”
“H”
“L”
“H”
Internal status read
“L”
“H”
“L”
“H”
“L”
Writes to internal register (instruction)
NOTE: In 6800-series interface mode, fixing E (ERD) pin at high can use CSB as enable signal instead. In this case,
interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0 and R/W
(RWR) pins as defined in 6800-series mode.
Setting Serial Interface
Serial Mode
PS[2:0] CSB
A0
ERD RWR
D[7:0]
4-Line SPI interface “L, L, L”
SCLK, SDA, A0, CSB, ---, ---, ---, ----------3-Line SPI interface “H, L, L”
SCLK, SDA, ---, CSB, ---, ---, ---, --* The un-used pins are marked as “---” and should be fixed to “H” by VDD1.
Note:
1.
The option setting to be “H” should connect to VDD1.
2.
The option setting to be “L” should connect to VSS1.
Ver 1.3
18/51
2007/09/12
ST7575
PS2= "L", PS1= "L", PS0= "L" : 4-line SPI interface
When ST7575 is active (CSB=“L”), serial data (SDA) and serial clock (SCLK) inputs are enabled. When ST7575 is not
active (CSB=“H”), the internal 8-bit shift register and 3-bit counter are reset. The display data/command indication is
controlled by the register selection pin (A0). The signals transferred on data bus will be display data when A0 is high and
will be instruction when A0 is low. The read feature is not supported in this mode. Serial data on SDA is latched at the rising
th
edge of serial clock on SCLK. After the 8 serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM
column address pointer will be increased by one automatically after each byte of DDRAM access.
Fig 4.
4-Line SPI Access
PS2= "L", PS1= "L", PS0= "H": 3-line SPI interface
When ST7575 is active (CSB=“L”), serial data (SDA) and serial clock (SCLK) inputs are enabled. When ST7575 is not
active (CSB=“H”), the internal 8-bit shift register and 3-bit counter are reset. The A0 pin is not available in this mode. Before
issuing serial data, an A0 bit is required to indicate the following 8-bit signals are data or instruction. The read feature is not
th
supported in this mode. Serial data on SDA is latched at the rising edge of serial clock on SCLK. After the 9 serial clock,
the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased by one
automatically after each byte of DDRAM access.
Fig 5.
Ver 1.3
3-Line SPI Access
19/51
2007/09/12
ST7575
Data Transfer
ST7575 uses bus holder and internal data bus for data transfer with MPU. When writing data from the MPU to on-chip RAM,
data is automatically transferred from the bus holder to the RAM as shown in Fig 6. And when reading data from on-chip
RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored
data from bus holder for the next data read cycle as shown in Fig 7. This means that a dummy read cycle must be inserted
between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified
address cannot be output with the read display data instruction right after the address sets, but can be output at the second
read of data.
MPU signal
A0
/WR
D0 to D7
N
D(N)
D(N+1) D(N+2)
D(N+3)
N
D(N)
D(N+1)
D(N+2)
D(N+3)
N
N+1
N+2
N+3
Internal signals
/WR
BUS HOLDER
COLUMN ADDRESS
Fig 6.
Data Transfer : Write
MPU signal
A0
/WR
/RD
D0 to D7
Dummy
N
D(N)
D(N+1)
Internal signals
/WR
/RD
BUS HOLDER
N
N
COLUMN ADDRESS
Fig 7.
Ver 1.3
D(N)
D(N+1) D(N+2)
D(N)
D(N+1) D(N+2)
Data Transfer : Read
20/51
2007/09/12
ST7575
Display Data RAM (DDRAM)
ST7575 contains a 66X102 bit static RAM that stores the display data. The display data RAM (DDRAM) store the dot data
for the LCD. It is an addressable array with 102 columns by 66 rows (8-page with 8-bit, 1-page with 1-bit and 1-page with
1-bit). The X-address is directly related to the column output number. Each pixel can be selected when the page and
column addresses are specified. The rows are divided into: 8 pages (page 0~7) each with 8 lines (for COM0~63), the 8
th
th
page with only 1 line (for COM64) and the 9 page with only 1 line (the 65th row, COMS, for icon). The display data (D7~D0)
corresponds to the LCD common-line direction (D7 at top). Those pages with 8 lines can be accessed through D[7:0]
directly. When accessing those pages with fewer than 8 lines, the valid bit(s) in D[7:0] should be checked. Refer to Fig 9 for
detailed illustration. The microprocessor can write to and read from (only Parallel interfaces) DDRAM by the I/O buffer.
Since the LCD controller operates independently, data can be written into DDRAM at the same time as data is being
displayed without causing the LCD flicker or data-conflict.
Page Address Circuit
This circuit is for providing a Page Address to Display Data RAM. It incorporates 4-bit Page Address register changed by
only the “Set Page” instruction. Page Address 9 is a special RAM area for the icons and display data is only 1-bit valid (D7).
Line Address Circuit
This circuit controls each line in DDRAM to transfer 102-bit line data to the display data latch circuit. Therefore, the content
in DDRAM can be transferred to the segment outputs and the content can be displayed on the LCD module as shown in Fig
12. At the beginning of each LCD frame, the 102-bit RAM data of Line-0 are transferred to the display data latch circuit. At
the next line period, the Line Address is increased by one and the 102-bit RAM data at the next line are transferred to the
display data latch circuit. The 102-bit icon data are transferred at the last line period during each frame.
Ver 1.3
21/51
2007/09/12
ST7575
Column Address Circuit
Column Address Circuit has an 8-bit preset counter that provides Column Address to the DDRAM. The display data RAM
column address is specified by the Column Address Set command. The specified column address is incremented (+1) with
each display data read/write command. This allows the MPU display data to be accessed continuously.
TMX and TMY make it possible to invert the relationship between the addresses (Line Address and Column Address) and
the outputs (COM/SEG). It is necessary to rewrite the display data into built-in RAM after changing TMX setting. The
relation between DDRAM and outputs with different TMX or TMY setting is shown below.
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Data
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
TMX=0
5D
5E
5F
60
61
62
63
64
65
D0
TMX=1
08
07
06
05
04
03
02
01
00
D1
B
B B B
B
B
B
Page 0
B B B
B B B
B
B
B
B
B
B B B
Page 1
B B B B B
B
B
B
B
B
B
B B B B
B
B
B
B
B B B B
B
B
B
B
B
B
Page 2
Page 3
B B B
B
B
B
B
B
B
B
B
B
B
Page 4
B B B
B
B
B B
B
B
B
B
B
B
B
B
B
B
B
B B
B
B
B B B
B
B
B
B
B
B B B
B
B
Page 6
B
B
B
B
B
B
B
B
Page 5
Page 7
B
B
B
COM Output Map
PAD No.
1/66 Duty
TMY=0 TMY=1
(COM)
COM0
COM64
131
COM1
COM63
132
COM2
COM62
133
COM3
COM61
134
COM4
COM60
135
COM5
COM59
136
COM6
COM58
137
COM7
COM57
138
COM8
COM56
139
COM9
COM55
140
COM10 COM54
141
COM11 COM53
142
COM12 COM52
143
COM13 COM51
144
COM14 COM50
145
COM15 COM49
146
COM16 COM48
147
COM17 COM47
148
COM18 COM46
149
COM19 COM45
150
COM20 COM44
151
COM21 COM43
152
COM22 COM42
153
COM23 COM41
154
COM24 COM40
155
COM25 COM39
156
COM26 COM38
163
COM27 COM37
162
COM28 COM36
161
COM29 COM35
160
COM30 COM34
159
COM31 COM33
158
COM32 COM32
157
COM33 COM31
27
COM34 COM30
26
COM35 COM29
25
COM36 COM28
24
COM37 COM27
23
COM38 COM26
22
COM39 COM25
21
COM40 COM24
20
COM41 COM23
19
COM42 COM22
18
COM43 COM21
17
COM44 COM20
16
COM45 COM19
15
COM46 COM18
14
COM47 COM17
13
COM48 COM16
12
COM49 COM15
11
COM50 COM14
10
COM51 COM13
9
COM52 COM12
8
COM53 COM11
7
COM54 COM10
6
COM55
COM9
5
COM56
COM8
4
COM57
COM7
3
COM58
COM6
2
COM59
COM5
1
COM60
COM4
244
COM61
COM3
245
COM62
COM2
246
COM63
COM1
247
0
0
D7
Page 8
40H
COM64
0
0
1
D7
Page 9
41H
ICON
130, 243
(COMS1, COMS2)
121
122
123
124
125
126
127
128
129
0
1
28
29
30
31
32
33
34
35
36
1
Fig 8.
Ver 1.3
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
B B B
B
B
Line Address (Hex)
0
D2
00
01
02
03
04
05
06
07
08
Page Address
D3
65
64
63
62
61
60
5F
5E
5D
Column Address (Hex)
COM0
248
PAD No.
(SEG)
Relationship between DDRAM and Outputs (COM/SEG)
22/51
2007/09/12
ST7575
Addressing
Data is downloaded in bytes into the Display Data RAM matrix of ST7575 as shown below. The Display Data RAM has a
matrix of 66 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101), Y 0 to
9 (1001) .Addresses outside these ranges are not allowed.
In horizontal addressing mode the X address increments after each byte (see Fig 11). After the last X address (X = 101), X
wraps around to 0 and Y increments to address the next row.
After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y =0)
Data Structure
Fig 9.
Fig 10.
Ver 1.3
RAM format
Addressing : Vertical Mode (V=1)
Fig 11.
23/51
Addressing : Horizontal Mode (V=0)
2007/09/12
ST7575
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Data
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
5D
5E
5F
60
61
62
63
64
65
D0
TMX=1
B
B
B
B B B
Page 0
B
B
B
B B B
B B B
B
B
B
B
B
B B B
Page 1
B B B B B
B
B
B
B
B
B
Page 2
B B B B
B
B
B
B
B B B B
B
B
B
B
B
B
Page 3
B B B
B
B
B
B
B
B
B
B
B
B
Page 4
B B B
B
B
B B
B
B
B
B
B
B
B
B
B
B
B
B B
B
B
Page 5
B B B
B
B
B
B
B
B B B
B
B
Page 6
B
B
B
B
B
B
B
B
Page 7
B
B
B
TMY=0
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
0
D7
Page 8
40H
COM64
1
0
0
1
D7
Page 9
41H
ICON
(COMS)
S0
S1
S2
S3
S4
S5
S6
S7
S8
121
122
123
124
125
126
127
128
129
0
PAD No.
S93
S94
S95
S96
S97
S98
S99
S100
S101
0
28
29
30
31
32
33
34
35
36
1
Fig 12.
Ver 1.3
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
B B B
65 Lines
0
0
D1
When the common
output is normal
Line Address (Hex)
0
D2
TMX=0
08
07
06
05
04
03
02
01
00
D3
00
01
02
03
04
05
06
07
08
Page Address
65
64
63
62
61
60
5F
5E
5D
Column Address (Hex)
SEG No.
(TMX=0)
Regardless of the display
start line address.
Always the last line.
Display Data RAM Map (66 COM)
24/51
2007/09/12
ST7575
Liquid Crystal Driver Power Circuit
The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power
consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage
follower circuits. They are controlled by power control instruction.
External Power Components
The recommended external power components need only 2 capacitors. The detailed values of these two capacitors are
determined by the panel size and loading.
Fig 13.
Power Circuit
The referential external component values are listed below (it is determined by the worse condition of 1.4” panel).
C1=0.1uF~1uF (Non-Polar/6V, default 0.1uF)
R1=47KΩ~100KΩ (default 47KΩ)
C2=0.1uF~1uF (Non-Polar/16V, default 0.1uF)
R2=500KΩ~1MΩ (default 500KΩ)
Customer applications are not necessary the same as the values listed above. The value can be determined by customer’s
LCD module (panel loading and ITO resistance) and application (VDD, V0, bias and etc.).
Ver 1.3
25/51
2007/09/12
ST7575
7. RESET CIRCUIT
Setting RESB to “L” or RESET instruction can initialize internal function. While RESB is “L”, no instruction except read
status can be accepted. RESB pin must connect to the reset pin of MPU and initialization by RESB pin is essential before
operating.
When RESB becomes “L”, the following procedures will start.
Power Down Mode: PD=1 (Analog Power OFF, Oscillator OFF & COM/SEG output at VSS)
Page Address: Y[3:0]=0
Column Address: X[6:0]=0
COM Scan Direction: Depends on “TMY” setting
SEG Select Direction: Depends on “TMX” setting
Display Control: Display OFF: D=E=0
Basic Instruction Set: H=0
Booster setting: Depends on “CP” setting
Initial V0 Setting: VOP[6:0]=0
Bias system: BS[2:0] Depends on “BR” setting
After power-on, RAM data are undefined and the display status is “Display OFF”. It’s better to initialize whole DDRAM (ex:
fill all 00h or write the display pattern) before turning the Display ON.
Ver 1.3
26/51
2007/09/12
ST7575
8. INSTRUCTION TABLE
H=0 or 1
(H-Flag Independent)
INSTRUCTION
NOP
COMMAND BYTE
A0
R/W
(RWR)
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
0
0
No operation
DESCRIPTION
Function Set
0
0
0
0
1
0
0
PD
V
H
Power down; entry mode;
Select instruction table
Write Data
1
0
D7
D6
D5
D4
D3
D2
D1
D0
Write data to RAM
H=0
(Basic Instruction)
INSTRUCTION
Display Control
COMMAND BYTE
A0
R/W
(RWR)
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
1
D
0
E
Sets display configuration
DESCRIPTION
Set Y Address of RAM
0
0
0
1
0
0
Y3
Y2
Y1
Y0
Sets Y address of RAM
0≤Y≤9
Set X Address of RAM
0
0
1
X6
X5
X4
X3
X2
X1
X0
Sets X address of RAM
0≤X≤101
D2
D1
D0
H=1
(Extended Instruction)
INSTRUCTION
A0
R/W
(RWR)
COMMAND BYTE
D7
D6
D5
D4
D3
Reserved
0
0
0
0
0
0
0
0
X
Bias System
0
0
0
0
0
1
0
BS2
BS1
Reserved
0
0
0
1
X
X
X
X
X
Set V0
0
0
1
VOP6
VOP5
VOP4
VOP3
VOP2
VOP1
Ver 1.3
27/51
X
DESCRIPTION
Do not use
BS0 Set bias system (BSx)
X
Do not use
VOP0 Set VOP parameter to register
2007/09/12
ST7575
9. INSTRUCTION DESCRIPTION
H=0 or 1
(H-Flag Independent)
Function Set
A0
R/W(RWR)
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
1
0
0
PD
V
H
Flag
Description
PD
PD=0: chip is active
PD=1: chip is in power down mode
All LCD outputs at VSS (display off), bias generator and V0 generator off, VOUT can be disconnected,
oscillator off (external clock possible), RAM contents not cleared; RAM data can be written.
V
Select addressing mode:
V=0 for Horizontal Addressing;
V=1 for Vertical Addressing.
H
H=0: Basic Instruction set;
H=1: Extended instruction set.
Data access can be used in both instruction blocks. Refer to the instruction table.
Read Data
By specify the column address and page address, the display data in DDRAM can be read by MPU (parallel interface).
D7
D6
D5
D4
D3
D2
D1
D0
A0
R/W(RWR)
1
1
Read Data
Write Data
8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and
page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data
to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.
A0
R/W(RWR)
D7
D6
D5
D4
D3
D2
D1
D0
1
H=0
0
Write Data
(Basic Instruction)
Display Control
This bits D and E selects the display mode.
A0
R/W(RWR)
D7
D6
0
0
0
0
Flag
D,E
Ver 1.3
D5
D4
D3
D2
D1
D0
0
0
1
D
0
E
Description
D
0
E
0
The bits D and E select the display mode.
Display OFF
0
1
1
0
All display segments on
Normal mode
1
1
Inverse video mode
28/51
2007/09/12
ST7575
Set Y Address of RAM
Y [3:0] defines the Y address vector address of the display RAM.
A0
R/W(RWR)
D7
D6
D5
D4
0
0
0
1
0
0
D3
D2
D1
D0
Y3
Y2
Y1
Y0
Y3
Y2
Y1
Y0
Content
Allowed X-Range
Valid Bit
0
0
0
0
Page0 (display RAM)
0 to 101
D7~ D0
0
0
0
0
0
1
1
0
Page1 (display RAM)
Page2 (display RAM)
0 to 101
0 to 101
D7~ D0
D7~ D0
0
0
0
1
1
0
1
0
Page3 (display RAM)
Page4 (display RAM)
0 to 101
0 to 101
D7~ D0
D7~ D0
0
0
1
1
0
1
1
0
Page5 (display RAM)
Page6 (display RAM)
0 to 101
0 to 101
D7~ D0
D7~ D0
0
1
1
0
1
0
1
0
Page7 (display RAM)
Page8 (display RAM)
0 to 101
0 to 101
D7~ D0
D7
1
0
0
1
Page9 (display RAM)
0 to 101
D7
Set X Address of RAM
The X address points to the columns. The range of X is 0…101.
D7
D6
D5
D4
A0
R/W(RWR)
0
0
1
X6
X5
X4
D3
D2
D1
D0
X3
X2
X1
X0
D3
D2
D1
D0
0
BS2
BS1
BS0
X6
X5
X4
X3
X2
X1
X0
Column address
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
2
3
:
1
:
1
:
0
:
0
:
0
:
1
:
1
:
99
1
1
1
1
0
0
0
0
1
1
0
0
0
1
100
101
H=1
(Extended Instruction)
System Bias
Select LCD bias ratio of the voltage required for driving the LCD.
A0
R/W(RWR)
D7
D6
D5
D4
0
0
0
0
0
1
Recommend LCD Bias Voltage
BS2
BS1
BS0
Bias
0
0
0
11
Symbol
0
0
0
1
1
0
10
9
V0
V0
0
1
1
0
1
0
8
7
VG
VM
2/9 x V0
1/9 x V0
VSS
VSS
1
1
0
1
1
0
6
5
1
1
1
4
Ver 1.3
Voltage for 1/9 Bias
* VG range: 1.24V ≤ VG < VDD2.
* VM range: 0.62V ≤ VM < VDD2.
29/51
2007/09/12
ST7575
Set V0
A0
R/W(RWR)
D7
D6
D5
0
0
1
VOP6
VOP5
The operation voltage V0 can be set by software.
D4
D3
D2
D1
D0
VOP4
VOP3
VOP2
VOP1
VOP0
(1)
V0=( a + VOPx X b )
The parameters are explained in table 4. The maximum voltage that can be generated is depending on the VDD2 voltage
and the display load current. For the V0 programmable range, V0 starts from a (6.78V, VOP[6:0]=0x01) with each step equal
to b (0.03V). Note that the internal booster is turned off if VOP[6:0]=0x00. Please don’t operate this IC with this setting
(VOP[6:0]=0).
* The Vop must be operated in the range of 8V to 9.5V for the normal or partial display mode application, so that
customer have some range(<8V; >9.5V) to adjust contrast by themselves.
Table 4 Typical values for parameter for the HV-Generator programming
VALUE
UNIT
a
6.75
V
b
0.03
V
Booster OFF
SYMBOL
VOP[6:0] (programmed) {00 hex… 7F hex}
Fig 14.
Ver 1.3
Setting V0 Voltage
30/51
2007/09/12
ST7575
10. COMMAND SEQUENCE
This section introduces some reference operation flows.
Power ON flow and instruction sequence:
Operating Flow
Power ON
Keep RESB=L
Wait power stable, t>1ms
(depends on system power)
Set RESB=H
Wait reset finished, t>5us
Initial: Power Circuit
[Function Set] PD=0,V=0,H=1
[Bias System]
[Set V0]
[Function Set] PD=0,V=0,H=0
[Set V0 Range]
Delay 50ms
Initial: DDRAM
Write DDRAM
[ Display ON ]
Normal Operating
Power Sequence
1.
tV2ON: VDD2 power ON delay.
=> 0 ≤ tV2ON ≤ No Limitation.
2.
tRSTL: Reset Low time after VDD1 is stable.
*1
=> 0 ≤ tRSTL ≤ 50 ms .
3.
tRW: Reset low pulse width.
Please refer to RESB timing specification.
Note:
1.
IC will NOT be damaged if either VDD1 or VDD2 is OFF while another is ON. The specification listed here is to prevent
abnormal display on LCD module.
2.
Be sure the power is stable and the internal reset is finished (refer to RESB timing specification).
Ver 1.3
31/51
2007/09/12
ST7575
Power OFF Flow and Sequence
By setting PD=”1”, ST7575 will go into power save mode. The LCD driving outputs are fixed to VSS, built-in power circuits
are turned OFF and a discharge process starts.
Instruction Flow
After the built-in power circuits are turned OFF and
completely discharged, the power (VDD1 and VDD2)
can be removed.
An alternate method is to use the RESB signal to set ST7575 into power save mode. After hardware reset, the PD flag is “1”
and ST7575 is in power save mode (same as previous case).
Operating Flow
After the built-in power circuits are turned OFF and
completely discharged, the power (VDD1 and VDD2)
can be removed.
Note:
1.
tIPOFF: Internal Power discharge time. => 250ms (max).
2.
tV2OFF: Period between VDD1 and VDD2 OFF time. => 0 ms (min).
3.
It is NOT recommended to turn VDD1 OFF before VDD2. Without VDD1, the internal status cannot be guaranteed and
internal discharge-process maybe stopped. The un-discharged power maybe flows into COM/SEG output(s) and the
liquid crystal in panel maybe polarized.
4.
IC will NOT be damaged if either VDD1 or VDD2 is OFF while another is ON.
5.
The timing is dependent on panel loading and the external capacitor(s).
6.
The timing in these figures is base on the condition that: LCD Panel Size = 1.4” with C1=1uF, C2=1uF.
Ver 1.3
32/51
2007/09/12
ST7575
7.
When turning VDD2 OFF, the falling time should follow the specification:
8.
If the power OFF flow cannot meet this specification, it is recommended to use the discharge resistors (R1 & R2 in
300ms ≤ tPFall ≤ 1sec
application circuits).
Ver 1.3
33/51
2007/09/12
ST7575
Power-Save Flow and Sequence
ENTERING THE POWER SAVE MODE
The power save mode is achieved by setting PD bit to be “1”. No specified instruction flow required.
EXITING THE POWER SAVE MODE
INTERNAL SEQUENCE of EXIT POWER SAVE MODE
After receiving “PD=0”, the internal circuits (Power) will starts the following procedure.
Note:
1.
The power stable time is determined by LCD panel loading.
2.
The power stable time in this figure is base on: LCD Panel Size = 1.4” with C1=1uF, C2=1uF.
Ver 1.3
34/51
2007/09/12
ST7575
11. LIMITING VALUES
In accordance with the Absolute Maximum Rating System; please refer to notes 1 and 2.
Parameter
Symbol
Conditions
Unit
Digital Power Supply Voltage
VDD1
-0.3 ~ 3.6
V
Analog Power supply voltage
VDD2
-0.3 ~ 3.6
V
LCD Power supply voltage
V0-XV0
-0.3~15
V
LCD Power driving voltage
VG, VM
-0.3 ~ VDD2
Operating temperature
Storage temperature
TOPR
TSTR
V
–30 to +85
°
–65 to +150
°
C
C
Notes
1.
Stresses above those listed under Limiting Values may cause permanent damage to the device.
2.
Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to
VSS unless otherwise noted.
3.
Insure the voltage levels of V0, VDD2, VG, VM, VSS and XV0 always match the correct relation:
V0 ≥ VDD2 > VG > VM > VSS ≥ XV0
Ver 1.3
35/51
2007/09/12
ST7575
12. HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices.
13. DC CHARACTERISTICS
°
°
VDD1=1.8V to 3.3V, VSS=0V; Tamb = -30 C to +85 C; unless otherwise specified.
Item
Symbol
Condition
Rating
Min.
Typ.
Max.
Unit
Applicable
Pin
Operating Voltage (1)
VDD1
1.7
—
3.4
V
VDD1
Operating Voltage (2)
VDD2
2.4
—
3.4
V
VDD2
Input High-level Voltage
VIHC
0.7 x VDD1
—
VDD1
V
Input Low-level Voltage
VILC
VSS
—
0.3 x VDD1
V
Output High-level Voltage
VOHC
IOUT=1mA, VDD1=1.8V
0.8 x VDD1
—
VDD1
V
D[7:0]
Output Low-level Voltage
VOLC
IOUT=-1mA, VDD1=1.8V
VSS
—
0.2 x VDD1
V
D[7:0]
MPU
Interface
MPU
Interface
MPU
Input Leakage Current
ILI
-1.0
—
1.0
μA
Output Leakage Current
ILO
-3.0
—
3.0
μA
Vop=9V, ΔV=0.9V
—
0.7
—
KΩ
COMx
VG=2V, ΔV=0.2V
—
0.7
—
KΩ
SEGx
70
75
80
Hz
Liquid Crystal Driver ON
Resistance
Frame Frequency
RON
FR
°
Ta=25 C
FR default (1,0,0), 1/66 Duty
Ta = 25°C
Interface
MPU
Interface
Note:
1.
Recommend application Vop range : 8V ~ 9.5V.
2.
LCD module size : 1.8” (max).
Current consumption: During Display, with internal power system, current consumed by whole IC (bare die).
Test Pattern
Symbol
Condition
Rating
Unit
Min.
Typ.
Max.
—
110
150
μA
—
1
10
μA
Note
VDD1=VDD2=3.0V,
Display Pattern: SNOW
(Static)
ISS
Booster X5
VOP = 9.0 V, Bias=1/9
°
Ta=25 C
Power Down
Ver 1.3
ISS
VDD1=VDD2=3.0V,
°
Ta=25 C
36/51
2007/09/12
ST7575
14. TIMING CHARACTERISTICS
System Bus Read/Write Characteristics (For the 8080 Series MPU)
°
(VDD = 3.3V , Ta =-30~85 C)
Item
Address setup time
Address hold time
Signal
A0
System cycle time
Write L pulse width
/WR
Write H pulse width
Read L pulse width
Read H pulse width
/RD
Data setup time (Write)
Write Data hold time (Write)
Data access time (Read)
D[7:0]
Output disable time (Read)
Symbol
Condition
Min.
Max.
tAW8
80
—
tAH8
10
—
tCYC8
350
—
tCCLW
70
—
tCCHW
50
—
tCCLR
120
—
tCCHR
50
tDS8
60
—
tDH8
10
—
tACC8
CL = 16 pF
—
70
tOH8
CL = 16 pF
10
50
Unit
ns
°
(VDD = 2.8V , Ta =-30~85 C)
Item
Address setup time
Address hold time
Signal
A0
System cycle time
Write L pulse width
/WR
Symbol
Condition
Min.
Max.
tAW8
120
—
tAH8
15
—
tCYC8
450
—
tCCLW
120
—
Write H pulse width
tCCHW
100
—
Read L pulse width
tCCLR
120
—
tCCHR
100
—
tDS8
90
—
tDH8
15
—
Read H pulse width
/RD
Data setup time (Write)
Write Data hold time (Write)
Data access time (Read)
Output disable time (Read)
Ver 1.3
D[7:0]
tACC8
CL = 16 pF
—
140
tOH8
CL = 16 pF
10
100
37/51
Unit
ns
2007/09/12
ST7575
°
(VDD = 1.8V , Ta =-30~85 C)
Item
Min.
Max.
tAW8
150
—
tAH8
30
—
tCYC8
550
—
tCCLW
170
—
tCCHW
150
—
tCCLR
170
—
tCCHR
150
Data setup time (Write)
tDS8
120
—
Write Data hold time (Write)
tDH8
30
—
Address setup time
Address hold time
Signal
A0
System cycle time
Write L pulse width
/WR
Write H pulse width
Read L pulse width
Read H pulse width
Data access time (Read)
Output disable time (Read)
/RD
D[7:0]
Symbol
Condition
tACC8
CL = 16 pF
—
240
tOH8
CL = 16 pF
10
200
Unit
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr + tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified.
*2 All timing is specified using 20% and 80% of VDD1 as the reference.
*3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level.
Ver 1.3
38/51
2007/09/12
ST7575
System Bus Read/Write Characteristics (For the 6800 Series MPU)
°
(VDD = 3.3V , Ta =-30~85 C)
Min.
Max.
tAW6
80
—
tAH6
10
—
System cycle time
tCYC6
240
—
Enable L pulse width (WRITE)
tEWLW
70
—
tEWHW
50
—
Enable L pulse width (READ)
tEWLR
70
—
Enable H pulse width (READ)
tEWHR
130
Write data setup time
tDS6
60
—
Write data hold time
tDH6
10
—
Item
Address setup time
Address hold time
Enable H pulse width (WRITE)
Read data access time
Signal
A0
E
D[7:0]
Read data output disable time
Symbol
Condition
tACC6
CL = 16 pF
—
70
tOH6
CL = 16 pF
10
50
Unit
ns
°
(VDD = 2.8V , Ta =-30~85 C)
Min.
Max.
tAW6
100
—
tAH6
15
—
System cycle time
tCYC6
340
—
Enable L pulse width (WRITE)
tEWLW
120
—
tEWHW
100
—
Enable L pulse width (READ)
tEWLR
120
—
Enable H pulse width (READ)
tEWHR
100
—
tDS6
120
—
Item
Address setup time
Address hold time
Enable H pulse width (WRITE)
Signal
A0
E
Write data setup time
Write data hold time
Read data access time
Read data output disable time
Ver 1.3
D[7:0]
Symbol
Condition
15
—
tACC6
tDH6
CL = 16 pF
—
140
tOH6
CL = 16 pF
10
100
39/51
Unit
ns
2007/09/12
ST7575
°
(VDD = 1.8V , Ta =-30~85 C)
Item
Min.
Max.
tAW6
150
—
tAH6
30
—
System cycle time
tCYC6
440
—
Enable L pulse width (WRITE)
tEWLW
170
—
tEWHW
150
—
Enable L pulse width (READ)
tEWLR
170
—
Enable H pulse width (READ)
tEWHR
150
—
Write data setup time
tDS6
180
—
Write data hold time
tDH6
30
—
Address setup time
Address hold time
Enable H pulse width (WRITE)
Read data access time
Read data output disable time
Signal
A0
E
D[7:0]
Symbol
Condition
tACC6
CL = 16 pF
—
240
tOH6
CL = 16 pF
10
200
Unit
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr + tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified.
*2 All timing is specified using 20% and 80% of VDD1 as the reference.
*3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E.
Ver 1.3
40/51
2007/09/12
ST7575
SERIAL INTERFACE (4-Line Interface)
First bit
Last bit
°
(VDD = 3.3V , Ta =-30~85 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Address setup time
Address hold time
Data setup time
A0
SDA
Data hold time
CSB-SCLK time
CSB-SCLK time
CSB
Symbol
Condition
Min.
Max.
tSCYC
120
—
tSHW
60
—
tSLW
60
—
tSAS
20
—
tSAH
90
—
tSDS
20
—
tSDH
10
—
tCSS
20
—
tCSH
120
—
Unit
ns
°
(VDD = 2.8V , Ta =-30~85 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CSB-SCLK time
CSB-SCLK time
Ver 1.3
A0
SDA
CSB
Symbol
Min.
Max.
tSCYC
200
—
tSHW
100
—
tSLW
100
—
tSAS
30
—
tSAH
120
—
tSDS
30
—
tSDH
20
—
tCSS
30
—
tCSH
150
—
41/51
Condition
Unit
ns
2007/09/12
ST7575
°
(VDD = 1.8V , Ta =-30~85 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CSB-SCLK time
CSB-SCLK time
A0
SDA
CSB
Symbol
Min.
Max.
tSCYC
Condition
280
—
tSHW
140
—
tSLW
140
—
tSAS
50
—
tSAH
150
—
tSDS
50
—
tSDH
50
—
tCSS
40
—
tCSH
180
—
Unit
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD1 as the standard.
Ver 1.3
42/51
2007/09/12
ST7575
SERIAL INTERFACE (3-Line Interface)
First bit
Last bit
°
(VDD = 3.3V , Ta =-30~85 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Data setup time
SDA
Data hold time
CSB-SCLK time
CSB-SCLK time
CSB
Symbol
Condition
Min.
Max.
tSCYC
120
—
tSHW
60
—
tSLW
60
—
tSDS
20
—
tSDH
10
—
tCSS
20
—
tCSH
130
—
Unit
ns
°
(VDD = 2.8V , Ta =-30~85 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Data setup time
SDA
Data hold time
CSB-SCLK time
CSB-SCLK time
CSB
Symbol
Condition
Min.
Max.
tSCYC
180
—
tSHW
90
—
tSLW
90
—
tSDS
30
—
tSDH
20
—
tCSS
30
—
tCSH
160
—
Unit
ns
°
(VDD = 1.8V , Ta =-30~85 C)
Item
Signal
Serial clock period
SCLK “H” pulse width
SCLK
SCLK “L” pulse width
Data setup time
Data hold time
CSB-SCLK time
CSB-SCLK time
SDA
CSB
Symbol
Condition
Min.
Max.
tSCYC
240
—
tSHW
120
—
tSLW
120
—
tSDS
60
—
tSDH
50
—
tCSS
40
—
tCSH
190
—
Unit
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD1 as the standard.
Ver 1.3
43/51
2007/09/12
ST7575
RESET TIMING
tRW
RESB
tR
Internal
Status
During Reset ...
Reset Complete
°
(VDD = 3.3V , Ta =-30~85 C)
Item
Reset time
Reset “L” pulse width
Symbol
Min.
Max.
tR
Condition
—
1.5
tRW
1.5
—
Unit
us
°
(VDD = 2.8V , Ta =-30~85 C)
Item
Reset time
Reset “L” pulse width
Symbol
Condition
Min.
Max.
tR
—
2.0
tRW
2.0
Unit
us
°
(VDD = 1.8V , Ta =-30~85 C)
Item
Reset time
Reset “L” pulse width
Ver 1.3
Symbol
Condition
Min.
Max.
tR
—
3.0
tRW
3.0
—
44/51
Unit
us
2007/09/12
ST7575
APPLICATION NOTE
Application Circuits
The application circuits are for reference only and actual settings are dependent on LCD module characteristics.
COM34
COM35
COM59
25
1
26
COM33
SEG0
27
28
SEG101
COM0
COMS
129
130
COM25
COM1
131
132
156
248
249
250
COM64
Reserved
Reserved
COMS
COM60
XV0I
XV0S
244
242
243
238-241
V0S
XV0O
V0I
235
236-237
231-234
219
220
T4
T0
T5
T6
T7
V0O
218
T3
VGS
217
T2
228
216
T1
229-230
215
T8
214
VRS
VGI
213
VSS1
VGO
212
224-227
208-211
D0
VSS2
222-223
204-207
OSC
221
203
198
199
200
D7
D6
D5
D4
D3
D2
D1
202
197
201
196
A0
ERD
VDD1
CSB
RWR
195
192
194
191
193
190
VDD2
RESB
VDD1
189
181-184
PS0
VSS1
185-188
180
VMO
174
CP
TMY
PS2
PS1
176
177-179
173
TMX
175
172
163
164-166
167
168
169
COM32
COM31
COM26
VDX2
VSS1
T11
T12
BR
171
156
170
157
1
6
5
4
3
2
14
13
12
11
10
9
8
7
15
16
17
18
VDD
A0
E
R/W
CSB
RESB
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VG
V0
XV0
2007/09/12
45/51
Ver 1.3
ST7575
COM34
COM35
COM59
25
1
26
COM33
SEG0
27
28
SEG101
COM0
COMS
129
130
COM25
COM1
131
132
156
248
249
250
COM64
Reserved
Reserved
COMS
COM60
XV0I
XV0S
244
242
243
238-241
V0S
XV0O
V0I
235
236-237
231-234
219
220
T4
T0
T5
T6
T7
V0O
218
T3
VGS
217
T2
228
216
T1
229-230
215
T8
214
VRS
VGI
213
VSS1
VGO
212
224-227
208-211
D0
VSS2
222-223
204-207
OSC
221
203
198
199
200
D7
D6
D5
D4
D3
D2
D1
202
197
201
196
A0
ERD
VDD1
CSB
RWR
195
192
194
191
193
190
VDD2
RESB
VDD1
189
181-184
PS0
VSS1
185-188
180
VMO
174
CP
TMY
PS2
PS1
176
177-179
173
TMX
175
172
163
164-166
167
168
169
COM32
COM31
COM26
VDX2
VSS1
T11
T12
BR
171
156
170
157
1
6
5
4
3
2
14
13
12
11
10
9
8
7
15
16
17
18
VDD
A0
/RD
/WR
CSB
RESB
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VG
V0
XV0
2007/09/12
46/51
Ver 1.3
ST7575
ST7575
Interface : 4-Line SPI
OSC : VDD1
Resolution : 66(65COM+ICON)*102(SEG)
T11 : VSS1
Internal analog circuit
T12 : VSS1
Internal OSC
PS0 : VSS1
Booster : X5
PS1 : VSS1
Bias ratio default : 1/9
PS2 : VSS1
(bias ratio can be changed by instruction)
CP : VDD1
Vop=8.76V, C=0.1uF
BR : VDD1
VDD1=VDD2=2.8V
TMX=TMY=VSS1
COM34
COM35
COM59
25
1
26
COM33
SEG0
27
28
SEG101
COM0
COMS
129
130
COM25
COM1
131
132
156
248
249
250
COM64
Reserved
Reserved
COMS
COM60
XV0I
XV0S
244
242
243
238-241
V0S
XV0O
V0I
235
236-237
V0O
231-234
VGS
T7
228
T6
229-230
T5
T8
220
T0
VGI
219
T4
VGO
218
T3
224-227
217
T2
222-223
216
T1
221
215
X (D0)
214
X (D1)
213
X (D2)
VRS
202
X (D3)
212
201
CSB (D4)
OSC
200
VSS1
199
VSS2
198
A0 (D5)
208-211
197
VDD1
SDA (D6)
204-207
196
SCLK (D7)
203
195
192
X (CSB)
X (RWR)
X (ERD)
X (A0)
194
191
193
190
VDD2
RESB
VDD1
189
181-184
PS0
VSS1
185-188
180
VMO
174
CP
TMY
PS2
PS1
176
177-179
173
TMX
175
172
163
164-166
167
168
169
COM32
COM31
COM26
VDX2
VSS1
T11
T12
BR
171
156
170
157
1
2
6
5
4
3
7
8
9
10
VDD
RESB
CSB
A0
SDA
SCLK
VSS
VG
V0
XV0
2007/09/12
47/51
Ver 1.3
ST7575
COM34
COM35
COM59
25
1
26
COM33
SEG0
27
28
SEG101
COM0
COMS
129
130
COM25
COM1
131
132
156
248
249
250
COM64
Reserved
Reserved
COMS
COM60
XV0I
XV0S
244
242
243
238-241
V0S
XV0O
V0I
235
236-237
V0O
231-234
VGS
T7
228
T6
229-230
T5
T8
220
T0
VGI
219
T4
VGO
218
T3
224-227
217
T2
222-223
216
T1
221
215
X (D0)
214
X (D1)
213
X (D2)
VRS
202
X (D3)
212
201
CSB (D4)
OSC
200
VSS1
199
VSS2
198
A0 (D5)
208-211
197
VDD1
SDA (D6)
204-207
196
SCLK (D7)
203
195
192
X (CSB)
X (RWR)
X (ERD)
X (A0)
194
191
193
190
VDD2
RESB
VDD1
189
181-184
PS0
VSS1
185-188
180
VMO
174
CP
TMY
PS2
PS1
176
177-179
173
TMX
175
172
163
164-166
167
168
169
COM32
COM31
COM26
VDX2
VSS1
T11
T12
BR
171
156
170
157
7
8
9
VSS
VG
V0
XV0
SDA
SCLK
6
4
3
VDD
RESB
CSB
2
5
1
2007/09/12
48/51
Ver 1.3
ST7575
Selection of Application Voltage
Power Range Summary
l
Positive Booster: (VDD2 x PCn x BE) ≥ V0 or (VDD2 x PCn x BE) ≥ Vop;
l
Negative Booster: [–VDD2 x (PCn – 1) x BE] ≤ XV0 or [VDD2 x (PCn – 1) x BE] ≥ (Vop – VG),
where VG = Vop x 2 / N;
l
Vop requirement: [VDD2 x (PCn – 1) x BE] ≥ [Vop x (N – 2) / N] or [Vop ≤ VDD2 x (PCn – 1) x BE x N / (N – 2)].
l
PCn is the booster stage and BE is the booster efficiency. Referential values are listed below: (assume VDD2=2.4V)
Module Size ≤ 1.4”: BE=80% (min);
Module Size = 1.4”~1.8”: BE=76% (min).
Actual BE should be determined by module loading and ITO resistance value.
l
1.24 ≤ VG < VDD2. Recommend VG is: VDD2-VG around 0.5~0.8V.
l
VM=VG/2 and 0.62V ≤ VM < VDD2.
l
The worse condition should be considered:
Low temperature effect and display on with snow pattern on panel (max: 1.8”).
Referential LCD Module Setting
VDD1=VDD2=2.8V, Panel Size=1.4”
Duty
1/66
Booster
Vop
Bias
5X,
8.49V ~ 9V,
1/9,
CP=H
PRS=1
BS[2:0]=0,1,1
Note: It is recommended to reserve some range for user adjustment and temperature effect.
Ver 1.3
49/51
2007/09/12
ST7575
ITO Layout Reference
FPC
PIN
FPC
PIN
FPC
PIN
FPC FPC FPC
PIN PIN PIN
Ver 1.3
FPC
PIN
FPC
PIN
FPC
PIN
FPC FPC FPC
PIN PIN PIN
50/51
FPC FPC FPC
PIN PIN PIN
2007/09/12
ST7575
Reversion History
Version
Date
1.0
2007/01/18
1.1
2007/3/18
1.2
1.2a
1.2b
2007/04/30
2007/05/08
2007/07/25
1.2c
2007/08/28
1.3
2007/09/12
Ver 1.3
Description
Formal release.
l
Add detailed operating flows and power sequences.
l
Add application note for power selection.
l
Separate I C interface as ST7575i.
l
Add operating flows and power sequences.
l
Add application note for Vop selection and power setting.
l
Add Temperature Gradient of Regulator.
l
Update ITO Resistance suggestion: No Limitation => 5K.
l
Rearrange Microprocessor Interface section.
l
More detailed application circuits.
l
Fix typing mistake.
l
Fix Vop voltage range mistype.
l
Add an alternated power OFF operating flow.
l
Fix typing mistake (PAD167 & PAD180 are VSS1).
l
Fix typing mistake (PAD Coordinate of VRS).
l
Update PAD Size: PAD 213~221, 20um x 60um
l
Fix typing mistake of MPU interface (Page 18).
l
Fix typing mistake of 8080 timing (Page 37).
l
Add discharge on VG.
2
51/51
2007/09/12