ST Sitronix ST7624 65K Color Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7624 is a driver & controller LSI for 65k color graphic dot-matrix liquid crystal display systems. It generates 312 Segment and 104 Common driver circuits. This chip is connected directly to a microprocessor, accepts Serial Peripheral Interface (SPI) or 8-bit/16-bit parallel display data and stores in an on-chip display data RAM. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES Driver Output Circuits On-chip Low Power Analog Circuit ♦ 312 segment outputs / 104 common outputs ♦ On-chip oscillator circuit Applicable Duty Ratios ♦ Voltage converter (x2, x3, x4, x5, x6, x7, x8) ♦ Various partial display ♦ Voltage regulator(Temperature gradient= -0.119%/°C ♦ Partial window moving & data scrolling +-10%) Gray-Scale Display ♦ On-chip electronic contrast control function ♦ 4FRC & 31 PWM function circuit to display ♦ Voltage follower (LCD bias: 1/5 to 1/12) ♦ 64 gray-scale display. Operating Voltage Range On-chip Display Data RAM ♦ Supply voltage (VDD, VDD1): 2.4 to 3.3V ♦ Capacity: 104X104X16 =173,056bits (VDD2, VDD3, VDD4, VDD5): 2.4 to ♦ 65K colors (RGB)=(565) mode 3.3V ♦ Dithered262k colors (RGB)=(666) mode ♦ LCD driving voltage (VOP = V0 - VSS): 3.76 to 18.0 V ♦ Dithered 16M colors (RGB)=(888) mode ♦ Suggested value of V0 is 12V~15V , bias =1/11 Microprocessor Interface LCD driving voltage (EEPROM) ♦ 8/16-bit parallel bi-directional interface with 6800-series ♦ To store contrast adjustment value for better display Package Type or 8080-series ♦ 4-line serial interface (4-line-SIF) ♦ Application for COG ♦ 3-line serial interface (3-line-SIF) ST7624 Ver 1.8 6800 , 8080 ,4-Line , 3-Line interface 1/98 2006/08/15 ST7624 001 com0/com0 002 com1/com2 003 com2/com4 556 VOUT OUT 551 VOUT 550 VOUT IN Chip Size: 17,390 um x1,544 um 545 544 543 542 541 540 539 538 537 536 535 534 533 532 051 com50/com100 052 com51/com102 053 seg311 OUT VOUT IN CAP1P CAP1N CAP3P CAP5P CAP1N CAP7P CAP4P CAP2N CAP6P CAP2N CAP2P TCAP VDD5 l Bump Pitch: PAD NO 1 ~ 416: 40 um (COM/SEG) PAD NO 417~443: 175um(NC) PAD NO 444 ~ 556:110 um (I/O) 529 VDD5 528 VDD2 l 523 522 521 520 519 PAD NO.1~416: 25(x)um X 96(y)um VDD2 VDD3 VDD3 VDD4 VSS Bump size: PAD No. 417~443: 158(x)um X 23(y)um PAD N0. 444~556: 90(x)um X 40(y)um 506 VSS 505 VDD1 504 VDD X Y (0,0) 501 500 499 498 497 496 495 494 493 492 491 490 489 488 487 486 485 484 483 482 481 480 479 478 477 476 475 474 473 472 471 470 469 468 467 466 465 464 463 462 461 460 459 458 457 456 455 454 453 452 451 VDD XCS SCL SI VDD VSS IF3 IF2 IF1 INTRS CSEL VDD VSS RST E_RD VDD VSS D15 D14 D13 D12 D11 D10 D9 D8 VDD VSS D7 D6 D5 D4 D3 D2 D1 D0 VDD VSS RW_WR A0P VDD VSS CLS CL VDD VREF VR V4 V3 V2 V1 V0OUT l Bump Height: 17 um l Chip Thickness: 635um (7000,-275) 30 45 60 15 15 30 75 unit: um (680,-330) 61.75 20 90 40 20 25 40 30 (-8550,-600) 448 V0OUT 447 V0IN unit: um 45 15 444 V0IN 30 443 NC 75 15 60 unit: um 23 96 158 25 Bump size of PAD 1~416 unit: um 364 seg0 Bump size of PAD 417~443 unit: um 40 90 Bump size of PAD 444 ~ 556 unit: um 365 com52/com103 366 com53/com101 367 com54/com99 415 com102/com3 416 com103/com1 Ver 1.8 417 NC 2/98 2006/08/15 ST7624 4. Pad Center Coordinates PAD PIN Name X PAD PIN Name X Y COM[68] 7197.0 642.5 COM[35] COM[70] 7157.0 642.5 037 COM[36] COM[72] 7117.0 642.5 642.5 038 COM[37] COM[74] 7077.0 642.5 8397.0 642.5 039 COM[38] COM[76] 7037.0 642.5 COM[10] 8357.0 642.5 040 COM[39] COM[78] 6997.0 642.5 COM[6] COM[12] 8317.0 642.5 041 COM[40] COM[80] 6957.0 642.5 008 COM[7] COM[14] 8277.0 642.5 042 COM[41] COM[82] 6917.0 642.5 009 COM[8] COM[16] 8237.0 642.5 043 COM[42] COM[84] 6877.0 642.5 010 COM[9] COM[18] 8197.0 642.5 044 COM[43] COM[86] 6837.0 642.5 011 COM[10] COM[20] 8157.0 642.5 045 COM[44] COM[88] 6797.0 642.5 012 COM[11] COM[22] 8117.0 642.5 046 COM[45] COM[90] 6757.0 642.5 013 COM[12] COM[24] 8077.0 642.5 047 COM[46] COM[92] 6717.0 642.5 014 COM[13] COM[26] 8037.0 642.5 048 COM[47] COM[94] 6677.0 642.5 015 COM[14] COM[28] 7997.0 642.5 049 COM[48] COM[96] 6637.0 642.5 016 COM[15] COM[30] 7957.0 642.5 050 COM[49] COM[98] 6597.0 642.5 017 COM[16] COM[32] 7917.0 642.5 051 COM[50] COM[100] 6557.0 642.5 018 COM[17] COM[34] 7877.0 642.5 052 COM[51] COM[102] 6517.0 642.5 019 COM[18] COM[36] 7837.0 642.5 053 SEG[311] 6352.6 642.5 020 COM[19] COM[38] 7797.0 642.5 054 SEG[310] 6312.6 642.5 021 COM[20] COM[40] 7757.0 642.5 055 SEG[309] 6272.6 642.5 022 COM[21] COM[42] 7717.0 642.5 056 SEG[308] 6232.6 642.5 023 COM[22] COM[44] 7677.0 642.5 057 SEG[307] 6192.6 642.5 024 COM[23] COM[46] 7637.0 642.5 058 SEG[306] 6152.6 642.5 025 COM[24] COM[48] 7597.0 642.5 059 SEG[305] 6112.6 642.5 026 COM[25] COM[50] 7557.0 642.5 060 SEG[304] 6072.6 642.5 027 COM[26] COM[52] 7517.0 642.5 061 SEG[303] 6032.6 642.5 028 COM[27] COM[54] 7477.0 642.5 062 SEG[302] 5992.6 642.5 029 COM[28] COM[56] 7437.0 642.5 063 SEG[301] 5952.6 642.5 030 COM[29] COM[58] 7397.0 642.5 064 SEG[300] 5912.6 642.5 031 COM[30] COM[60] 7357.0 642.5 065 SEG[299] 5872.6 642.5 032 COM[31] COM[62] 7317.0 642.5 066 SEG[298] 5832.6 642.5 033 COM[32] COM[64] 7277.0 642.5 067 SEG[297] 5792.6 642.5 034 COM[33] COM[66] 7237.0 642.5 068 SEG[296] 5752.6 642.5 No. CSEL=0 001 COM[0] COM[0] 8557.0 002 COM[1] COM[2] 003 COM[2] 004 Y No. CSEL=0 CSEL=1 642.5 035 COM[34] 8517.0 642.5 036 COM[4] 8477.0 642.5 COM[3] COM[6] 8437.0 005 COM[4] COM[8] 006 COM[5] 007 Ver 1.8 CSEL=1 3/98 2006/08/15 ST7624 PAD No. PIN Name CSEL=0 X Y PAD No. CSEL=1 PIN Name CSEL=0 X Y CSEL=1 069 SEG[295] 5712.6 642.5 104 SEG[260] 4312.6 642.5 070 SEG[294] 5672.6 642.5 105 SEG[259] 4272.6 642.5 071 SEG[293] 5632.6 642.5 106 SEG[258] 4232.6 642.5 072 SEG[292] 5592.6 642.5 107 SEG[257] 4192.6 642.5 073 SEG[291] 5552.6 642.5 108 SEG[256] 4152.6 642.5 074 SEG[290] 5512.6 642.5 109 SEG[255] 4112.6 642.5 075 SEG[289] 5472.6 642.5 110 SEG[254] 4072.6 642.5 076 SEG[288] 5432.6 642.5 111 SEG[253] 4032.6 642.5 077 SEG[287] 5392.6 642.5 112 SEG[252] 3992.6 642.5 078 SEG[286] 5352.6 642.5 113 SEG[251] 3952.6 642.5 079 SEG[285] 5312.6 642.5 114 SEG[250] 3912.6 642.5 080 SEG[284] 5272.6 642.5 115 SEG[249] 3872.6 642.5 081 SEG[283] 5232.6 642.5 116 SEG[248] 3832.6 642.5 082 SEG[282] 5192.6 642.5 117 SEG[247] 3792.6 642.5 083 SEG[281] 5152.6 642.5 118 SEG[246] 3752.6 642.5 084 SEG[280] 5112.6 642.5 119 SEG[245] 3712.6 642.5 085 SEG[279] 5072.6 642.5 120 SEG[244] 3672.6 642.5 086 SEG[278] 5032.6 642.5 121 SEG[243] 3632.6 642.5 087 SEG[277] 4992.6 642.5 122 SEG[242] 3592.6 642.5 088 SEG[276] 4952.6 642.5 123 SEG[241] 3552.6 642.5 089 SEG[275] 4912.6 642.5 124 SEG[240] 3512.6 642.5 090 SEG[274] 4872.6 642.5 125 SEG[239] 3472.6 642.5 091 SEG[273] 4832.6 642.5 126 SEG[238] 3432.6 642.5 092 SEG[272] 4792.6 642.5 127 SEG[237] 3392.6 642.5 093 SEG[271] 4752.6 642.5 128 SEG[236] 3352.6 642.5 094 SEG[270] 4712.6 642.5 129 SEG[235] 3312.6 642.5 095 SEG[269] 4672.6 642.5 130 SEG[234] 3272.6 642.5 096 SEG[268] 4632.6 642.5 131 SEG[233] 3232.6 642.5 097 SEG[267] 4592.6 642.5 132 SEG[232] 3192.6 642.5 098 SEG[266] 4552.6 642.5 133 SEG[231] 3152.6 642.5 099 SEG[265] 4512.6 642.5 134 SEG[230] 3112.6 642.5 100 SEG[264] 4472.6 642.5 135 SEG[229] 3072.6 642.5 101 SEG[263] 4432.6 642.5 136 SEG[228] 3032.6 642.5 102 SEG[262] 4392.6 642.5 137 SEG[227] 2992.6 642.5 103 SEG[261] 4352.6 642.5 138 SEG[226] 2952.6 642.5 Ver 1.8 4/98 2006/08/15 ST7624 PAD No. PIN Name CSEL=0 X Y PAD No. CSEL=1 PIN Name CSEL=0 X Y CSEL=1 139 SEG[225] 2912.6 642.5 174 SEG[190] 1512.6 642.5 140 SEG[224] 2872.6 642.5 175 SEG[189] 1472.6 642.5 141 SEG[223] 2832.6 642.5 176 SEG[188] 1432.6 642.5 142 SEG[222] 2792.6 642.5 177 SEG[187] 1392.6 642.5 143 SEG[221] 2752.6 642.5 178 SEG[186] 1352.6 642.5 144 SEG[220] 2712.6 642.5 179 SEG[185] 1312.6 642.5 145 SEG[219] 2672.6 642.5 180 SEG[184] 1272.6 642.5 146 SEG[218] 2632.6 642.5 181 SEG[183] 1232.6 642.5 147 SEG[217] 2592.6 642.5 182 SEG[182] 1192.6 642.5 148 SEG[216] 2552.6 642.5 183 SEG[181] 1152.6 642.5 149 SEG[215] 2512.6 642.5 184 SEG[180] 1112.6 642.5 150 SEG[214] 2472.6 642.5 185 SEG[179] 1072.6 642.5 151 SEG[213] 2432.6 642.5 186 SEG[178] 1032.6 642.5 152 SEG[212] 2392.6 642.5 187 SEG[177] 992.6 642.5 153 SEG[211] 2352.6 642.5 188 SEG[176] 952.6 642.5 154 SEG[210] 2312.6 642.5 189 SEG[175] 912.6 642.5 155 SEG[209] 2272.6 642.5 190 SEG[174] 872.6 642.5 156 SEG[208] 2232.6 642.5 191 SEG[173] 832.6 642.5 157 SEG[207] 2192.6 642.5 192 SEG[172] 792.6 642.5 158 SEG[206] 2152.6 642.5 193 SEG[171] 752.6 642.5 159 SEG[205] 2112.6 642.5 194 SEG[170] 712.6 642.5 160 SEG[204] 2072.6 642.5 195 SEG[169] 672.6 642.5 161 SEG[203] 2032.6 642.5 196 SEG[168] 632.6 642.5 162 SEG[202] 1992.6 642.5 197 SEG[167] 592.6 642.5 163 SEG[201] 1952.6 642.5 198 SEG[166] 552.6 642.5 164 SEG[200] 1912.6 642.5 199 SEG[165] 512.6 642.5 165 SEG[199] 1872.6 642.5 200 SEG[164] 472.6 642.5 166 SEG[198] 1832.6 642.5 201 SEG[163] 432.6 642.5 167 SEG[197] 1792.6 642.5 202 SEG[162] 392.6 642.5 168 SEG[196] 1752.6 642.5 203 SEG[161] 352.6 642.5 169 SEG[195] 1712.6 642.5 204 SEG[160] 312.6 642.5 170 SEG[194] 1672.6 642.5 205 SEG[159] 272.6 642.5 171 SEG[193] 1632.6 642.5 206 SEG[158] 232.6 642.5 172 SEG[192] 1592.6 642.5 207 SEG[157] 192.6 642.5 173 SEG[191] 1552.6 642.5 208 SEG[156] 152.6 642.5 Ver 1.8 5/98 2006/08/15 ST7624 PAD No. PIN Name CSEL=0 X Y PAD No. CSEL=1 PIN Name CSEL=0 X Y CSEL=1 209 SEG[155] 112.6 642.5 244 SEG[120] -1287.4 642.5 210 SEG[154] 72.6 642.5 245 SEG[119] -1327.4 642.5 211 SEG[153] 32.6 642.5 246 SEG[118] -1367.4 642.5 212 SEG[152] -7.4 642.5 247 SEG[117] -1407.4 642.5 213 SEG[151] -47.4 642.5 248 SEG[116] -1447.4 642.5 214 SEG[150] -87.4 642.5 249 SEG[115] -1487.4 642.5 215 SEG[149] -127.4 642.5 250 SEG[114] -1527.4 642.5 216 SEG[148] -167.4 642.5 251 SEG[113] -1567.4 642.5 217 SEG[147] -207.4 642.5 252 SEG[112] -1607.4 642.5 218 SEG[146] -247.4 642.5 253 SEG[111] -1647.4 642.5 219 SEG[145] -287.4 642.5 254 SEG[110] -1687.4 642.5 220 SEG[144] -327.4 642.5 255 SEG[109] -1727.4 642.5 221 SEG[143] -367.4 642.5 256 SEG[108] -1767.4 642.5 222 SEG[142] -407.4 642.5 257 SEG[107] -1807.4 642.5 223 SEG[141] -447.4 642.5 258 SEG[106] -1847.4 642.5 224 SEG[140] -487.4 642.5 259 SEG[105] -1887.4 642.5 225 SEG[139] -527.4 642.5 260 SEG[104] -1927.4 642.5 226 SEG[138] -567.4 642.5 261 SEG[103] -1967.4 642.5 227 SEG[137] -607.4 642.5 262 SEG[102] -2007.4 642.5 228 SEG[136] -647.4 642.5 263 SEG[101] -2047.4 642.5 229 SEG[135] -687.4 642.5 264 SEG[100] -2087.4 642.5 230 SEG[134] -727.4 642.5 265 SEG[99] -2127.4 642.5 231 SEG[133] -767.4 642.5 266 SEG[98] -2167.4 642.5 232 SEG[132] -807.4 642.5 267 SEG[97] -2207.4 642.5 233 SEG[131] -847.4 642.5 268 SEG[96] -2247.4 642.5 234 SEG[130] -887.4 642.5 269 SEG[95] -2287.4 642.5 235 SEG[129] -927.4 642.5 270 SEG[94] -2327.4 642.5 236 SEG[128] -967.4 642.5 271 SEG[93] -2367.4 642.5 237 SEG[127] -1007.4 642.5 272 SEG[92] -2407.4 642.5 238 SEG[126] -1047.4 642.5 273 SEG[91] -2447.4 642.5 239 SEG[125] -1087.4 642.5 274 SEG[90] -2487.4 642.5 240 SEG[124] -1127.4 642.5 275 SEG[89] -2527.4 642.5 241 SEG[123] -1167.4 642.5 276 SEG[88] -2567.4 642.5 242 SEG[122] -1207.4 642.5 277 SEG[87] -2607.4 642.5 243 SEG[121] -1247.4 642.5 278 SEG[86] -2647.4 642.5 Ver 1.8 6/98 2006/08/15 ST7624 PAD No. PIN Name CSEL=0 X Y PAD No. CSEL=1 PIN Name CSEL=0 X Y CSEL=1 279 SEG[85] -2687.4 642.5 314 SEG[50] -4087.4 642.5 280 SEG[84] -2727.4 642.5 315 SEG[49] -4127.4 642.5 281 SEG[83] -2767.4 642.5 316 SEG[48] -4167.4 642.5 282 SEG[82] -2807.4 642.5 317 SEG[47] -4207.4 642.5 283 SEG[81] -2847.4 642.5 318 SEG[46] -4247.4 642.5 284 SEG[80] -2887.4 642.5 319 SEG[45] -4287.4 642.5 285 SEG[79] -2927.4 642.5 320 SEG[44] -4327.4 642.5 286 SEG[78] -2967.4 642.5 321 SEG[43] -4367.4 642.5 287 SEG[77] -3007.4 642.5 322 SEG[42] -4407.4 642.5 288 SEG[76] -3047.4 642.5 323 SEG[41] -4447.4 642.5 289 SEG[75] -3087.4 642.5 324 SEG[40] -4487.4 642.5 290 SEG[74] -3127.4 642.5 325 SEG[39] -4527.4 642.5 291 SEG[73] -3167.4 642.5 326 SEG[38] -4567.4 642.5 292 SEG[72] -3207.4 642.5 327 SEG[37] -4607.4 642.5 293 SEG[71] -3247.4 642.5 328 SEG[36] -4647.4 642.5 294 SEG[70] -3287.4 642.5 329 SEG[35] -4687.4 642.5 295 SEG[69] -3327.4 642.5 330 SEG[34] -4727.4 642.5 296 SEG[68] -3367.4 642.5 331 SEG[33] -4767.4 642.5 297 SEG[67] -3407.4 642.5 332 SEG[32] -4807.4 642.5 298 SEG[66] -3447.4 642.5 333 SEG[31] -4847.4 642.5 299 SEG[65] -3487.4 642.5 334 SEG[30] -4887.4 642.5 300 SEG[64] -3527.4 642.5 335 SEG[29] -4927.4 642.5 301 SEG[63] -3567.4 642.5 336 SEG[28] -4967.4 642.5 302 SEG[62] -3607.4 642.5 337 SEG[27] -5007.4 642.5 303 SEG[61] -3647.4 642.5 338 SEG[26] -5047.4 642.5 304 SEG[60] -3687.4 642.5 339 SEG[25] -5087.4 642.5 305 SEG[59] -3727.4 642.5 340 SEG[24] -5127.4 642.5 306 SEG[58] -3767.4 642.5 341 SEG[23] -5167.4 642.5 307 SEG[57] -3807.4 642.5 342 SEG[22] -5207.4 642.5 308 SEG[56] -3847.4 642.5 343 SEG[21] -5247.4 642.5 309 SEG[55] -3887.4 642.5 344 SEG[20] -5287.4 642.5 310 SEG[54] -3927.4 642.5 345 SEG[19] -5327.4 642.5 311 SEG[53] -3967.4 642.5 346 SEG[18] -5367.4 642.5 312 SEG[52] -4007.4 642.5 347 SEG[17] -5407.4 642.5 313 SEG[51] -4047.4 642.5 348 SEG[16] -5447.4 642.5 Ver 1.8 7/98 2006/08/15 ST7624 PAD No. PIN Name CSEL=0 X Y PAD CSEL=1 PIN Name No. CSEL=0 CSEL=1 X Y 349 SEG[15] -5487.4 642.5 384 COM[71] COM[65] -7245.75 642.5 350 SEG[14] -5527.4 642.5 385 COM[72] COM[63] -7285.75 642.5 351 SEG[13] -5567.4 642.5 386 COM[73] COM[61] -7325.75 642.5 352 SEG[12] -5607.4 642.5 387 COM[74] COM[59] -7365.75 642.5 353 SEG[11] -5647.4 642.5 388 COM[75] COM[57] -7405.75 642.5 354 SEG[10] -5687.4 642.5 389 COM[76] COM[55] -7445.75 642.5 355 SEG[9] -5727.4 642.5 390 COM[77] COM[53] -7485.75 642.5 356 SEG[8] -5767.4 642.5 391 COM[78] COM[51] -7525.75 642.5 357 SEG[7] -5807.4 642.5 392 COM[79] COM[49] -7565.75 642.5 358 SEG[6] -5847.4 642.5 393 COM[80] COM[47] -7605.75 642.5 359 SEG[5] -5887.4 642.5 394 COM[81] COM[45] -7645.75 642.5 360 SEG[4] -5927.4 642.5 395 COM[82] COM[43] -7685.75 642.5 361 SEG[3] -5967.4 642.5 396 COM[83] COM[41] -7725.75 642.5 362 SEG[2] -6007.4 642.5 397 COM[84] COM[39] -7765.75 642.5 363 SEG[1] -6047.4 642.5 398 COM[85] COM[37] -7805.75 642.5 364 SEG[0] -6087.4 642.5 399 COM[86] COM[35] -7845.75 642.5 365 COM[52] COM[103] -6485.75 642.5 400 COM[87] COM[33] -7885.75 642.5 366 COM[53] COM[101] -6525.75 642.5 401 COM[88] COM[31] -7925.75 642.5 367 COM[54] COM[99] -6565.75 642.5 402 COM[89] COM[29] -7965.75 642.5 368 COM[55] COM[97] -6605.75 642.5 403 COM[90] COM[27] -8005.75 642.5 369 COM[56] COM[95] -6645.75 642.5 404 COM[91] COM[25] -8045.75 642.5 370 COM[57] COM[93] -6685.75 642.5 405 COM[92] COM[23] -8085.75 642.5 371 COM[58] COM[91] -6725.75 642.5 406 COM[93] COM[21] -8125.75 642.5 372 COM[59] COM[89] -6765.75 642.5 407 COM[94] COM[19] -8165.75 642.5 373 COM[60] COM[87] -6805.75 642.5 408 COM[95] COM[17] -8205.75 642.5 374 COM[61] COM[85] -6845.75 642.5 409 COM[96] COM[15] -8245.75 642.5 375 COM[62] COM[83] -6885.75 642.5 410 COM[97] COM[13] -8285.75 642.5 376 COM[63] COM[81] -6925.75 642.5 411 COM[98] COM[11] -8325.75 642.5 377 COM[64] COM[79] -6965.75 642.5 412 COM[99] COM[9] -8365.75 642.5 378 COM[65] COM[77] -7005.75 642.5 413 COM[100] COM[7] -8405.75 642.5 379 COM[66] COM[75] -7045.75 642.5 414 COM[101] COM[5] -8445.75 642.5 380 COM[67] COM[73] -7085.75 642.5 415 COM[102] COM[3] -8485.75 642.5 381 COM[68] COM[71] -7125.75 642.5 416 COM[103] COM[1] -8525.75 642.5 382 COM[69] COM[69] -7165.75 642.5 417 NC -8534.45 -679.5 383 COM[70] COM[67] -7205.75 642.5 418 NC -8359.45 -679.5 Ver 1.8 8/98 2006/08/15 ST7624 PAD No. PIN Name CSEL=0 X Y PAD No. CSEL=1 PIN Name CSEL=0 X Y CSEL=1 419 NC -8184.45 -679.5 454 V3 -2695.58 -671.0 420 NC -8009.45 -679.5 455 V4 -2585.58 -671.0 421 NC -7834.45 -679.5 456 VR -2475.58 -671.0 422 NC -7659.45 -679.5 457 VREF -2365.58 -671.0 423 NC -7484.45 -679.5 458 VDD -2255.58 -671.0 424 NC -7309.45 -679.5 459 CL -2145.58 -671.0 425 NC -7134.45 -679.5 460 CLS -2035.58 -671.0 426 NC -6959.45 -679.5 461 VSS -1925.58 -671.0 427 NC -6784.45 -679.5 462 VDD -1815.58 -671.0 428 NC -6609.45 -679.5 463 A0 -1705.58 -671.0 429 NC -6434.45 -679.5 464 RW_WR -1595.58 -671.0 430 NC -6259.45 -679.5 465 VSS -1485.58 -671.0 431 NC -6084.45 -679.5 466 VDD -1375.58 -671.0 432 NC -5909.45 -679.5 467 D0 -1265.58 -671.0 433 NC -5734.45 -679.5 468 D1 -1155.58 -671.0 434 NC -5559.45 -679.5 469 D2 -1045.58 -671.0 435 NC -5384.45 -679.5 470 D3 -935.58 -671.0 436 NC -5209.45 -679.5 471 D4 -825.58 -671.0 437 NC -5034.45 -679.5 472 D5 -715.58 -671.0 438 NC -4859.45 -679.5 473 D6 -605.58 -671.0 439 NC -4684.45 -679.5 474 D7 -495.58 -671.0 440 NC -4509.45 -679.5 475 VSS -385.58 -671.0 441 NC -4334.45 -679.5 476 VDD -275.58 -671.0 442 NC -4159.45 -679.5 477 D8 -165.58 -671.0 443 NC -3984.45 -679.5 478 D9 -55.58 -671.0 444 V0IN -3795.58 -671.0 479 D10 54.42 -671.0 445 V0IN -3685.58 -671.0 480 D11 164.42 -671.0 446 V0IN -3575.58 -671.0 481 D12 274.42 -671.0 447 V0IN -3465.58 -671.0 482 D13 384.42 -671.0 448 V0OUT -3355.58 -671.0 483 D14 494.42 -671.0 449 V0OUT -3245.58 -671.0 484 D15 604.42 -671.0 450 V0OUT -3135.58 -671.0 485 VSS 714.42 -671.0 451 V0OUT -3025.58 -671.0 486 VDD 824.42 -671.0 452 V1 -2915.58 -671.0 487 E_RD 934.42 -671.0 453 V2 -2805.58 -671.0 488 RST 1044.42 -671.0 Ver 1.8 9/98 2006/08/15 ST7624 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD No. PIN Name CSEL=0 X Y CSEL=1 489 VSS 1154.42 -671.0 523 VDD2 4894.42 -671.0 490 VDD 1264.42 -671.0 524 VDD2 5004.42 -671.0 491 CSEL 1374.42 -671.0 525 VDD2 5114.42 -671.0 492 INTRS 1484.42 -671.0 526 VDD2 5224.42 -671.0 493 IF1 1594.42 -671.0 527 VDD2 5334.42 -671.0 494 IF2 1704.42 -671.0 528 VDD2 5444.42 -671.0 495 IF3 1814.42 -671.0 529 VDD5 5554.42 -671.0 496 VSS 1924.42 -671.0 530 VDD5 5664.42 -671.0 497 VDD 2034.42 -671.0 531 VDD5 5774.42 -671.0 498 SI 2144.42 -671.0 532 VDD5 5884.42 -671.0 499 SCL 2254.42 -671.0 533 TCAP 5994.42 -671.0 500 /CS 2364.42 -671.0 534 CAP2P 6104.42 -671.0 501 VDD 2474.42 -671.0 535 CAP2N 6214.42 -671.0 502 VDD 2584.42 -671.0 536 CAP6P 6324.42 -671.0 503 VDD 2694.42 -671.0 537 CAP2N 6434.42 -671.0 504 VDD 2804.42 -671.0 538 CAP4P 6544.42 -671.0 505 VDD1 2914.42 -671.0 539 CAP7P 6654.42 -671.0 506 VSS 3024.42 -671.0 540 CAP1N 6764.42 -671.0 507 VSS 3134.42 -671.0 541 CAP5P 6874.42 -671.0 508 VSS 3244.42 -671.0 542 CAP3P 6984.42 -671.0 509 VSS 3354.42 -671.0 543 CAP1N 7094.42 -671.0 510 VSS 3464.42 -671.0 544 CAP1P 7204.42 -671.0 511 VSS 3574.42 -671.0 545 VOUTIN 7314.42 -671.0 512 VSS 3684.42 -671.0 546 VOUTIN 7424.42 -671.0 513 VSS 3794.42 -671.0 547 VOUTIN 7534.42 -671.0 514 VSS 3904.42 -671.0 548 VOUTIN 7644.42 -671.0 515 VSS 4014.42 -671.0 549 VOUTIN 7754.42 -671.0 516 VSS 4124.42 -671.0 550 VOUTIN 7864.42 -671.0 517 VSS 4234.42 -671.0 551 VOUTOUT 7974.42 -671.0 518 VSS 4344.42 -671.0 552 VOUTOUT 8084.42 -671.0 519 VSS 4454.42 -671.0 553 VOUTOUT 8194.42 -671.0 520 VDD4 4564.42 -671.0 554 VOUTOUT 8304.42 -671.0 521 VDD3 4674.42 -671.0 555 VOUTOUT 8414.42 -671.0 522 VDD3 4784.42 -671.0 556 VOUTOUT 8524.42 -671.0 Ver 1.8 10/98 2006/08/15 ST7624 5. BLOCK DIAGRAM SEG0 TO SEG311 COM0 TO COM103 VDD1 VDD V0 In V1 V2 V3 V4 SEGMENT DRIVERS COMMON DRIVERS CSEL VSS DATA LATCHES COMMON OUTPUT CONTROLLER CIRCUIT V/F Circuit FRC/PWM FUNCTION CIRCUIT V0 out VREF INTRS RESET V/R Circuit VR OSCILLATOR DISPLAY DATA RAM (DDRAM) [104X104X16] TIMING GENERATOR VOUTin VOUTout Cap1N Cap2P Cap2N Cap3P Cap4P Cap5P Cap6P Cap7P CLS CL DISPLAY ADDRESS COUNTER V/C Circuit VDD2 VDD3 VDD4 VDD5 ADDRESS COUNTER OTP DATA REGISTER INSTRUCTION REGISTER BUS HOLDER INSTRUCTION DECODER MPU INTERFACE(PARALLEL & SERIAL) TCAP D0 to D15 SI 11/98 SCL E_RD RW_WR A0 /CS /RST IF3 IF2 IF1 Ver 1.8 2006/08/15 ST7624 6. PIN DESCRIPTION 6.1 POWER SUPPLY Name I/O Description VDD Supply Power supply for logic circuit VDD1 Supply Power supply for OSC circuit VDD2 Supply Power supply for Booster Circuit VDD3 Supply Power supply for LCD. VDD4 Supply Power supply for LCD. VDD5 Supply Power supply for LCD. VSS Supply Ground. Ground system should be connected together. VOUTOUT Supply VOUTIN Supply If the internal voltage generator is used, the VOUTIN & VOUTOUT must be connected together. If an external supply is used, this pin must be left open. An external LCD supply voltage can be supplied using the VOUTIN pad. In this case, VOUTOUT has to be left open, and the internal voltage generator has to be programmed to zero. (SET register VC=0) LCD driver supply voltages The voltage determined by LCD pixel is impedance-converted by an operational amplifier for application. V0In V0In & V0out should be connected together. V0out Voltages should have the following relationship; V1 I/O V2 V0 ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS When the internal power circuit is active, these voltages are generated as following table according V3 to the state of LCD bias. V4 LCD bias V1 V2 V3 V4 1/N bias (N-1) / N x V0 (N-2) / N x V0 (2/N) x V0 (1/N) x V0 NOTE: N = 5 to 12 6.2 LCD Power Supply Pins Pin Name I/O Function CAP1P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. CAP1N O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal. CAP2P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal. CAP2N O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal. CAP3P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. CAP4P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal. CAP5P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. Ver 1.8 12/98 2006/08/15 ST7624 CAP6P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal. CAP7P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. VREF O Reference voltage output for monitor only. Left it open. 6.3 SYSTEM CONTROL Name I/O CLS I Description When using internal clock oscillator, connect CLS to VDD. When using external clock oscillator, connect CLS to VSS. When using internal clock oscillator, it’s oscillator output. CL I/O When using external clock oscillator, it’s clock input. This terminal selects the resistors for the V0 voltage level adjustment. INTRS I VR I INTRS = “H”: Use the internal resistors No use. Left it open. Select Common output direction. CSEL=”L”, COM0~COM51 is in one side, COM52~COM103 is in the opposite side. CSEL I CSEL=”H”, COM2n(even number) is in the one side, COM2n+1 (odd number) is in the opposite side. Reference “Pad Center Coordinates” TCAP I/O Test pin. Left it open. 6.4 MICROPROCESSOR INTERFACE Name I/O RST I Description Reset input pin When RST is “L”, initialization is executed. Parallel / Serial data input select input IF[3:1] I IF1 IF2 IF3 MPU interface type H H H 80 series 16-bit parallel H H L 80 series 8-bit parallel H L L 68 series 16-bit parallel L H H 68 series 8-bit parallel L L H 9-bit serial (3 line) L L L 8-bit serial (4 line) Chip select input pins /CS I Data/instruction I/O is enabled only when /CS is "L". When chip select is non-active, D0 to D15 become high impedance while parallel interface. Register select input pin A0 Ver 1.8 I − A0 = "H": D0 to D15 or SI are display data 13/98 2006/08/15 ST7624 − A0 = "L": D0 to D15 or SI are control data In 3-line interface contact A0 to VSS or VDD, do not let it floating. Read / Write execution control pin MPU type RW_WR Description Read / Write control input pin 6800-series RW_WR RW = “H” : read RW RW = “L” : write I Write enable clock input pin 8080-series /WR The data on D0 to D15 are latched at the rising edge of the /WR signal. When in serial interface, must contact it to VSS or VDD. Read / Write execution control pin MPU Type E_RD Description Read / Write control input pin RW = “H”: When E is “H”, D0 to D15 are in an output 6800-series E_RD E I status. RW = “L”: The data on D0 to D15 are latched at the falling edge of the E signal. Read enable clock input pin 8080-series /RD When /RD is “L”, D0 to D15 are in an output status. When in serial interface, must contact it to VSS or VDD. Name I/O Description They connect to the standard 8-bit or 16 bit MPU bus via the 8/16 –bit bi-directional bus. When the following interface is selected and the /CS pin is high, the following pins become high impedance. D15 to D0 I/O 1. 8-bit parallel: D15-D8 are in the state of high impedance, should contact to “H” or “L”level. 2. Serial interface: D15-D0 are in the state of high impedance, should contact to “H” or “L”level. This pin is used to input serial data when the serial interface is selected.(3 line and 4 line) SI I When not use contact it to VSS or VDD. This pin is used to input serial clock when the serial interface is selected. SCL I The data is converted in the rising edge. (3 line and 4 line) When not use contact it to VSS or VDD. NOTE: Microprocessor interface pins should not be floating in any operation mode. Ver 1.8 14/98 2006/08/15 ST7624 6.6 LCD DRIVER OUTPUTS Name I/O Description LCD segment driver outputs The display data and the M signal control the output voltage of segment driver. Segment driver output voltage SEG0 Display data M (Internal) to Normal display Reverse display O SEG311 H H V0 V2 H L VSS V3 L H V2 V0 L L V3 VSS VSS VSS Power save mode LCD common driver outputs The internal scanning data and M signal control the output voltage of common driver. Scan data M (Internal) Common driver output voltage H H VSS H L V0 L H V1 L L V4 COM0 to O COM103 Power save mode VSS ST7624 I/O PIN ITO Resister Limitation PIN Name ITO Resister INTRS,IF[3:1],CLS,CSEL No Limitation VREF, TCAP Floating Vdd, Vdd1~Vdd5, Vss, VOUTIN, VOUTOUT,V0in,V0out,CL,VR <100Ω V0in,V0out,V1,V2, V3, V4 CAP1P,CAP1N,CAP2P,CAP2N,CAP3P,CAP4P,CAP5P,CAP6P,CAP7P <100Ω A0, RW_WR, E_RD, /CS, D0 …D15, SCL, SI <1KΩ RST <10KΩ Ver 1.8 15/98 2006/08/15 ST7624 7. FUNCTIONAL DESCRIPTION 7.1 MICROPROCESSOR INTERFACE Chip Select Input There is /CS pin for chip selection. The ST7624 can interface with an MPU when /CS is "L".In case of serial interface, the internal shift register and the counter are reset. 7.1.1 Selecting Parallel / Serial Interface ST7624 has seven types of interface with an MPU, which are three serial and four parallel interfaces. This parallel or serial interface is determined by IF pin as shown in table 7.1.1. Table 7.1.1 Parallel / Serial Interface Mode IF1 IF2 IF3 Interface type /CS A0 /RD(E) /WR(R/W) D15 to D8 D7 to D0 SI SCL H H H 80 serial 16-bit parallel /CS A0 /RD /WR D15 to D8 D7 to D0 -- -- H H L 80 serial 8-bit parallel /CS A0 /RD /WR D7 to D0 -- -- H L L 68 serial 16-bit parallel /CS A0 E R/W D15 to D8 D7 to D0 -- -- L H H 68 serial 8-bit parallel /CS A0 E R/W -- -- L L H 9-bit SPI mode (3 line) /CS -- -- -- -- SI SCL L L L 8-bit SPI mode (4 line) /CS A0 -- -- -- SI SCL -- -- D7 to D0 --:Must be fixed to either H or L. NOTE: When these pins are set to any other combination, A0, E_RD, and RW_WR inputs are disabled and D0 to D15 are to be high impedance. 7.1.2 8- or 16-bit Parallel Interface The ST7624 identifies type of the data bus signals according to combinations of A0, /RD (E) and /WR (W/R) signals, as shown in table 7.1.2. Table 7.1.2 Parallel Data Transfer Common 6800-series 8080-series Description A0 R/W E /RD /WR H H H L H Display data read out H L H H L Display data write L H H L H Register status read L L H H L Writes to internal register (instruction) Relation between Data Bus and Gradation Data ST7624 offers the 65K color display, dithered 262K color display, and dithered 16M color display. When using 65K, 262K, and 16M color, you can specify color for each of R, G, B using the palette function. Ver 1.8 16/98 2006/08/15 ST7624 Use the command for switching between these modes. (1) 65K color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGG 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGBBBBB 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. 2. 16-bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGGGGGBBBBB (16 bits) Data is acquired through signal write operation and then written to the display RAM. (2) 262K color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXX 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGXX 2nd write D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXX 3rd write A single pixel of data is read after the third write operation as shown, and it is written in the display RAM. 2. 16 bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXXGGGGGGXX D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXXXXXXXXXXXX A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. “XXXX” are dummy bits, and they are ignored for display. (3) 16M color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRR 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGGG 2nd write D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBB 3rd write A single pixel of data is read after the third write operation as shown, and it is written in the display RAM. 2. 16 bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRRGGGGGGGG D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBBXXXXXXXX A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. Ver 1.8 17/98 2006/08/15 ST7624 7.1.3 8- and 9-bit Serial Interface The 8-bit serial interface uses four pins /CS, SI, SCL, and A0 to enter commands and data. Meanwhile, the 9-bit serial interface uses three pins /CS, SI and SCL for the same purpose. Data read is not available with the serial interface. Data entered must be 8 bits. Refer to the following chart for entering commands, parameters or gray-scale data. The relation between gray-scale data and data bus in the serial input is the same as that in the 8-bit parallel interface mode at every gradation. (1) 8-bit serial interface (4 line ) When entering data (parameters): A0= HIGH at the rising edge of the 8th SCL. When entering command: A0= LOW at the rising edge of the 8th SCL /CS SI D7 D6 D5 D4 D3 D2 D1 D0 1 2 3 4 5 6 7 8 D7 D6 1 2 SCL A0 (2) 9-bit serial interface (3 line ) When entering data (parameters): SI= HIGH at the rising edge of the 1st SCL. When entering command: SI= LOW at the rising edge of the 1st SCL. /CS SI A0 D7 D6 D5 D4 D3 D2 D1 D0 A0 D7 D6 1 2 3 4 5 6 7 8 9 1 2 3 SCL l If /CS is caused to HIGH before 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before entering succeeding sets of data, you must correctly input the data concerned again. l In order to avoid data transfer error due to incoming noise, it is recommended to set /CS at HIGH on byte basis to initialize the serial-to-parallel conversion counter and the register. l When executing the command RAMWR, set /CS to HIGH after writing the last address (after starting the 9th pulse in case of 9-bit serial input or after starting the 8th pulse in case of 8-bit serial input). Ver 1.8 18/98 2006/08/15 ST7624 7-2 ACCESS TO DDRAM AND INTERNAL REGISTERS ST7624 realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the bus holder attached to the internal, requiring the cycle time alone without needing the wait time. For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system bus in the succeeding read cycle. Fig. 7.2.1 illustrates these relations. MPU signal Write Operation A0 RW_WR DATA N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 N+3 Dummy D(N) Internal signals RW_WR BUS HOLDER COLUMN ADDRESS MPU signal Read Operation A0 RW_WR E_RD DATA N D(N+1) Internal signals RW_WR E_RD BUS HOLDER N COLUMN ADDRESS N D(N) D(N+1) D(N+2) D(N) D(N+1) D(N+2) Fig 7.2.1 Ver 1.8 19/98 2006/08/15 ST7624 7-3 DISPLAY DATA RAM (DDRAM) 7.3.1 DDRAM It is 104 X 104 X 16 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the page address and column address. Since display data from MCU D7 to D0 and D15 to D8 correspond to one or two pixels of RGB, data transfer related restrictions are reduced, realizing the display flexing. The RAM on ST7624 is separated to a block per 4 lines to allow the display system to process data on the block basis. MPU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for the liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM configuration. Memory Map (When using the 65Kcolor. 8-bit mode,) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page 0 1 103 103 102 0 R G B R G B R G B D7 D2 D4 D7 D2 D4 D7 D2 D4 D6 D1 D3 D6 D1 D3 D6 D1 D3 D5 D0 D2 D5 D0 D2 D5 D0 D2 P10:0 P10:1 D4 D7 D1 D4 D7 D1 D4 D7 D1 (DATCTL) (DATCTL) D3 D6 D0 D3 D6 D0 D3 D6 D0 Block D5 0 1 24 25 SEGout 0 103 1 102 2 101 3 100 4 99 5 98 6 97 7 96 96 7 97 6 98 5 99 4 100 3 101 2 102 1 103 0 0 D5 1 2 3 4 D5 5 309 310 311 You can change position of R and B with DATCTL command. Ver 1.8 20/98 2006/08/15 ST7624 Memory Map (When using the 65K color. 16-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 103 103 102 0 R G B R G B R G B D15 D10 D4 D15 D10 D4 D15 D10 D4 D14 D9 D3 D14 D9 D3 D14 D9 D3 D13 D8 D2 D13 D8 D2 D13 D8 D2 P10:0 P10:1 D12 D7 D1 D12 D7 D1 D12 D7 D1 (DATCTL) (DATCTL) D11 D6 D0 D11 D6 D0 D11 D6 D0 D5 0 1 24 25 SEGout 0 103 1 102 2 101 3 100 4 99 5 98 6 97 7 96 96 7 97 6 98 5 99 4 100 3 101 2 102 1 103 0 0 D5 1 2 3 4 D5 5 309 310 311 You can change position of R and B with DATCTL command. Ver 1.8 21/98 2006/08/15 ST7624 Memory Map (When using the 262K color. 8-bit mode,) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 24 25 SEGout 0 1 103 103 102 0 R G B R G B R G B D7 D7 D7 D7 D7 D7 D7 D7 D7 D6 D6 D6 D6 D6 D6 D6 D6 D6 D5 D5 D5 D5 D5 D5 D5 D5 D5 P10:0 P10:1 D4 D4 D4 D4 D4 D4 D4 D4 D4 (DATCTL) (DATCTL) D3 D3 D3 D3 D3 D3 D3 D3 D3 D2 D2 D2 D2 D2 D2 D2 D2 D2 0 1 2 3 4 5 309 310 311 0 103 1 102 2 101 3 100 4 99 5 98 6 97 7 96 96 7 97 6 98 5 99 4 100 3 101 2 102 1 103 0 You can change position of R and B with DATCTL command. Ver 1.8 22/98 2006/08/15 ST7624 Memory Map (When using the 262K color. 16-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 24 25 SEGout 0 1 103 103 102 0 R G B R G B R G B D15 D7 D15 D15 D7 D15 D15 D7 D15 D14 D6 D14 D14 D6 D14 D14 D6 D14 D13 D5 D13 D13 D5 D13 D13 D5 D13 P10:0 P10:1 D12 D4 D12 D12 D4 D12 D12 D4 D12 (DATCTL) (DATCTL) D11 D3 D11 D11 D3 D11 D11 D3 D11 D10 D2 D10 D10 D2 D10 D10 D2 D10 0 1 2 3 4 5 309 310 311 0 103 1 102 2 101 3 100 4 99 5 98 6 97 7 96 96 7 97 6 98 5 99 4 100 3 101 2 102 1 103 0 You can change position of R and B with DATCTL command. Ver 1.8 23/98 2006/08/15 ST7624 Memory Map (When using the 16M color. 8-bit mode,) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 24 25 SEGout 0 1 103 103 102 0 R G B R G B R G B D7 D7 D7 D7 D7 D7 D7 D7 D7 D6 D6 D6 D6 D6 D6 D6 D6 D6 D5 D5 D5 D5 D5 D5 D5 D5 D5 D4 D4 D4 D4 D4 D4 D4 D4 D4 P10:0 P10:1 D3 D3 D3 D3 D3 D3 D3 D3 D3 (DATCTL) (DATCTL) D2 D2 D2 D2 D2 D2 D2 D2 D2 D1 D1 D1 D1 D1 D1 D1 D1 D1 D0 D0 D0 D0 D0 D0 D0 D0 D0 0 1 2 3 4 5 309 310 311 0 103 1 102 2 101 3 100 4 99 5 98 6 97 7 96 96 7 97 6 98 5 99 4 100 3 101 2 102 1 103 0 You can change position of R and B with DATCTL command. Ver 1.8 24/98 2006/08/15 ST7624 Memory Map (When using the 16M color. 16-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 24 25 SEGout 0 1 103 103 102 0 R G B R G B R G B D15 D7 D15 D15 D7 D15 D15 D7 D15 D14 D6 D14 D14 D6 D14 D14 D6 D14 D13 D5 D13 D13 D5 D13 D13 D5 D13 D12 D4 D12 D12 D4 D12 D12 D4 D12 P10:0 P10:1 D11 D3 D11 D11 D3 D11 D11 D3 D11 (DATCTL) (DATCTL) D10 D2 D10 D10 D2 D10 D10 D2 D10 D9 D1 D9 D9 D1 D9 D9 D1 D9 D8 D0 D8 D8 D0 D8 D8 D0 D8 0 1 2 3 4 5 309 310 311 0 103 1 102 2 101 3 100 4 99 5 98 6 97 7 96 96 7 97 6 98 5 99 4 100 3 101 2 102 1 103 0 You can change position of R and B with DATCTL command. Ver 1.8 25/98 2006/08/15 ST7624 7.3.2 Page Address Control Circuit This circuit is used to control the address in the page direction when MPU accesses the DDRAM or when reading the DDRAM to display image on the LCD. You can specify a scope of the page address with page address set command. When the page-direction scan is specified with DATCTL command and the address are incremented from the start up to the end page, the column address is incremented by 1 and the page address returns to start page. The DDRAM supports up to 104 lines, and thus the total page becomes 104. In the read operation, as the end page is reached, the column address is automatically incremented by 1 and the page address is returned to start page. Using the address normal/reverse parameter of DATCTL command allows you to reverse the correspondence between the DDRAM address and command output. 7.3.3 Column Address Control Circuit This circuit is used to control the address in the column direction when MPU accesses the DDRAM. You can specify a scope of the column address using column address set command. When the column-direction scan is specified with DATCTL command and the address are incremented from the start up to the end page, the page address is incremented by 1 and the column address returns to start column. In the read operation, too, the column address is automatically incremented by 1 and returned to start page as the end column is reached. Just like the page address control circuit, using the column address normal/reverse parameter of DATCTL command enables to reverse the correspondence between the DDRAM column address and segment output. This arrangement relaxes restrictions in the chip layout on the LCD module. 7.3.4 I/O Buffer Circuit It is the bi-directional buffer used when MPU reads or writes the DDRAM. Since MPU’s read or write of DDRAM is performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM while the LCD is turned on does not cause troubles such as flicking of the display images. 7.3.5 Block Address Circuit The circuit associates pages on DDRAM with COM output. ST7624 processes signals for the liquid crystal display on 4-page basis. Thus, when specifying a specific area in the area scroll display or partial display, you must designate it in block. 7.3.6 Display data Latch Circuit This circuit is used to temporarily hold display data to be output from the DDRAM to the SEG decoder circuit. Since display normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in the DDRAM. Ver 1.8 26/98 2006/08/15 ST7624 7.4 Area Scroll Display Using area scroll set and scroll start set commands allows you to scroll the display screen partially. You can select any one of the following four scroll patterns. Fixed area Scroll area DDRAM 0 1 2 23 blocks =92 line 20 21 Fixed area 23 Scroll area 24 25 Ver 1.8 Background area 27/98 2006/08/15 ST7624 7.5 Partial Display Using partial in command allows you turn on the partial display (division by line) of the screen. This mode requires less current consumption than the whole screen display, making it suitable for the equipment in the standby state. : Display area (partial display area) : Non-display area If the partial display region is out of the Max. Display range, it would be no operation -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.1.Reference Example for Partial Display Ver 1.8 28/98 2006/08/15 ST7624 -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.2.Partial Display (Partial Display Duty=16,initial COM0=0) 7.6 Gray-Scale Display ST7624 incorporates a 4FRC & 31 PWM function circuit to display a 64 gray-scale display. 7.7 Oscillation circuit This is on-chip Oscillator without external resistor. When the internal oscillator is used, CLS must connect to VDD; when the external oscillator is used, CL could be input pin. This oscillator signal is used in the voltage converter and display timing generation circuit. 7.8 Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 104-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M), which enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 7.8.1. Ver 1.8 29/98 2006/08/15 ST7624 103 104 1 2 3 4 5 6 7 8 9 10 11 12 97 98 99 100 101 102 103 104 1 2 3 4 5 6 CL(Internal) FR(Internal) M(Internal) COM0 V0 V1 V2 V3 V4 VSS COM1 V0 V1 V2 V3 V4 VSS SEGn V0 V1 V2 V3 V4 VSS Figure 7.8.1 2-frame AC Driving Waveform (Duty Ratio: 1/104) 103 104 1 2 3 4 5 6 7 8 9 10 11 12 95 96 97 98 99 100 101 102 103 104 1 2 3 4 CL(Internal) FR(Internal) M(Internal) VLCD V1 V2 V3 V4 Vss COM0 VLCD V1 V2 V3 V4 Vss COM1 VLCD V1 V2 V3 V4 Vss SEGn Figure 7.8.2 N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/104) 7.9 Liquid Crystal drive Circuit This driver circuit is configured by 104-channel common drivers and 312-channel segment drivers. This LCD panel driver voltage depends on the combination of display data and M signal. Ver 1.8 30/98 2006/08/15 ST7624 VDD VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS M COM0 COM1 COM0 COM2 COM3 COM4 COM5 COM6 COM1 COM7 COM8 COM9 COM2 COM10 COM11 COM12 COM13 COM14 SEG0 SEG 0 1 2 3 4 SEG1 Ver 1.8 31/98 2006/08/15 ST7624 7.10 Liquid Crystal Driver Power Circuit The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 7.10.1 shows the referenced combinations in using Power Supply circuits. Table 7.10.1 Recommended Power Supply Combinations Power User setup V/C V/R V/F circuits circuits circuits 111 ON ON ON 011 OFF ON ON control VOUT V0 V1 to V4 Open Open Open Open Open (VC VR VF) Only the internal power supply circuits are used Only the voltage regulator circuits and External voltage follower circuits input are used Only the voltage follower External 001 OFF OFF ON Open circuits are used Only the external power 000 OFF OFF supply circuits are used Ver 1.8 Open input 32/98 OFF External External input input Open 2006/08/15 ST7624 7.10.1 Voltage Converter Circuits The Step-up Voltage Circuits Ver 1.8 33/98 2006/08/15 ST7624 7.10.2 Voltage Regulator Circuits SET VOP (SETVOP) The set VOP function is used to program the optimum LCD supply voltage V0. SETVOP Reset state of Vop[8:0] is 257DEC = 13.88V. The VOP value is programmed via the Vop[8:0] register. V0=a+( Vop[8:6]Vop[5:0]).b Ex:Vop[5:0]=000001, Vop[8:6]=100 → Vop [8:0]=100000001 → 3.6+257x0.04=13.88 l a is a fixed constant value (see table 7.10.2). l b is a fixed constant value (see table 7.10.2). l Vop[8:0] is the programmed VOP value. The programming range for Vop[8:0] is 4 to 410 (19Ahex). l Vop[5:0] is the set contrast value which can be set via the interface and is in two’s complement format.(See command VOLUP & VOLDOWN) Table 7.10.2 SYMBOL VALUE UNIT a 3.6 V b 0.04 V The VOP[8:0] value must be in the VLCD programming range as given in Fig.7.10.2. Evaluating equation (1), values outside the programming range indicated in Fig.7.10.2 may result. Calculated values below VOP[8:0]=4 will be mapped to VOP[8:0]=4, resulting VOP values higher than VOP[8:0]=410 will be mapped to VOP[8:0]=410. Ver 1.8 34/98 2006/08/15 ST7624 VLCD Programming range (05HEX to 19AHEX) b a Vop 00 01 02 03 04 05 06 ..... 410DEC Vop[8:0] programming, (05H to 19AH ) Fig. 7.10.2 VLCD programming range As the programming range for the internally generated V0 allows values above the max(18V). Allowed V0 (18V) the user has to ensure while setting the VOP register and the temperature compensation, that under all conditions and including all tolerances the V0 remains below 18V. Ver 1.8 35/98 2006/08/15 ST7624 Booster Efficiency By Booster Stages (2X, 3X, 4X, 5X, 6X, 7X, 8X) and Booster Efficiency (Level1~4) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level4 is higher than level1), The Boost Efficiency is better than lower level, and it just needs few more power consumption current. It could be applied to each multiple voltage Condition. When the LCD Panel loading is heavier, the performance of Booster will be not in a good working condition. Users could set the BE level to be higher and just need few more current. Never consider to change to higher Booster Stage at beginning stage unless it really necessary. The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output condition. Users could see the Booster Stage Command as a large scale operation, and see the Booster Efficiency Command as a small scale operation. These commands are very convenient for using. Level1 Vout Voltage Level2 Level3 Level4 5X boost Loading VSS Current Level1 Level2 Level3 Level4 5X Current Loading Ver 1.8 36/98 2006/08/15 ST7624 RESET CIRCUIT When Power is Turned On Input power (VDD,VDD1~VDD5) ↓ Be sure to apply POWER-ON RESET (RES = LOW) ↓ <Display Setting> <<State after resetting>> Display control (DISCTL) Setting clock dividing ratio: 1 dividing Duty setting: 1/4 Setting reverse rotation number of line: 11h reverse rotations Common scan direction (COMSCN) Setting scan direction: COM0 -> COM51, COM52 -> COM103 Oscillation ON (OSCON) Oscillation OFF ↓ Sleep-out (SLIPOUT) Sleep-in ↓ <Power Supply Setting> <<State after resetting>> Electronic volume control (VOLCTR) Setting volume value: 0 Setting built-in resistance value: 0 (3.76) Power control (PWRCTR) Setting operation of power supply circuit: All OFF ↓ <Display Setting 2> <<State after resetting>> Normal rotation of display (DISNOR)/Inversion of display (DISINV): Normal rotation of display Partial-in (PTLIN)/Partial-out (PTLOUT) Partial-out Setting fix area: 0 Area scroll set (ASSET) Setting area scroll region: 0 Setting area scroll type: Full-screen scroll Scroll start set (SCSTART) Setting scroll start address: 0 ↓ <Display Setting 3> <<State after resetting>> Data control (DATCTL) Setting normal rotation/reversion of page address: Normal rotation Setting normal rotation/reversion of column address: Normal rotation Setting direction of address scanner: Ver 1.8 Column direction 37/98 2006/08/15 ST7624 Setting RGB arrangement: RGB Setting gradation: ↓ <RAM Setting> 65K <<State after resetting>> Page address set (PASET) Setting start page address: 0 Setting end page address: 0 Column address set (CASET) Setting start column address: 0 Setting end column address: 0 ↓ <RAM Write> <<State after resetting>> Memory write command (RAMWR) Writing displayed data : Repeat as many as the number needed and exit by entering other command. ↓ <Waiting (approximately 100ms)> Wait until the power supply voltage has stabilized. Enter the power supply control command first, then wait at least 100ms before entering the display ON command when the built-in power supply circuit operates. If you do not wait, an unwanted display may appear on the liquid crystal panel. ↓ Display ON (DISON): Display OFF (Note) If changes are unnecessary after resetting, command input is unnecessary. Ver 1.8 38/98 2006/08/15 ST7624 8. COMMANDS 8.1 Command table Ext=0 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 DISON 0 1 0 1 0 1 0 1 1 1 1 Display On AF None 1 DISOFF 0 1 0 1 0 1 0 1 1 1 0 Display Off AE None 2 DISNOR 0 1 0 1 0 1 0 0 1 1 0 Normal Display A6 None 3 DISINV 0 1 0 1 0 1 0 0 1 1 1 Inverse Display A7 None 4 COMSCN 0 1 0 1 0 1 1 1 0 1 1 Com Scan Direc. BB 1 byte 5 DISCTR 0 1 0 1 1 0 0 1 0 1 0 Display Control CA 3 byte 6 SLPP 0 1 0 0 0 0 0 0 1 0 0 Sleep In/Out Preparation 04 1 byte 7 SLPIN 0 1 0 1 0 0 1 0 1 0 1 Sleep In 95 None 8 SLPOUT 0 1 0 1 0 0 1 0 1 0 0 Sleep Out 94 None 9 PASET 0 1 0 0 1 1 1 0 1 0 1 Page Addr. Set 75 2 byte 10 CASET 0 1 0 0 0 0 1 0 1 0 1 Column Addr. Set 15 2 byte 11 DATCTL 0 1 0 1 0 1 1 1 1 0 0 Data Scan Direction BC 3 byte 12 RAMWR 0 1 0 0 1 0 1 1 1 0 0 Writing to Memory 5C Data 13 RAMRD 0 1 0 0 1 0 1 1 1 0 1 Reading from Memory 5D Data 14 PLTIN 0 1 0 1 0 1 0 1 0 0 0 Partial display in A8 2 byte 15 PLTOUT 0 1 0 1 0 1 0 1 0 0 1 Partial display out A9 None 16 RMWIN 0 1 0 1 1 1 0 0 0 0 0 Read and Modify Write E0 None 17 RMWOUT 0 1 0 1 1 1 0 1 1 1 0 RMW end EE None 18 ASCSET 0 1 0 1 0 1 0 1 0 1 0 Area Scroll Set AA 4 byte 19 SCSTART 0 1 0 1 0 1 0 1 0 1 1 Scroll Start Set AB 1 byte 20 OSCON 0 1 0 1 1 0 1 0 0 0 1 Internal OSC on D1 None 21 OSCOFF 0 1 0 1 1 0 1 0 0 1 0 Internal OSC off D2 None 22 PWRCTL 0 1 0 0 0 1 0 0 0 0 0 Power Control 20 1 byte 23 VOLCTR 0 1 0 1 0 0 0 0 0 0 1 EC control 81 2 byte 24 VOLUP 0 1 0 1 1 0 1 0 1 1 0 EC increase 1 D6 None 25 VOLDOWN 0 1 0 1 1 0 1 0 1 1 1 EC decrease 1 D7 None 26 EPSRRD1 0 1 0 0 1 1 1 1 1 0 0 READ Register1 7C None 27 EPSRRD2 0 1 0 0 1 1 1 1 1 0 1 READ Register2 7D None 28 NOP 0 1 0 0 0 1 0 0 1 0 1 NOP Instruction 25 None 29 STREAD 0 0 1 Initial code(1) 0 1 0 0 0 0 0 0 1 1 1 Initial code(1) 07 RESERVED 0 1 0 1 0 0 0 0 0 1 0 Not Use 82 Ver 1.8 Status Read Function Hex Parameter Index Status Read 39/98 30 1 byte 31 32 2006/08/15 ST7624 Ext=1 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Hex Parameter Index Red1 Set 0 1 0 0 0 1 0 0 0 0 0 FRAME 1 Red PWM Set 20 16 byte 1 Red2 Set 0 1 0 0 0 1 0 0 0 0 1 FRAME 2 Red PWM Set 21 16 byte 2 Red3 Set 0 1 0 0 0 1 0 0 0 1 0 FRAME 3 Red PWM Set 22 16 byte 3 Red4 Set 0 1 0 0 0 1 0 0 0 1 1 FRAME 4 Red PWM Set 23 16 byte 4 Grn1 Set 0 1 0 0 0 1 0 0 1 0 0 FRAME 1 Grn PWM Set 24 16 byte 5 Grn2 Set 0 1 0 0 0 1 0 0 1 0 1 FRAME 2 Grn PWM Set 25 16 byte 6 Grn3 Set 0 1 0 0 0 1 0 0 1 1 0 FRAME 3 Grn PWM Set 26 16 byte 7 Grn4 Set 0 1 0 0 0 1 0 0 1 1 1 FRAME 4 Grn PWM Set 27 16 byte 8 Blu1 Set 0 1 0 0 0 1 0 1 0 0 0 FRAME 1 Blu PWM Set 28 16 byte 9 Blu2 Set 0 1 0 0 0 1 0 1 0 0 1 FRAME 2 Blu PWM Set 29 16 byte 10 Blu3 Set 0 1 0 0 0 1 0 1 0 1 0 FRAME 3 Blu PWM Set 2A 16 byte 11 Blu4 Set 0 1 0 0 0 1 0 1 0 1 1 FRAME 4 Blu PWM Set 2B 16 byte 12 ANASET 0 1 0 0 0 1 1 0 0 1 0 Analog 32 3 byte 13 DITHOFF 0 1 0 0 0 1 1 0 1 0 0 Dithering Circuit Off 34 None 14 DITHON 0 1 0 0 0 1 1 0 1 0 1 Dithering Circuit On 35 None 15 EPCTIN 0 1 0 1 1 0 0 1 1 0 1 Control EEPROM CD 1 byte 17 EPCOUT 0 1 0 1 1 0 0 1 1 0 0 Cancel EEPROM CC None 18 EPMWR 0 1 0 1 1 1 1 1 1 0 0 Write to EEPROM FC None 19 EPMRD 0 1 0 1 1 1 1 1 1 0 1 Read from EEPROM FD None 20 Ext=1 or Ext=0 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Ext In 0 1 0 0 0 1 1 0 0 0 0 Ext=0 Set 30 None -- Ext Out 0 1 0 0 0 1 1 0 0 0 1 Ext=1 Set 31 None -- Ver 1.8 40/98 Function Hex Parameter Index 2006/08/15 ST7624 EXT=”0” (1) Display ON (DISON) Command: 1; Parameter: None (AFH) It is used to turn the display on. When the display is turned on, segment outputs and common outputs are generated at the level corresponding to the display data and display timing. You can’t turn on the display as long as the sleep mode is selected. Thus, whenever using this command, you must cancel the sleep mode first. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 1 1 1 (2) Display OFF (DISOFF) Command: 1; Parameter: None (AEH) As long as the display is turned off, every segment and common outputs are forced to Vss level. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 1 1 0 (3) Normal display (DISNOR) Command: 1; Parameter: None (A6H) It is used to normally highlight the display area without modifying contents of the display data RAM. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 0 1 1 0 (4) Inverse display (DISINV) Command: 1; Parameter: None (A7) It is used to inversely highlight the display area without modifying contents of the display data RAM. This command does not invert non-display areas in case of using partial display. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 0 1 1 1 (5) Common scan (COMSCAN) Command: 1; Parameter: 1 (BBH) It is used to specify the direction the common output direction. This command helps increasing degrees of freedom of wiring on the LCD panel. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 1 1 0 1 1 - Parameter1 (P1) 1 1 0 * * * * * P12 P11 P10 Common Scan direction When 1/104 is selected for the display duty, pins and common output are scanned in the order shown below. When CSEL =”H”, this function becomes no use. Common scan direction P12 P11 P10 COM0 pin Ver 1.8 COM51 pin COM52 pin COM103 pin 0 0 0 0 à 51 52 à 103 0 0 1 0 à 51 103 à 52 0 1 0 51 à 0 52 à 103 0 1 1 51 à 0 103 à 52 41/98 2006/08/15 ST7624 (6) Display control (DISCTL) Command: 1; Parameter: 3 (CAH) This command and succeeding parameters are used to perform the display timing-related setups. This command must be selected before using SLPOUT. Don’t change this command while the display is turned on. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 1 0 0 1 0 1 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 * * Parameter2(P2) 1 1 0 0 0 0 P24 P23 P22 P21 P20 Drive duty Parameter3(P3) 1 1 0 * * * P34 P33 P32 P31 P30 FR inverse-set value CL dividing ratio, P1: it is used to specify the CL dividing ratio. P14, P13, P12: CL dividing ratio. They are used to change number of dividing stages of external or internal clock. P14 P13 P12 CL dividing ratio 0 0 0 Not divide 0 0 1 2 divisions 0 1 0 4 divisions 0 1 1 8 divisions This command Decides the Oscillator frequency(default=7.8KHz),Related Command 32H. P2: It is used to specify the duty of the module on block basis. Duty * * P25 P24 P23 P22 P21 P20 (Numbers of display lines)/4-1 Example: 1/104 duty 0 0 0 1 1 0 0 0 104/4-1=25 P3: It is used to specify number of lines to be inversely highlighted on LCD panel from P33 to P30 (lines can be inversely highlighted in the range of 2 to 16) Inversely highlighted line * * * P34 P33 P32 P31 P30 Inversely highlighted lines-1 Example: 11H 0 0 0 0 1 0 1 0 11-1=10 Example: 13H 0 0 0 1 1 1 0 0 13-1=12 In the default, 11H inverse highlight is selected. P34=”0”: Inversion occurs every frame. P34=”1”: Independent from frames. (7) Sleep In/Out Preparation (SLPP) Command: 1; Parameter: 1 Using this command to setup ready status for sleep-in or sleep out. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 1 0 0 - Parameter(P1) 1 1 0 0 0 1 1 1 1 1 P10 Sleep in/out ready P10 =” 1”: Ready for sleep in. P10 = “0”: Ready for sleep out. Parameter 3FH is used to initialize sleep-in sequencing, and parameter 3EH is used to initialize sleep-out sequencing. Ver 1.8 42/98 2006/08/15 ST7624 (8)Sleep in (SPLIN) Command: 1; Parameter: None (95H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 0 1 0 1 (9)Sleep out (SLPOUT) Command: 1;Parameter: None (94H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 0 1 0 0 (10)Page address set (PASET) Command: 1; Parameter: 2 (75H) When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the page address area. As the addresses are incremented from the start to the end page in the page-direction scan, the column address is incremented by 1 and the page address is returned to the start page. Note that the start and end page must be specified as a pair. Also, the relation “start page <end page” must be maintained. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 1 1 0 1 0 1 - Parameter1(P1) 1 1 0 0 P16 P15 P14 P13 P12 P11 P10 Start page Parameter2(P2) 1 1 0 0 P26 P25 P24 P23 P22 P21 P20 End page (11)Column address set (CASET) Command: 1; Parameter: 2 (15H) When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the column address area. As the addresses are incremented from the start to the end column in the column-direction scan, the page address is incremented by 1 and the column address is returned to the start column. Note that the start and end page must be specified as a pair. Also, the relation “start column <end column” must be maintained. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 1 0 1 0 1 - Parameter1(P1) 1 1 0 0 P16 P15 P14 P13 P12 P11 P10 Start address Parameter2(P2) 1 1 0 0 P26 P25 P24 P23 P22 P21 P20 End address (12)Data control (DATCTL) Command: 1;Parameter: 3 (BCH) This command and succeeding parameters are used to perform various setups needed when MPU operates display data stored on the built-in RAM. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function 0 1 0 1 0 1 1 1 1 0 0 - Normal/reverse display of Parameter1(P1) 1 1 0 * * * * * P12 P11 P10 page address and page-address scan direction. Parameter2(P2) 1 1 0 * * * * * * * P20 RGB arrangement Parameter3(P3) 1 1 0 * * * * * P32 P31 P30 Gray-scale setup Ver 1.8 43/98 2006/08/15 ST7624 P1: It is used to specify the normal or inverse display of the page address and also to specify the page address scanning direction. P10: Normal/reverse display of the page address. P10=0: Normal rotation and P10=1: Reverse rotation. P11: Normal/reverse turn of column address. P11=0: Normal rotation and P11=1: Reverse rotation. P12: Address-scan direction. P12=0: In the column direction and P12=1: In the page direction. Page address and page-address scan direction. P12=0 Column direction P11=0 P11=1 P10=0 0 1 2 P10=1 103 102 101 101 102 103 2 1 0 0 103 1 102 2 101 101 2 102 1 103 0 1 102 2 101 101 2 102 1 103 0 P12=1 Page direction 0 103 P11=0 P11=1 P10=0 0 1 2 P10=1 103 102 101 101 102 103 2 1 0 Ver 1.8 44/98 2006/08/15 ST7624 First Pixel COLUMN Last Pixel CSEL=0 COMMAND #BBH DATA #00H COMMAND #BCH DATA #01H C0 C0 PAG E DDRAM Scan Direction PAG E DDRAM Scan Direction COLUMN LCD PANEL C52 LCD PANEL C51 C52 ( 104 X 104 Pixels ) Last Pixel First Pixel 035 CO M51 ST7624 ( BUMP SIDE ) 496 661 496 661 (a) COMMAND #BCH, DATA #00H (b) COMMAND #BCH, DATA #01H First Pixel Last Pixel COLUMN CSEL=0 COMMAND #BBH DATA #00H COMMAND #BCH DATA #03H COLUMN C0 C0 PAG E DDRAM Scan Direction PAG E DDRAM Scan Direction LCD PANEL C52 LCD PANEL C51 C52 ( 104 X 104 Pixels ) C51 ( 104 X 104 Pixels ) Last Pixel First Pixel COM51 COM0 03 4 03 5 S EG0 S0 496 COM52 COM51 ST7624 ( BUMP SIDE ) 43 0 43 1 03 5 COM104 COM0 03 4 S0 COM52 S EG0 43 0 43 1 SEG311 S311 C104 SEG311 S311 C104 COM104 COM0 034 S0 S EG0 CO M51 CO M52 431 035 COM104 034 S0 CO M52 S EG0 430 431 COM0 ST7624 ( BUMP SIDE ) CSEL=0 COMMAND #BBH DATA #00H COMMAND #BCH DATA #02H SEG311 S311 C104 SEG311 S311 C104 COM104 C51 ( 104 X 104 Pixels ) 430 CSEL=0 COMMAND #BBH DATA #00H COMMAND #BCH DATA #00H ST7624 ( BUMP SIDE ) 661 496 (c) COMMAND #BCH, DATA #02H 661 (d) COMMAND #BCH, DATA #03H Figure 8.2.1 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H (a) COMMAND #BCH, DATA #00H (b) COMMAND #BCH, DATA #01H (c) COMMAND #BCH, DATA #02H (d) COMMAND #BCH, DATA #03H Ver 1.8 45/98 2006/08/15 ST7624 First Pixel COLUMN CSEL=0 COMMAND #BBH DATA #00H COMMAND #BCH DATA #04H Last Pixel CSEL=0 COMMAND #BBH DATA #00H COMMAND #BCH DATA #05H C0 C0 DDRAM Scan Direction PAG E PAG E DDRAM Scan Direction COLUMN LCD PANEL C52 LCD PANEL C51 C52 ( 104 X 104 Pixels ) Last Pixel ( 104 X 104 Pixels ) First Pixel C104 496 ST7624 ( BUMP SIDE ) 661 496 661 (e) COMMAND #BCH, DATA #04H (f) COMMAND #BCH, DATA #05H First Pixel CSEL=0 COMMAND #BBH DATA #00H COMMAND #BCH DATA #06H CO M51 SEG311 S311 035 ST7624 ( BUMP SIDE ) Last Pixel COLUMN CSEL=0 COMMAND #BBH DATA #00H COMMAND #BCH DATA #07H COLUMN C0 C0 DDRAM Scan Direction PA GE PA GE DDRAM Scan Direction LCD PANEL C52 LCD PANEL C51 C52 ( 104 X 104 Pixels ) C51 ( 104 X 104 Pixels ) Last Pixel First Pixel C104 ST7624 ( BUMP SIDE ) COM51 SEG 311 S311 COM0 034 035 S EG 0 S0 431 COM52 COM104 430 COM51 COM0 034 035 430 S EG 0 COM52 S0 SEG 311 S311 C104 431 COM104 COM0 034 S0 S EG0 CO M66 431 430 COM51 COM104 COM0 03 4 03 5 43 0 S EG0 COM52 S0 SEG311 S311 C104 43 1 COM104 C51 ST7624 ( BUMP SIDE ) 496 661 496 (g) COMMAND #BCH, DATA #06H 661 (h) COMMAND #BCH, DATA #07H Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H (continue) (e) COMMAND #BCH, DATA #04H (f) COMMAND #BCH, DATA #05H (g) COMMAND #BCH, DATA #06H (h) COMMAND #BCH, DATA #07H P2: RGB arrangement. This parameter allows you to change RGB arrangement of data which is going to be written into RAM, and therefore causes the inverse RGB rotation of the segment output of ST7624. You can fit RGB arrangement on the LCD panel according to this parameter setting. P20 Line SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 … SEG311 Even page R G B R G B R G … B Odd page R G B R G B R G … B 1 B G R B G R B G … R 2 B G R B G R B G … R 0 1 Ver 1.8 46/98 2006/08/15 ST7624 P3: Gray scale setup. Using this parameter, 64 gray-scale display, you can select the 65K, 262K, and 16M display mode depending on the difference in RGB data arrangement. P32 P31 P30 Numbers of gray-scale 0 0 1 64-gray 65K 0 1 0 64-gray 262K 1 0 0 64-gray 16M (13)Memory write (RAMWR) Command: 1;Parameter: Numbers of data written (5CH) When MPU writes data to the display memory, this command turns on the data entry mode. Entering this command always sets the page and column address at the start address. You can rewrite contents of the display data RAM by entering data succeeding to this command. At the same time, this operation increments the page or column address as applicable. The write mode is automatically cancelled if any other command is entered. 1. 8-bit bus A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 0 1 1 1 0 0 - Parameter 1 1 0 A0 RD RW D15 D14 … D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 * * … * * 0 1 0 1 1 1 0 0 Memory write parameter 1 1 0 Data to be written Data to be written 2. 16-bit bus Ver 1.8 Data to be written 47/98 Write date 2006/08/15 ST7624 (14)Memory read (RAMRD) Command: 1; Parameter: Numbers of data read (5DH) When MPU read data from the display memory, this command turns on the data read mode. Entering this command always sets the page and column address at the start address. After entering this command, you can read contents of the display data RAM. At the same time, this operation increments the page or column address as applicable. The data read mode is automatically cancelled if any other command is entered. 1. 8-bit bus A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 0 1 1 1 0 1 -- Parameter 1 0 1 A0 RD RW D15 Command 0 1 0 * parameter 1 0 1 Data to be read Data to be read 2. 16-bit bus D14 …. D9 D8 * * * * D7 D6 D5 D4 D3 D2 D1 D0 Function 0 1 0 1 1 1 0 1 Memory read Data to be read Read date (15)Partial in (PTLIN) Command: 1; Parameter: 2 (A8H) This command and succeeding parameters specify the partial display area. This command is used to turn on partial display of the screen (dividing screen by lines) in order to save power. Since ST7624 processes the liquid crystal display signal on 4-line basis (block basis), the display and non-display areas are also specified on 4-bit line (block basis). A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 0 0 -- Parameter(P1) 1 1 0 * * 0 P14 P13 P12 P11 P10 Start block address Parameter(P2) 1 1 0 * * 0 P24 P23 P22 P21 P20 End block address A block address that can be specified for the partial display must be the display one (don’t try to specify an address not to be displayed when scrolled). (16)Partial out (PTLOUT) Command: 1; Parameter: 0 (A9H) This command is used to exit from the partial display mode. Command Ver 1.8 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 0 0 1 48/98 2006/08/15 ST7624 (17)Read modify write in (RMWIN) Command: 1; Parameter: 0 (E0H) This command is used along with the column address set command, page address set command and read modify write out command. This function is used when frequently modifying data to specify a specific display area such as blinking cursor. First set a specific display area using the column and page address commands. Then, enter this command to set the column and page addresses at the start address of the specific area. When this operation is complete, the column (page) address won’t be modified by the display data read command. It is incremented only when the display data write command is used. You can cancel this mode by entering the read modify write out or any other command. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 0 0 0 0 0 Page address set Column address set Read-modify-write cycle Dummy read NO Data read Data write Is modification Complete YES END (18)Read modify write out (RMWOUT) Command: 1; Parameter: 0 (EEH) Enter this command cancels the read modify write mode Command Ver 1.8 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 0 1 1 1 0 49/98 2006/08/15 ST7624 (19)Area scroll set (ASCSET) Command: 1; Parameter: 4 (AAH) It is used when scrolling only the specified portion of the screen (dividing the screen by lines). This command and succeeding parameters specify the type of area scroll, FIX area and scroll area. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 0 1 0 1 0 1 0 Parameter(P1) 1 1 0 * * 0 P14 P13 P12 P11 P10 Top block address Parameter(P2) 1 1 0 * * 0 P24 P23 P22 P21 P20 Bottom block address Parameter(P3) 1 1 0 * * 0 P34 P33 P32 P31 P30 Number of specified blocks Parameter(P4) 1 1 0 * * * * * * P41 P40 Area scroll mode Function -- P4: It is used to specify an area scroll mode. P41 P40 Type of area scroll 0 0 Center screen scroll 0 1 Top screen scroll 1 0 Bottom screen scroll 1 1 Whole screen scroll Center screen scroll Fixed area Top screen scroll Bottom screen scroll Whole screen scroll Scroll area Since ST7624 processes the liquid crystal display signals on the four-line basis (block basis), FIX and scroll areas are also specified on the four-line basis (block basis). DDRAM address corresponding to the top FIX area is set in the block address incrementing direction starting with 0 block. DDRAM address corresponding to the bottom FIX area is set in the block address decreasing direction starting with 41st block. Other DDRAM blocks excluding the top and bottom FIX areas are assigned to the scroll + background areas. Ver 1.8 50/98 2006/08/15 ST7624 P1: It is used to specify the top block address of the scroll+ background areas. Specify the 0th block for the top screen scroll or whole screen scroll. P2: It specifies the bottom address of the scroll+ background areas. Specify the 32th block for the bottom or whole screen scroll. Required relation between the start and end blocks (top block address<bottom block address) must be maintained. P3: It specifies a specific number of blocks {Numbers of (Top FIX area +Scroll area) block-1}. When the bottom scroll or whole screen scroll, the value is identical with P2. You can turn on the area scroll function by executing the area scroll set command first and then specifying the display start block of the scroll area with the scroll start set command. [Area Scroll Setup Example] In the center screen scroll of 1/92 duty (display range: 92 lines=23 blocks), if 8 lines=2 blocks and 8 lines=2 blocks are specified for the top and bottom FIX areas, 76 lines =19 blocks is specified for the scroll areas, respectively, 12 lines = 3 blocks on the DDRAM are usable as the background area. Value of each parameter at this time is as shown below. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 P1 1 1 0 * * 0 0 0 0 1 0 Top block address = 2 P2 1 1 0 * * 0 1 0 1 1 1 Bottom block address = 23 P3 1 1 0 * * 0 1 0 1 0 0 Number of specific blocks = 23 P4 1 1 0 * * * * * * 0 0 Area scroll mode = center (20)Scroll start address set (SCSTART) Command:1 Parameter: 1 (ABH) This command and succeeding parameters are used to specify the start block address of the scroll area. Note that you must execute this command after executing the area scroll set command. Scroll becomes available by dynamically changing the start block address. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 0 1 0 1 0 1 1 Parameter(P1) 1 1 0 * * 0 P14 P13 P12 P11 P10 Ver 1.8 51/98 Function -Start block address 2006/08/15 ST7624 (21)Internal oscillation on (OSCON) Command: 1; Parameter: 0 (D1H) This command turns on the internal oscillation circuit. It is valid only when the internal oscillation circuit of CLS = HIGH is used. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 0 0 1 (22)Internal oscillation off (OSOFF) Command: 1; Parameter: 0 (D2H) It turns off the internal oscillation circuit. This circuit is turned off in the reset mode. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 0 1 0 (23)Power control set (PWRCTR) Command: 1; Parameter: 1 (20H) This command is used to turn on or off the Booster circuit, voltage follower circuit, and voltage regulator circuit. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 1 0 0 1 0 0 0 0 0 Parameter(P1) 1 1 0 * * * * P13 * P11 P10 Function -LCD drive power P10: It turns on or off the voltage regulator circuit. P10 = “1”: ON. P10 =” 0”: OFF P11: It turns on or off the voltage follower circuit. P11 = “1”: ON. P11 =” 0”: OFF P13:It turns on or off the Booster. P13 = “1”: ON. P13 =” 0”: OFF (24)Electronic volume control (VOLCTR) Command: 1; Parameter: 2 (81H) The command is used to program the optimum LCD supply voltage VLCD. Reference to 7.10.2 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 0 0 0 0 0 0 1 Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Set Vop[5:0] Parameter(P2) 1 1 0 * * * * * P18 P17 P16 Set Vop[8:6] Function -- (25)Increment electronic control (VOLUP) Command: 1; Parameter: 0 (D6H) With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted. This command increments electronic control value VOP[5:0] of voltage regulator circuit by 1. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 1 1 0 If you set the electronic control value to 111111, the control value is set to 000000 after this command has been executed. Ver 1.8 52/98 2006/08/15 ST7624 (26)Decrement electronic control (VOLDOWN) Command: 1; Parameter: 0 (D7H) With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted. This command decrements electronic control value VOP[5:0] of voltage regulator circuit by 1. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 1 1 1 If you set the electronic control value to 000000, the control value is set to 111111 after this command has been executed. Table 8.1.1 Possible VOP[5:0] values Electronic Control Value Decimal Equivalent VLCD Offset 111111 31 +1240 mV 111110 30 +1200 mV 111101 29 +1160 mV … … … 000010 2 +80 mV 000001 1 +40 mV 000000 0 0 mV 111111 -1 -40 mV 111110 -2 -80 mV … … … 100010 -30 -1200 mV 100001 -31 -1240 mV 100000 -32 -1280mV (27)Read Register 1 (EPSRRD1) Command: 1; Parameter: 0 (7CH) Issue the EPSRRD1 and STREAD (Status Read) commands in succession to read the Electronic Control value. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 1 1 0 0 Issue the Status Read command immediately after this command. Also, always issue the NOP command after the STREAD (Status Read) command. Ver 1.8 53/98 2006/08/15 ST7624 (28)Read Register 2 (EPSRRD2) Command: 1 ;Parameter: 0 (7DH) Issue the EPSRRD1 and STREAD (Status Read) commands in succession to read the built-in resistance ratio. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 1 1 0 1 Command Issue the Status Read command immediately after this command. Also, always issue the NOP command after the STREAD (Status Read) command. (29)Non-operating (NOP) Command: 1; Parameter: 0 (25H) This command does not affect the operation. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 0 0 1 0 1 Command This command, however, has the function of canceling the IC test mode. Thus, it is recommended to enter it periodically to prevent malfunctioning due to noise and such. (30)Status read (STREAD) Command: 1; Parameter: None It is the command for reading the internal condition of the IC. One status can be displayed depending on the setting. A0 RD RW 0 0 1 Command D7 D6 D5 D4 D3 D2 D1 D0 (7) Status data Status after reset or after NOP operation D7: Area scroll mode Refer to P41 (ASCSET) D6: Area scroll mode Refer to P40 (ASCSET) D5: RMW on/off 0 : Out 1 : In D4: Scan direction 0 : Column 1 : Page D3: Display ON/OFF 0 : OFF 1 : ON D2: EEPROM access 0: OutAccess 1: InAccess D1: Display normal/inverse 0 : Normal 1 : Inverse D0: Partial display 0 : OFF 1 : ON (31) Initial code –(1) Command: 1; Parameter: 1 (07H) A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 1 1 1 07H Parameter(P1) 1 1 0 0 0 0 1 1 0 0 1 19H This command is used for EEPROM internal ACK signal generating ,suggest using this command before EEPROM read/write operation . This command improve the EEPROM internal ACK signal under unstable power system. (32)Reserved (82H) Do not use this command Command Ver 1.8 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 0 0 0 1 0 54/98 2006/08/15 ST7624 EXT=”1” (1)Set Red 1 value (Red1 set) Command: 1; Parameter: 16 (20H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red1 Set 0 1 0 0 0 1 0 0 0 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 1st frame Function FRAME 1 Red PWM Set Function - (2)Set Red 2 value (Red2 set) Command: 1; Parameter: 16 (21H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Red2 Set 0 1 0 0 0 1 0 0 0 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 2nd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 2nd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 2nd frame FRAME 2 Red PWM Set Function - (3) Set Red 3 value (Red3 set) Command: 1; Parameter: 16 (22H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red3 Set 0 1 0 0 0 1 0 0 0 1 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 3rd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 3rdframe Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 3rd frame Ver 1.8 55/98 Function FRAME 3 Red PWM Set Function - 2006/08/15 ST7624 (4) Set Red 4 value (Red4 set) Command: 1; Parameter: 16 (23H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red4 Set 0 1 0 0 0 1 0 0 0 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 4th frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 4thframe Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 4th frame Function FRAME 4 Red PWM Set Function - The default value of Red level set RED1SET RED2SET RED3SET RED4SET FRAM1 FRAM2 FRAM3 FRAME4 red level0 00 00 00 00 red level1 02 02 02 02 red level2 05 05 05 05 red level3 07 07 07 08 red level4 0A 0A 0A 0B red level5 0D 0D 0D 0C red level6 0F 10 0F 10 red level7 11 12 11 12 red level8 13 14 13 14 red level9 16 16 16 15 red level10 18 18 18 17 red level11 19 19 19 1A red level12 1B 1B 1B 1A red level13 1C 1C 1C 1D red level14 1D 1D 1D 1E red level15 1E 1E 1E 1E Ver 1.8 56/98 2006/08/15 ST7624 The modulation range of Red level set RED1SET RED2SET RED3SET RED4SET FRAM1 FRAM2 FRAM3 FRAME4 red level0 0 0 0 0 red level1 0-7 0-7 0-7 0-7 red level2 0-F 0-F 0-F 0-F red level3 0-F 0-F 0-F 0-F red level4 8-F 8-F 8-F 8-F red level5 0-1F 0-1F 0-1F 0-1F red level6 0-1F 0-1F 0-1F 0-1F red level7 0-1F 0-1F 0-1F 0-1F red level8 10-17 10-17 10-17 10-17 red level9 10-1F 10-1F 10-1F 10-1F red level10 10-1F 10-1F 10-1F 10-1F red level11 10-1F 10-1F 10-1F 10-1F red level12 10-1F 10-1F 10-1F 10-1F red level13 10-1F 10-1F 10-1F 10-1F red level14 10-1F 10-1F 10-1F 10-1F red level15 18-1F 18-1F 18-1F 18-1F (5) Set Green 1 value (Grn1 set) Command: 1; Parameter: 16 (24H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Grn 1 Set 0 1 0 0 0 1 0 0 1 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 1st frame FRAME 1 Grn PWM Set Function - (6) Set Green 2 value (Grn2 set) Command: 1;Parameter: 16 (25H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Grn2 Set 0 1 0 0 0 1 0 0 1 0 1 Ver 1.8 57/98 Function FRAME 2 Grn PWM Set 2006/08/15 ST7624 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 2nd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 2nd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 2nd frame Function - (7) Set Green 3 value (Grn3 set) Command: 1; Parameter: 16 (26H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Grn3 Set 0 1 0 0 0 1 0 0 1 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 3rd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 3rdframe Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 3rd frame FRAME 3 Grn PWM Set Function - (8) Set Green 4 value (Grn4 set) Command: 1;Parameter: 16 (27H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Grn4 Set 0 1 0 0 0 1 0 0 1 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 4th frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 4thframe Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 4th frame FRAME 4 Grn PWM Set Function - The default value of Green level set GRN1SET GRN2SET GRN3SET GRN4SET FRAM1 FRAM2 FRAM3 FRAME4 green level0 00 00 00 00 green level1 02 02 02 02 green level2 05 05 05 05 green level3 07 07 07 08 Ver 1.8 58/98 2006/08/15 ST7624 green level4 0A 0A 0A 0B green level5 0D 0D 0D 0C green level6 0F 10 0F 10 green level7 11 12 11 12 green level8 13 14 13 14 green level9 16 16 16 15 green level10 18 18 18 17 green level11 19 19 19 1A green level12 1B 1B 1B 1A green level13 1C 1C 1C 1D green level14 1D 1D 1D 1E green level15 1E 1E 1E 1E GRN1SET GRN2SET GRN3SET GRN4SET FRAM1 FRAM2 FRAM3 FRAME4 green level0 0 0 0 0 green level1 0-7 0-7 0-7 0-7 green level2 0-F 0-F 0-F 0-F green level3 0-F 0-F 0-F 0-F green level4 8-F 8-F 8-F 8-F green level5 0-1F 0-1F 0-1F 0-1F green level6 0-1F 0-1F 0-1F 0-1F green level7 0-1F 0-1F 0-1F 0-1F green level8 10-17 10-17 10-17 10-17 green level9 10-1F 10-1F 10-1F 10-1F green level10 10-1F 10-1F 10-1F 10-1F green level11 10-1F 10-1F 10-1F 10-1F green level12 10-1F 10-1F 10-1F 10-1F green level13 10-1F 10-1F 10-1F 10-1F green level14 10-1F 10-1F 10-1F 10-1F green level15 18-1F 18-1F 18-1F 18-1F The modulation range of Green level set Ver 1.8 59/98 2006/08/15 ST7624 (9) Set Blue 1 value (Blu 1 set) Command: 1; Parameter: 16 (28H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Grn 1 Set 0 1 0 0 0 1 0 0 1 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 1st frame Function FRAME 1 Blu PWM Set Function - (10) Set Blue 2 value (Blu2 set) Command: 1; Parameter: 16 (29H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Grn2 Set 0 1 0 0 0 1 0 0 1 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 2nd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 2nd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 2nd frame FRAME 2 Blu PWM Set Function - (11) Set Blue 3 value (Blu3 set) Command: 1; Parameter: 16 (2AH) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Grn3 Set 0 1 0 0 0 1 0 0 1 1 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 3rd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 3rdframe Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 3rd frame Ver 1.8 60/98 Function FRAME 3 Blu PWM Set Function - 2006/08/15 ST7624 (12) Set Blue 4 value (Blu4 set) Command: 1; Parameter: 16 (2BH) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Grn4 Set 0 1 0 0 0 1 0 0 1 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 4th frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 4thframe Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 4th frame Function FRAME 4 Blu PWM Set Function - The default value of Blue level set GRN1SET GRN2SET GRN3SET GRN4SET FRAM1 FRAM2 FRAM3 FRAME4 blue level0 00 00 00 00 blue level1 02 02 02 02 blue level2 05 05 05 05 blue level3 07 07 07 08 blue level4 0A 0A 0A 0B blue level5 0D 0D 0D 0C blue level6 0F 10 0F 10 blue level7 11 12 11 12 blue level8 13 14 13 14 blue level9 16 16 16 15 blue level10 18 18 18 17 blue level11 19 19 19 1A blue level12 1B 1B 1B 1A blue level13 1C 1C 1C 1D blue level14 1D 1D 1D 1E blue level15 1E 1E 1E 1E Ver 1.8 61/98 2006/08/15 ST7624 The modulation range of Blue level set GRN1SET GRN2SET GRN3SET GRN4SET FRAM1 FRAM2 FRAM3 FRAME4 blue level0 0 0 0 0 blue level1 0-7 0-7 0-7 0-7 blue level2 0-F 0-F 0-F 0-F blue level3 0-F 0-F 0-F 0-F blue level4 8-F 8-F 8-F 8-F blue level5 0-1F 0-1F 0-1F 0-1F blue level6 0-1F 0-1F 0-1F 0-1F blue level7 0-1F 0-1F 0-1F 0-1F blue level8 10-17 10-17 10-17 10-17 blue level9 10-1F 10-1F 10-1F 10-1F blue level10 10-1F 10-1F 10-1F 10-1F blue level11 10-1F 10-1F 10-1F 10-1F blue level12 10-1F 10-1F 10-1F 10-1F blue level13 10-1F 10-1F 10-1F 10-1F blue level14 10-1F 10-1F 10-1F 10-1F blue level15 18-1F 18-1F 18-1F 18-1F (13) ANASET Command 1; Parameter: 3 (32H) A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 1 0 0 1 0 Parameter1(P1) 1 1 0 * * * * * P12 P11 P10 OSC frequency Adjustment Parameter2(P2) 1 1 0 * * * * * * P21 P20 Booster Efficiency Set Parameter3(P3) 1 1 0 * * * * * P32 P31 P30 Bias setting - P1: Oscillator frequency adjustment(CL division ratio ,plz reference “Command CAH”) P12 P11 Frame OSC Frequency frequency CL=X1(KHz) Note P10 0 0 0 77 ± 5% 8.09 ± 5% 0 0 1 80 ± 20% 8.40 ± 20% 0 1 0 87 ± 20% 9.14 ± 20% 0 1 1 100 ± 20% 10.50 ± 20% 1 0 0 105 ± 20% 11.03 ± 20% 1 0 1 118 ± 20% 12.39 ± 20% 1 1 0 133 ± 20% 13.97 ± 20% 1 1 1 155 ± 20% 16.28 ± 20% Default Frame Frequency = OSC Frequency/(Duty+1) Ver 1.8 62/98 2006/08/15 ST7624 Example: using 96duty ,(P12,P11,P10)=(000),Frame Frequency=8.085k/(96+1)=83.35Hz P2: Booster Efficiency set(Suggest using default value) P21 P20 Frequency(Hz) 0 0 Level 1 0 1 Level 2 (Default) 1 0 Level 3 1 1 Level 4 P3: Select LCD bias ratio of the voltage required for driving the LCD. P32 P31 P30 LCD bias 0 0 0 1/12 0 0 1 1/11 0 1 0 1/10 0 1 1 1/9 1 0 0 1/8 1 0 1 1/7 1 1 0 1/6 1 1 1 1/5 (14) Color Dither OFF (DITHOFF) Command: 1; Parameter: None (34H) Turn off the dithering circuit. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 1 0 0 (15) Color Dither ON (DITHON) Command: 1; Parameter: None (35H) Turn on the dithering circuit. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 1 0 1 (16) Control EEPROM (EPCTIN) Command: 1; Parameter: 1 (CDH) A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 1 0 0 1 1 0 1 Parameter (P1) 1 1 0 0 0 P15 0 0 0 0 0 P15: when setting “1” è The Write Enable of EEPROM will be opened. P15: when setting “0” è The Read Enable of EEPROM will be opened. (17) Cancel EEPROM (EPCOUT) Command: 1;Parameter:None (CCH) Command Ver 1.8 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 0 1 1 0 0 63/98 2006/08/15 ST7624 (18) Write data to EEPROM (EPMWR) Command: 1; Parameter: None (FCH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 1 1 0 0 (19) Read data from EEPROM (EPMWR) Command: 1; Parameter: None (FDH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 1 1 0 1 EXT=”1” or “0” (1) Extension instruction disable (EXT IN) Command:1 Parameter: None (30H) Use the “Ext=0” command table Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 0 0 0 (2) Extension instruction enable (EXT OUT) Command:1 Parameter: None (31H) Use the extended command table (EXT=”1”) Command Ver 1.8 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 0 0 1 64/98 2006/08/15 ST7624 8.5 Referential Instruction Setup Flow 8.5.1 EEPROM Setting Flow The ST7624 chip provide the Write and Read function to write the Electronic Control value and Built-in resistance ratio into and read them from the built-in EEPROM. Using the Write and Read functions, you can store these values appropriate to each LCD panel. This function is very convenient for user in setting from some different panel’s voltage. But using this function must attention the setting procedure. Please see the following diagram. Note: When “Writing” value to EEPROM, the voltage of VOUT IN must be more than 17V. Figure 8.5.1.1 Flow of EC value adjustment and writing into EEPROM Ver 1.8 65/98 2006/08/15 ST7624 Note: When “Reading” value from EEPROM, the voltage of VOUT IN must be more than 10V. Figure 8.5.1.2 EEPROM Reading flow Ver 1.8 66/98 2006/08/15 ST7624 Example:EEPROM Read Operation void ReadEEPROM( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0007 ); Write( DATA, 0x0019 ); // Ext = 0 // Initial code (1) Write( COMMAND, 0x0031 ); Write( COMMAND, 0x00CD ); Write( DATA, 0x0000 ); Delay( 50ms ); Write( COMMAND, 0x00FD ); Delay( 50ms ); Write( COMMAND, 0x00CC ); Write( COMMAND, 0x0030 ); // Ext = 1 // EEPROM ON // Entry "Read Mode" // Waite for EEPROM Operation ( 50ms ) // Start EEPROM Reading Operation // Waite for EEPROM Operation ( 50ms ) // Exist EEPORM Mode step.1 // Exist EEPORM Mode step.2 } Example:EEPROM Write Operation void WriteEEPROM( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0007 ); Write( DATA, 0x0019 ); // Ext = 0 // Initial code(1) Write( COMMAND, 0x00AE ); Write( COMMAND, 0x0031 ); Write( COMMAND, 0x00CD ); Write( DATA, 0x0020 ); Delay( 50ms ); Write( COMMAND, 0x00FC ); Delay( 50ms ); Write( COMMAND, 0x00CC ); Write( COMMAND, 0x0030 ); //Display Off // Ext = 1 // EEPROM ON // Entry "Write Mode" // Waite for EEPROM Operation ( 50ms ) // Start EEPROM Writing Operation // Waite for EEPROM Operation ( 50ms ) // Exist EEPORM Mode step.1 // Exist EEPORM Mode step.2 } Ver 1.8 67/98 2006/08/15 ST7624 8.5.2 Initializing with the Built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power On and Keeping the /RES Pin="L" Waiting for Stabilizing the Power /RES Pin="H" and wait time > 1.8 us Sleep Out Flow User Application Setup by Internal Instructions [Internal OSC On] [Display Control] [COM Scan Direction] User LCD Power Setup by Internal Instructions [Analog Control - LCD Bias Select] [Electronic Volume Control] [DC-DC Step-up Register Select] Read EEPROM Flow [Normal / Inverse Display] [Data Display Setting] [Display On] [Column Address Setting] [Page Address Setting] [Entry Data Write Mode] End of Initialization Figure 8.5.2.1 Initializing with the Built-in Power Supply Circuits Ver 1.8 68/98 2006/08/15 ST7624 Example:Initial code for 96X96 void ST7624_Init( void ) { Write( COMMAND, 0x0030 ); //Ext = 0 SleepOut() //Sleep Out Flow Write( COMMAND, 0x00D1 ); Write( COMMAND, 0x0020 ); Write( DATA, 0x000B ); //OSC On //Power Control Set //Booster Regulator Follower On Write( COMMAND, 0x0081 ); Write( DATA, 0x0004 ); Write( DATA, 0x0004 ); //Electronic Control //Vop=14.0V Write( COMMAND, 0x00CA ); Write( DATA, 0x0000 ); Write( DATA, 0x0017 ); Write( DATA, 0x0000 ); //Display Control //CL=X1 //Duty=96 //FR Inverse-Set Value Write( COMMAND, 0x00A6 ); // Normal Display Write( COMMAND, 0x00BB ); Write( DATA, 0x0001 ); //COM Scan Direction // 0→51 103→52 Write( COMMAND, 0x00BC ); Write( DATA, 0x0000 ); Write( DATA, 0x0000 ); Write( DATA, 0x0001 ); //Data Scan Direction //Normal //RGB Arrangement //65K COLOR Write( COMMAND, 0x0075 ); Write( DATA, 0x0000 ); Write( DATA, 0x005F ); // Page Address Set //Start Page=0 //End Page =95 Write( COMMAND, 0x0015 ); Write( DATA, 0x0000 ); Write( DATA, 0x005F ); //Column Address Set //Start Column=0 //End Column =95 Write( COMMAND, 0x0031 ); //Ext = 1 Write( COMMAND, 0x0032 ); Write( DATA, 0x0000 ); Write( DATA, 0x0001 ); Write( DATA, 0x0001 ); //Analog Circuit Set //OSC Frequency =000 (Default) //Booster Efficiency=01(Default) //Bias=1/11 Write( COMMAND, 0x0034 ); //Dithering Off ReadEEPROM(); //Read EEPROM Flow Write( COMMAND, 0x00AF ); //Display On } Ver 1.8 69/98 2006/08/15 ST7624 8.5.3 Sleep In/Out Normal State Sleep In Status Start of Sleep In Start of Sleep Out Sleep In Sequencing : [Display Off: AEH] [Booster Off Only: 20H^03H] [Set Sleep In Preparation: 04H^3FH] Sleep Out Sequencing : [Set Sleep Out Preparation: 04H^3EH] [Set Analog Power Control: 20H^0BH] Delay 500ms [Set Sleep Out by Instruction: 94H] [Set Sleep In by Instruction: 95H] Delay 100ms End of Sleep In [Display On: AFH] End of Sleep Out Fig 8.5.3.1 Sleep In/Out Example:Sleep In Operation void SleepIn( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AE ); Write( COMMAND, 0x0020); Write( DATA, 0x0003 ); Write( COMMAND, 0x0004 ); Write( DATA, 0x003F ); Delay( 500ms); Write( COMMAND, 0x0095 ); // Ext = 0 // Display Off // Power Control // B/F/R = Off/On/On // Sleep Preparation // Sleep In Ready // Sleep In } Example:Sleep Out Operation void SleepOut( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0004 ); Write( DATA, 0x003E ); Write( COMMAND, 0x0020 ); Write( DATA, 0x000B ); Write( COMMAND, 0x0094 ); Delay( 100ms ); Write( COMMAND, 0x00AF ); // Ext = 0 // Sleep Preparation // Sleep Out Ready // Power Control // B/F/R = On/On/On // Sleep Out // Display On } Ver 1.8 70/98 2006/08/15 ST7624 8.5.4 Data Displaying Normal State Display Data RAM Addressing by Instruction [Data Control: BCH] [Set Page Address: 75H] [Set Column Address: 15H] [Entry Memory Write Mode: 5CH] Display Data Write [Display Data Write] No End of Display Data Write ? Yes End of Data Display Figure 8.5.4.1 Data Displaying Example:Display for 104X104 void Display( char *pattern ) { unsigned char i, j; Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0015 ); Write( DATA, 0 ); Write( DATA, 103 ); Write( COMMAND, 0x0075 ); Write( DATA, 0 ); Write( DATA, 103 ); Write( COMMAND, 0x005C ) for( j = 0; j < 104 ; j++ ) for( i = 0 ; i < 104 ; i++ ) Write( DATA, pattern[j*104+i] ); // Ext = 0 // Column address set // From column0 to column103 // Page address set // From page0 to page103 // Entry Memory Write Mode // Display Data Write } Ver 1.8 71/98 2006/08/15 ST7624 8.5.5 Partial Display In/Out Normal State [Partial Display In: A8H] [Set Start Block Address] [Set End Block Address] In Partial Display Mode For User Application Display Data RAM Addressing by Instruction [Set Page Address: 75H] [Set Column Address: 15H] Display Data Write No Exit Partial Display ? Yes [Partial Display Out: A9H] End of Partial Display Figure 8.5.5.1 Partial Display In/Out Example:Partial Display In Operation void PartailIn( unsigned char start_block, unsigned char end_block ) { Write( COMMAND, 0x0030 ); // Ext = 0 Write( COMMAND, 0x00A8); // Partial Display In Function Write( DATA, start_block ); // Start Block Write( DATA, end_block ); // End Block } void PartailOut( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00A9 ); // Ext = 0 // Partial Display Out Function } Ver 1.8 72/98 2006/08/15 ST7624 extern unsigned char *display_pattern; void main() { PartialIn( 11, 18 ); // entry partial display mode Windowing( 0, 11*4, 103, 18*4 ); PartialDisplay( display_pattern ); . . . PartialOut(); // set the page and column range // Fill the data into partial display area // Out of partial display mode } 8.5.6 Scroll Display Normal State Set Area Scroll by Instruction [Set Top Block Address] [Set Bottom Block Address] [Set Numbers of Specified Blocks] [Set Area Scroll Mode] Set Scroll Start Address by Instruction [Set Start Block Address] Scroll Up: Start Block Address : from Top Block Address to Bottom Block Address Scroll Down: Start Block Address : from Bottom Block Address to Top Block Address Yes Next Start Block Address Continue Scrolling ? No Reset Area Scroll by Instruction [Set Top Block Address] [Set Bottom Block Address] [Set Numbers of Specified Blocks] [Set Area Scroll Mode] End of Scroll Mode Figure 8.5.6.1 Scroll Display Ver 1.8 73/98 2006/08/15 ST7624 Example:Screen Scroll Operation void CenterScreenScroll( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AA); Write( DATA, 0x000A ); Write( DATA, 0x0014 ); Write( DATA, 0x0014 ); Write( DATA, 0x0000 ); // Ext = 0 // Partial Display In Function // Top_Block=10 // Bottom_Block=20 // Number of Specified Blocks=Bottom_Block=20 // Area Scroll Type=Center Screen Scroll ScrollUp() or ScrollDown(); // Scroll Up or Scroll Down } void TopScreenScroll( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AA); Write( DATA, 0x0000 ); Write( DATA, 0x0014 ); Write( DATA, 0x0014 ); Write( DATA, 0x0001 ); // Ext = 0 // Partial Display In Function // Top_Block=0 // Bottom_Block=20 // Number of Specified Blocks=Bottom_Block=20 // Area Scroll Type=Top Screen Scroll ScrollUp() or ScrollDown(); // Scroll Up or Scroll Down } void BottomScreenScroll( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AA); Write( DATA, 0x000A ); Write( DATA, 0x0019 ); Write( DATA, 0x0019 ); Write( DATA, 0x0002 ); // Ext = 0 // Partial Display In Function // Top_Block=10 // Bottom_Block=25 // Number of Specified Blocks=Bottom_Block=25 // Area Scroll Type=Bottom Screen Scroll ScrollUp() or ScrollDown(); // Scroll Up or Scroll Down } void WholeScreenScroll( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AA); Write( DATA, 0x0000 ); Write( DATA, 0x0019 ); Write( DATA, 0x0019 ); Write( DATA, 0x0003 ); // Ext = 0 // Partial Display In Function // Top_Block=0 // Bottom_Block=25 // Number of Specified Blocks=Bottom_Block=25 // Area Scroll Type=Whole Screen Scroll ScrollUp() or ScrollDown(); // Scroll Up or Scroll Down } Ver 1.8 74/98 2006/08/15 ST7624 void ScrollUp( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AB); Write( DATA, Top_Block); Delay(); // Ext = 0 // Scroll Start Set // Start Block Address=Top_Block // Delay Write( COMMAND, 0x00AB); Write( DATA, Top_Block +1 ); Delay(); // Scroll Start Set // Start Block Address= Top_Block+1 // Delay Write( COMMAND, 0x00AB); Write( DATA, Top_Block +2 ); Delay(); …… …… Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block ); Delay(); // Scroll Start Set // Start Block Address= Top_Block +2 // Delay // Scroll Start Set // Start Block Address= Bottom_Block // Delay } void ScrollDown( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block); Delay(); // Ext = 0 // Scroll Start Set // Start Block Address= Bottom_Block // Delay Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block -1 ); Delay(); // Scroll Start Set // Start Block Address= Bottom_Block -1 // Delay Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block -2 ); Delay(); …… …… Write( COMMAND, 0x00AB); Write( DATA, Top _Block ); Delay(); // Scroll Start Set // Start Block Address= Bottom_Block -2 // Delay // Scroll Start Set // Start Block Address= Top_Block // Delay } Ver 1.8 75/98 2006/08/15 ST7624 8.5.7 Read-Modify-Write Cycle Normal State [Page Address Set: 75H] [Column Address Set: 15H] [Read-Modify-Write In: E0H] Read-Modify-Write Cycle Dummy Read Pixel Read Pixel Modify Pixel Write No Modify Complete ? YES [Read-Modify-Write Out: EEH] End of Read-Modify-Write Cycle Figure 8.5.7.1 Read-Write-Modify Cycle Example:Read-Write-Modify Cycle void ReadModifyWriteIn( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00E0 ); } void ReadModifyWriteOut( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00EE ); } // Ext = 0 // Entry the Read-Modify-Write mode // Ext = 0 // Out of partial display mode extern unsigned char *display_pattern; void main() { unsigned pixel, i; Windowing( 11, 31, 80, 50 ); Ver 1.8 // set the page and column range 76/98 2006/08/15 ST7624 ReadModifyWriteIn(); // entry the Read-Modify-Write mode for( i = 0 ; i < 1000 ; i++ ) { Read( DATA ); pixel = Read( DATA ); pixel = pixel & 0x07FF; Write( DATA, pixel ); } // For dummy read // Pixel read // Pixel modify: red filter ReadModifyWriteOut(); // Out of Read-Modify-Write mode } 8.5.8 Display On / OFF Normal State Display OFF State [Set Display OFF : AEH] [Set Display ON : AFH] End of Display OFF End of Display ON Figure 8.5.8.1 Display Off Figure 8.5.8.2 Display On Example:Display OFF Operation void DisplayOff( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AE ); // Ext = 0 // Display Off } Example:Display ON Operation void DisplayOn( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AF ); // Ext = 0 // Display On } Ver 1.8 77/98 2006/08/15 ST7624 8.5.9 Power OFF Normal State Execute the “Sleep In Flow” Keeping /RES Pin =“L” Power Off (VDD-VSS) End of Power OFF VDD /RES tR Internal State Normal State Execute “Sleep In Flow” Reset tR > 12 ms Power Off After Sleep In Flow, keep the /RES = Low Figure 8.5.9.1 Power off Note:The sequence is that users must set the VDD to low after keeping the /RES=low time longger than 12ms. Ver 1.8 78/98 2006/08/15 ST7624 9. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power Supply Voltage VDD, VDD1~5 –0.5 ~ +4.0 V Power supply voltage (VDD standard) VOUTIN –0.5 ~ +20 V Power supply voltage (VDD standard) V1, V2, V3, V4 0.3 to VOUTIN V Input voltage VIN –0.5 to VDD+0.5 V Output voltage VO –0.5 to VDD+0.5 V Operating temperature (Die) TOPR –30 to +85 °C Storage temperature (Die) TSTR –40 to +125 °C VDD /RES tR Internal State Normal State Execute “Sleep In Flow” Reset tR > 12 ms Power Off After Sleep In Flow, keep the /RES = Low Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VOUTIN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ Vss 4.V0 tolerance +/- 0.1V Ver 1.8 79/98 2006/08/15 ST7624 10. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”). 11. DC CHARACTERISTICS VDD = 2.4 V to 3.3V; VSS = 0 V; V0 = 3.76 to 18.0V; Tamb = -30℃ to +85℃; unless otherwise specified. Rating Item Applicable Symbol Condition Units Typ. Max. 2.4 — 3.3 V Vss 2.4 — 3.3 V VSS VDD V *2 0.2 x VDD V *2 VDD V *3 *3 VDD Operating Voltage (1) Pin Min. VDD1 VDD2 VDD3 Operating Voltage (2) VDD4 VDD5 High-level Input Voltage VIHC 0.8 x VDD — Low-level Input Voltage VILC VSS High-level Output Voltage VOHC 0.8 x VDD — Low-level Output Voltage VOLC VSS — 0.2 x VDD V Input leakage current ILI VIN = VDD or VSS –1.0 — 1.0 μA *4 Output leakage current ILO VIN = VDD or VSS –3.0 — 3.0 μA *5 — 2.0 — Liquid Crystal Driver ON Ta = VOUTIN = 25°C 15.0 V — KΩ RON Resistance (Relative VOUTIN = 8.0 To VSS) V Internal Oscillator fOSC Oscillator Ta = 25°C External fCL Frequency Input 1/104 duty SEGn COMn *6 — 3.2 — — 8.09 — kHz *7 — 250.79 — kHz OSC 31 PWM Frame frequency fFRAME fFRAME=fOSC/(Duty+1) Hz Rating Item Internal Power Input voltage Symbol Condition Units Applicable Pin Min. Typ. Max. VDD (Relative To VSS) 2.4 — 3.3 V VOUTOUT (Relative To VSS) — — 18 V VOUTOUT VOUTIN (Relative To VSS) — — 18 V VOUTIN Supply Step-up output voltage Circuit Voltage regulator Circuit Operating Voltage Ver 1.8 80/98 2006/08/15 ST7624 Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs when an external power supply is used . Rating Test pattern Symbol Display Pattern VDD = 2.8V, BoosterX7 ISS Normal Power Down Condition V0 – VSS = 14.0 V, 1/11 Bias ISS Ta = 25°C Units Notes — μA *8 10 μA die Min. Typ. Max. — 350(die) — — PS.V0 tolerance +/- 0.1V Notes to the DC characteristics 1. The maximum possible VOUT voltage that may be generated is dependent on voltage, temperature and (display) load. 2. Internal clock 3. Power-down mode. During power down all static currents are switched off. 4. If external VOUT, the display load current is not transmitted to IDD. 5. VOUT external voltage applied to VOUTIN pin; VOUTIN disconnected from VOUTOUT References for items market with * *1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *2 The A0, D0 to D5, D6 (SI), D7 (SCL), D8 to D15, /RD (E), /WR ,/(R/W), /CS, and RESB terminals. *3 The D0 to D7 terminals. *4 The A0,/RD (E), /WR ,/(R/W), /CS, and RESB terminals. *5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. *6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.) *7 The relationship between the oscillator frequency and the frame rate frequency. *8,9It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. Ver 1.8 81/98 2006/08/15 ST7624 12. TIMING CHARACTERISTICS Condition:Bare Die System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 /CS tCYC8,tCYCR8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 39. (VDD = 3.3V , Ta =-30°C~85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tAH8 10 — Address setup time tAW8 10 — System cycle time tCYC8 150 — fCYC8 6.67 — Enable L pulse width (WRITE) tCCLW 50 — Enable H pulse width (WRITE) tCCHW 100 — System cycle time(READ) tCYCR8 490 tCCLR 140 — Enable H pulse width (READ) tCCHR 350 — WRITE data setup time tDS8 70 — tDH8 10 — Address hold time A0 System cycle frequency WR Enable L pulse width (READ) RD WRITE data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 70 READ Output disable time tOH8 CL = 100 pF — 50 Ver 1.8 82/98 ns MHz ns 2006/08/15 ST7624 (VDD = 2.8 V , Ta =-30°C~85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tAH8 10 — Address setup time tAW8 10 — System cycle time tCYC8 180 — fCYC8 5.56 — Enable L pulse width (WRITE) tCCLW 60 — Enable H pulse width (WRITE) tCCHW 120 — System cycle time(READ) tCYCR8 620 tCCLR 190 — Enable H pulse width (READ) tCCHR 420 — WRITE data setup time tDS8 80 — tDH8 30 — Address hold time A0 System cycle frequency WR Enable L pulse width (READ) RD WRITE data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 140 READ Output disable time tOH8 CL = 100 pF — 100 ns MHz ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between /CS being “L” and WR and RD being at the “L” level. Ver 1.8 83/98 2006/08/15 ST7624 System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 /CS tCYC6,tCYCR6 tCCLR,tCCLW E tCCHR,tCCHW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Figure 40. (VDD = 3.3 V , Ta =-30°C~85°C , die) Rating Item Signal Symbol Condition Units Min. Max. tAH6 10 — Address setup time tAW6 10 — System cycle time tCYC6 150 — fCYC6 6.67 — Enable L pulse width (WRITE) tEWLW 90 — Enable H pulse width (WRITE) tEWHW 60 — System cycle time(READ) tCYCR6 500 — tEWLR 340 — Enable H pulse width (READ) tEWHR 160 — WRITE data setup time tDS6 70 — tDH6 10 — Address hold time A0 System cycle frequency WR Enable L pulse width (READ) RD WRITE data hold time D0 to D7 READ access time tACC6 CL = 100 pF — 70 READ Output disable time tOH6 CL = 100 pF — 50 Ver 1.8 84/98 ns MHz ns 2006/08/15 ST7624 (VDD = 2.8V , Ta =-30°C~85°C , die) Rating Item Signal Symbol Condition Units Min. Max. tAH6 10 — Address setup time tAW6 10 — System cycle time tCYC6 180 — fCYC6 5.56 — Enable L pulse width (WRITE) tEWLW 110 — Enable H pulse width (WRITE) tEWHW 70 — System cycle time(READ) tCYCR6 590 — tEWLR 400 — Enable H pulse width (READ) tEWHR 190 — WRITE data setup time tDS6 80 — tDH6 10 — Address hold time A0 System cycle frequency WR RD Enable L pulse width (READ) WRITE data hold time D0 to D7 READ access time tACC6 CL = 100 pF — 140 READ Output disable time tOH6 CL = 100 pF — 100 ns MHz ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between /CS being “L” and E. SERIAL INTERFACE(4-Line Interface) tCCSS tCSH /CS tSAS tSAH A0 tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 41. Ver 1.8 85/98 2006/08/15 ST7624 (VDD=3.3V, Ta =-30°C~85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tSCYC 100 — fSCYC 10 tSHW 70 — tSLW 30 — tSAS 20 — Address hold time tSAH 50 — Data setup time tSDS 20 — tSDH 30 — tCSS 20 — tCSH 50 — Serial clock period Serial clock frequency SCL “H” pulse width MHz SCL SCL “L” pulse width Address setup time A0 SI Data hold time CS-SCL time /CS CS-SCL time ns ns (VDD=2.8V, Ta =-30°C~85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tSCYC 110 — fSCYC 9.09 tSHW 80 — tSLW 30 — tSAS 20 — Address hold time tSAH 50 — Data setup time tSDS 20 — tSDH 30 — tCSS 20 — tCSH 60 — Serial clock period Serial clock frequency SCL “H” pulse width SCL SCL “L” pulse width Address setup time A0 SI Data hold time CS-SCL time /CS CS-SCL time ns MHz ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 1.8 86/98 2006/08/15 ST7624 SERIAL INTERFACE(3-Line Interface) tCCSS tCSH /CS tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 42. (VDD=3.3V, Ta =-30°C~85°C, die) Rating Item Signal Serial clock period Serial clock frequency SCL “H” pulse width Symbol Condition Units Min. Max. tSCYC 100 — fSCYC 10 tSHW 70 — tSLW 30 — tSDS 20 — tSDH 30 — tCSS 20 — tCSH 60 — MHz SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time /CS CS-SCL time ns ns (VDD=2.8V, Ta =-30°C~85°C, die) Rating Item Signal Serial clock period Serial clock frequency SCL “H” pulse width Symbol Condition Units Min. Max. tSCYC 110 — fSCYC 9.09 tSHW 80 — tSLW 30 — tSDS 20 — tSDH 40 — tCSS 20 — tCSH 60 — SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time /CS CS-SCL time Ver 1.8 87/98 ns MHz ns 2006/08/15 ST7624 *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. 13. RESET TIMING tRW /RES tR Internal status During reset Reset complete Fig 43. (VDD = 3.3V , Ta = –30 to 85°C, die) Rating Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Units Min. Typ. Max. tR — — 1 us tRW 1 — — us (VDD = 2.8V , Ta = –30 to 85°C, die) Rating Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Units Min. Typ. Max. tR — — 1.5 us tRW 1.5 — — us 14. THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7624 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7624 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7624 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. (1) 8080-8bits Series MPUs VDD VCC VDD A0 A0 GND /CS DO to D7 RD WR RES ST7624 MPU /CS IF1 IF2 IF3 D0 to D7 E_RD RW_WR /RES VSS RESET VSS Ver 1.8 88/98 2006/08/15 ST7624 (2) 6800-8bits Series MPUs V DD V DD A0 A0 /CS /CS D O to D 7 RD WR RES GND IF1 IF2 IF3 ST7624 MPU V CC D0 to D 7 E_RD RW _W R /RES V SS RESET V SS (3) Using the Serial Interface (4-line interface) V DD V DD V CC A0 /CS /CS IF1 IF2 IF3 Port 1 Port 2 RES GND ST7624 MPU A0 SI SCL /RES V SS RESET VSS (4) Using the Serial Interface (3-line interface) V DD or V SS V CC V DD IF1 IF2 IF3 /CS Port 1 Port 2 RES GND ST7624 MPU /CS SI SC L /RES V SS RESET V SS Ver 1.8 89/98 2006/08/15 ST7624 15.APPLICATION NOTE Resolution : 104 X 104 Color start CSEL = L Common Scan Command : BBH Parameter : P12,P11,P10=001 (Reference Page 45) pixel com 0 Display 104x104 Pixels com 51 com 52 com 103 com0 com51 seg311 seg311 seg0 com103 com52 s eg0 ST7624(BUMP SIDE) Resolution : 104 X 104 Color CSEL = H start pixel com 0 com 1 com 2 com 3 Display 104x104 Pixels com 100 com 101 com 102 com 103 com2 com0 com102 com100 seg311 s eg311 seg0 com101 com103 com1 com3 s eg0 ST7624(BUMP SIDE) Note : the View Angle of panel can be changed by software(Command BCH) Ver 1.8 90/98 2006/08/15 ST7624 Resolution : 96 X 96 Color CSEL = H start pixel com 0 com 1 com 2 com 3 Display 96x96 Pixels com 92 com 93 com 94 com 95 com2 com0 com94 com92 seg287 s eg287 seg0 com93 com95 com1 com3 s eg0 ST7624(BUMP SIDE) Resolution : 96 X 64 Color CSEL = H start pixel com0 com1 com2 com3 Display 96x64Pixels com60 com61 com62 com63 com2 com0 seg287 seg0 com61 com63 com1 com3 com62 com60 seg287 seg0 ST7624(BUMP SIDE) Note : the View Angle of panel can be changed by software(Command BCH) Ver 1.8 91/98 2006/08/15 ST7624 444 447 448 . . . 1uF/25V . . . 1M-ohm R1 C1 451 452 C2 C3 C4 C5 Interface : 8080series-8bits VDD,VDD1=2.4V~3.3V VDD2~VDD5=2.4V~3.3V Booster : X7 CSEL = H IF1 = H ; IF2 = H ; IF3 = L C1~C5 : 0.1uF~1.0uF/25V C6~C13 : 1.0~2.2uF/25V Vop = 12~15V Bias = 1/11(under 1/104 duty) R1=1M-ohm 1uF/25V 1uF/25V 1uF/25V 1uF/25V A0 D0 D1 D2 D3 D4 D5 D6 D7 /CS . . . . . . 528 529 . . . 532 533 534 C6 com103 364 seg0 053 seg311 052 com102 001 c om0 V3 455 456 457 458 459 460 461 462 463 519 520 521 522 523 1uF/25V 365 V0OUT V1 V2 . . VSS com1 454 504 505 506 VDD 416 V0IN V0OUT 535 V4 VR VREF VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD CSEL INTRS IF1 IF2 IF3 VSS VDD SI SCL /CS VDD VDD VDD1 VSS VSS VDD4 VDD3 VDD3 VDD2 VDD2 VDD5 ST7624(BUMP SIDE) /RD RST com1 453 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 /WR V0IN VDD5 TCAP CAP2P com103 seg0 seg311 CAP2N C7 1uF/25V 536 537 com102 CAP6P C8 1uF/25V CAP2N 538 CAP4P 539 CAP7P 540 C9 1uF/25V 541 542 CAP5P CAP3P 543 CAP1N C11 544 545 . . 550 551 . . C12 92/98 C10 1uF/25V 1uF/25V 1uF/25V Ver 1.8 CAP1N 556 CAP1P VLCDIN VLCDIN VLCDOUT VLCDOUT com0 2006/08/15 ST7624 444 447 448 . . . 1uF/25V . . . R1 1M-ohm C1 451 452 C2 C3 C4 C5 Interface : 8080series-16bits VDD,VDD1=2.4V~3.3V VDD2~VDD5=2.4V~3.3V Booster : X7 CSEL = H IF1 = H ; IF2 = H ; IF3 = H C1~C5 : 0.1uF~1.0uF/25V C6~C13 : 1.0~2.2uF/25V Vop = 12~15V Bias = 1/11(under 1/104 duty) R1=1M-ohm 1uF/25V 1uF/25V 1uF/25V 1uF/25V A0 D0 D1 D2 D3 D4 D5 D6 D7 /RD RST /CS . . . . . . 528 529 . . . 532 533 534 C6 C7 1uF/25V com103 364 seg0 053 seg311 052 com102 001 com0 V3 455 456 457 458 459 460 461 462 463 519 520 521 522 523 1uF/25V 365 V2 . . VSS com1 454 504 505 506 VDD 416 V0OUT V1 535 536 V4 VR VREF VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD CSEL INTRS IF1 IF2 IF3 VSS VDD SI SCL /CS VDD VDD VDD1 VSS VSS VDD4 VDD3 VDD3 VDD2 VDD2 VDD5 ST7624(BUMP SIDE) D8 D9 D10 D11 D12 D13 D14 D15 com1 V0IN V0OUT 453 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 /WR V0IN VDD5 TCAP CAP2P com103 seg0 seg311 CAP2N com102 CAP6P 537 C8 1uF/25V CAP2N 538 539 CAP4P CAP7P 540 CAP1N C9 1uF/25V 541 542 C11 544 545 . . 550 551 . . C12 93/98 C10 1uF/25V 1uF/25V 1uF/25V Ver 1.8 543 556 CAP5P CAP3P CAP1N CAP1P VLCDIN VLCDIN VLCDOUT VLCDOUT com0 2006/08/15 ST7624 444 447 448 . . . 1uF/25V . . . R1 1M-ohm C1 451 452 C2 C3 C4 C5 Interface : 6800series-8bits VDD,VDD1=2.4V~3.3V VDD2~VDD5=2.4V~3.3V Booster : X7 CSEL = H IF1 = L ; IF2 = H ; IF3 = H C1~C5 : 0.1uF~1.0uF/25V C6~C13 : 1.0~2.2uF/25V Vop = 12~15V Bias = 1/11(under 1/104 duty) R1=1M-ohm 1uF/25V 1uF/25V 1uF/25V 1uF/25V A0 D0 D1 D2 D3 D4 D5 D6 D7 /CS . . . . . . 528 529 . . . 532 533 534 C6 com 103 364 seg0 053 seg311 052 com 102 001 c om0 V3 455 456 457 458 459 460 461 462 463 519 520 521 522 523 1uF/25V 365 V0OUT V1 V2 . . VSS com1 454 504 505 506 VDD 416 V0IN V0OUT 535 V4 VR VREF VDD CL CLS VSS VDD A0 RW_W R VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD CSEL INTRS IF1 IF2 IF3 VSS VDD SI SCL /CS VDD VDD VDD1 VSS VSS VDD4 VDD3 VDD3 VDD2 VDD2 VDD5 ST7624(BUMP SIDE) E RST c om1 453 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 R/W V0IN VDD5 TCAP CAP2P com103 seg0 s eg311 CAP2N C7 1uF/25V 536 com102 CAP6P 537 C8 1uF/25V CAP2N 538 CAP4P 539 CAP7P 540 CAP1N C9 1uF/25V 541 CAP5P 542 CAP1N C11 544 545 . . 550 551 . . C12 94/98 C10 1uF/25V 1uF/25V 1uF/25V Ver 1.8 CAP3P 543 556 CAP1P VLCDIN VLCDIN VLCDOUT VLCDOUT c om0 2006/08/15 ST7624 444 447 448 . . . C1 1uF/25V . . . 1M-ohm R1 451 452 C2 C3 C4 C5 Interface : 6800series-16bits VDD,VDD1=2.4V~3.3V VDD2~VDD5=2.4V~3.3V Booster : X7 CSEL = H IF1 = H ; IF2 = L ; IF3 = L C1~C5 : 0.1uF~1.0uF/25V C6~C13 : 1.0~2.2uF/25V Vop = 12~15V Bias = 1/11(under 1/104 duty) R1=1M-ohm 1uF/25V 1uF/25V 1uF/25V 1uF/25V A0 D0 D1 D2 D3 D4 D5 D6 D7 E RST /CS . . . . . . 528 529 . . . 532 533 534 C6 com103 364 seg0 053 s eg311 052 com102 001 com0 V3 455 456 457 458 459 460 461 462 463 519 520 521 522 523 1uF/25V 365 V0OUT V1 V2 . . VSS c om1 454 504 505 506 VDD 416 V0IN V0OUT 535 V4 VR VREF VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD CSEL INTRS IF1 IF2 IF3 VSS VDD SI SCL /CS VDD VDD VDD1 VSS VSS VDD4 VDD3 VDD3 VDD2 VDD2 VDD5 ST7624(BUMP SIDE) D8 D9 D10 D11 D12 D13 D14 D15 com1 453 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 R/W V0IN VDD5 TCAP CAP2P com103 seg0 s eg311 CAP2N C7 1uF/25V 536 537 com102 CAP6P C8 1uF/25V CAP2N 538 CAP4P 539 CAP7P 540 C10 1uF/25V 541 542 CAP5P CAP3P 543 CAP1N C12 544 545 . . 550 551 . . C13 95/98 C11 1uF/25V 1uF/25V 1uF/25V Ver 1.8 CAP1N 556 CAP1P VLCDIN VLCDIN VLCDOUT VLCDOUT com0 2006/08/15 ST7624 444 447 448 . . . R1 1uF/25V . . . 1M-ohm C1 451 452 C2 C3 C4 C5 Interface : 4-line VDD,VDD1=2.4V~3.3V VDD2~VDD5=2.4V~3.3V Booster : X7 CSEL = H IF1 = L ; IF2 = L ; IF3 = L C1~C5 : 0.1uF~1.0uF/25V C6~C13 : 1.0~2.2uF/25V Vop = 12~15V Bias = 1/11(under 1/104 duty) R1=1M-ohm 1uF/25V 1uF/25V 1uF/25V 1uF/25V A0 . . . . . . 528 529 . . . 532 533 534 C6 com103 364 seg0 053 seg311 052 com102 001 c om0 V3 455 456 457 458 459 460 461 462 463 519 520 521 522 523 1uF/25V 365 V0OUT V1 V2 . . VSS com1 454 504 505 506 VDD 416 V0IN V0OUT 535 V4 VR VREF VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD CSEL INTRS IF1 IF2 IF3 VSS VDD SI SCL /CS VDD VDD VDD1 VSS VSS VDD4 VDD3 VDD3 VDD2 VDD2 VDD5 ST7624(BUMP SIDE) SI SCL /CS c om1 453 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 RST V0IN VDD5 TCAP CAP2P com103 seg0 seg311 CAP2N C7 1uF/25V 536 com102 CAP6P 537 C8 1uF/25V CAP2N 538 CAP4P 539 540 CAP7P CAP1N C9 1uF/25V 541 CAP5P 542 CAP1N C11 544 545 . . 550 551 . . C12 96/98 C10 1uF/25V 1uF/25V 1uF/25V Ver 1.8 CAP3P 543 556 CAP1P VLCDIN VLCDIN VLCDOUT VLCDOUT c om0 2006/08/15 ST7624 444 R1 C1 1uF/25V 447 448 . . . 1M-ohm . . . Interface : 3-line VDD,VDD1=2.4V~3.3V VDD2~VDD5=2.4V~3.3V Booster : X7 CSEL = H IF1 = L ; IF2 = L ; IF3 = H C1~C5 : 0.1uF~1.0uF/25V C6~C13 : 1.0~2.2uF/25V Vop = 12~15V Bias = 1/11(under 1/104 duty) R1=1M-ohm 451 452 C2 C3 C4 C5 1uF/25V 1uF/25V 1uF/25V 1uF/25V . . . . . . 528 529 . . . 532 533 534 C6 com103 364 seg0 053 seg311 052 com102 001 c om0 V3 455 456 457 458 459 460 461 462 463 519 520 521 522 523 1uF/25V 365 V2 . . VSS com1 454 504 505 506 VDD 416 V0OUT V1 535 V4 VR VREF VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD CSEL INTRS IF1 IF2 IF3 VSS VDD SI SCL /CS VDD VDD VDD1 VSS VSS VDD4 VDD3 VDD3 VDD2 VDD2 VDD5 ST7624(BUMP SIDE) SI SCL /CS c om1 V0IN V0OUT 453 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 RST V0IN VDD5 TCAP CAP2P com103 seg0 seg311 CAP2N C7 1uF/25V 536 com102 CAP6P 537 C8 1uF/25V CAP2N 538 CAP4P 539 540 CAP7P CAP1N C9 1uF/25V 541 CAP5P 542 C10 CAP1N C11 544 545 . . 550 551 . . C12 1uF/25V 1uF/25V 1uF/25V CAP3P 543 556 CAP1P VLCDIN VLCDIN VLCDOUT VLCDOUT c om0 NOTE: Microprocessor interface pins should not be floating in any operation mode. Ver 1.8 97/98 2006/08/15 ST7624 ST7624 Specification Revision History Version Date Description 1.0 2004/12/08 Remove Preliminary and modify Timing Characteristic 1.1 2005/01/14 Correct 8080/6800 interface Timing 1.2 2005/03/12 Modify EEPROM flow and Parallel Timing 1.3 2005/05/03 Remove IIC Interface 1.4 2005/05/18 Modify Program Flow 1.5 2005/06/02 Modify Application Note Modify Limiting Value and DC Characteristic 1. Temperature gradient (Add tolerance) on Page1 1.6 2005/09/07 2. supply voltage (no tolerance). 3. Bump height on Page2 4. Operating and storage temperature. Ver 1.8 1.7 2005/9/15 1. Add die in Temperature Range of Time 2. Add die in Display on Current (Typ) 1.8 2006/8/15 Add microprocessor notice item(p.14, p.97). 98/98 2006/08/15