SITRONIX ST7624

ST
Sitronix
ST7624
65K Color Dot Matrix LCD Controller/Driver
1. INTRODUCTION
The ST7624 is a driver & controller LSI for 65k color graphic dot-matrix liquid crystal display systems. It generates 312
Segment and 104 Common driver circuits. This chip is connected directly to a microprocessor, accepts Serial Peripheral
Interface (SPI) or 8-bit/16-bit parallel display data and stores in an on-chip display data RAM. It performs display data RAM
read/write operation with no external operating clock to minimize power consumption. In addition, because it contains
power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components.
2. FEATURES
Driver Output Circuits
On-chip Low Power Analog Circuit
♦ 312 segment outputs / 104 common outputs
♦ On-chip oscillator circuit
Applicable Duty Ratios
♦ Voltage converter (x2, x3, x4, x5, x6, x7, x8)
♦ Various partial display
♦ Voltage regulator(Temperature gradient= -0.119%/°C
♦ Partial window moving & data scrolling
+-10%)
Gray-Scale Display
♦ On-chip electronic contrast control function
♦ 4FRC & 31 PWM function circuit to display
♦ Voltage follower (LCD bias: 1/5 to 1/12)
♦ 64 gray-scale display.
Operating Voltage Range
On-chip Display Data RAM
♦ Supply voltage (VDD, VDD1): 2.4 to 3.3V
♦ Capacity: 104X104X16 =173,056bits
(VDD2, VDD3, VDD4, VDD5): 2.4 to
♦ 65K colors (RGB)=(565) mode
3.3V
♦ Dithered262k colors (RGB)=(666) mode
♦ LCD driving voltage (VOP = V0 - VSS): 3.76 to 18.0 V
♦ Dithered 16M colors (RGB)=(888) mode
♦ Suggested value of V0 is 12V~15V , bias =1/11
Microprocessor Interface
LCD driving voltage (EEPROM)
♦ 8/16-bit parallel bi-directional interface with 6800-series
♦ To store contrast adjustment value for better display
Package Type
or 8080-series
♦ 4-line serial interface (4-line-SIF)
♦ Application for COG
♦ 3-line serial interface (3-line-SIF)
ST7624
Ver 1.8
6800 , 8080 ,4-Line , 3-Line interface
1/98
2006/08/15
ST7624
001 com0/com0
002 com1/com2
003 com2/com4
556 VOUT
OUT
551 VOUT
550 VOUT
IN
Chip Size: 17,390 um x1,544 um
545
544
543
542
541
540
539
538
537
536
535
534
533
532
051 com50/com100
052 com51/com102
053 seg311
OUT
VOUT IN
CAP1P
CAP1N
CAP3P
CAP5P
CAP1N
CAP7P
CAP4P
CAP2N
CAP6P
CAP2N
CAP2P
TCAP
VDD5
l
Bump Pitch:
PAD NO 1 ~ 416: 40 um (COM/SEG)
PAD NO 417~443: 175um(NC)
PAD NO 444 ~ 556:110 um (I/O)
529 VDD5
528 VDD2
l
523
522
521
520
519
PAD NO.1~416: 25(x)um X 96(y)um
VDD2
VDD3
VDD3
VDD4
VSS
Bump size:
PAD No. 417~443: 158(x)um X 23(y)um
PAD N0. 444~556: 90(x)um X 40(y)um
506 VSS
505 VDD1
504 VDD
X
Y
(0,0)
501
500
499
498
497
496
495
494
493
492
491
490
489
488
487
486
485
484
483
482
481
480
479
478
477
476
475
474
473
472
471
470
469
468
467
466
465
464
463
462
461
460
459
458
457
456
455
454
453
452
451
VDD
XCS
SCL
SI
VDD
VSS
IF3
IF2
IF1
INTRS
CSEL
VDD
VSS
RST
E_RD
VDD
VSS
D15
D14
D13
D12
D11
D10
D9
D8
VDD
VSS
D7
D6
D5
D4
D3
D2
D1
D0
VDD
VSS
RW_WR
A0P
VDD
VSS
CLS
CL
VDD
VREF
VR
V4
V3
V2
V1
V0OUT
l
Bump Height: 17 um
l
Chip Thickness: 635um
(7000,-275)
30
45
60
15
15
30
75
unit: um
(680,-330)
61.75
20
90
40
20
25
40
30
(-8550,-600)
448 V0OUT
447 V0IN
unit: um
45
15
444 V0IN
30
443 NC
75
15
60
unit: um
23
96
158
25
Bump size of
PAD 1~416
unit: um
364 seg0
Bump size of
PAD 417~443
unit: um
40
90
Bump size of
PAD 444 ~ 556
unit: um
365 com52/com103
366 com53/com101
367 com54/com99
415 com102/com3
416 com103/com1
Ver 1.8
417 NC
2/98
2006/08/15
ST7624
4. Pad Center Coordinates
PAD
PIN Name
X
PAD
PIN Name
X
Y
COM[68]
7197.0
642.5
COM[35]
COM[70]
7157.0
642.5
037
COM[36]
COM[72]
7117.0
642.5
642.5
038
COM[37]
COM[74]
7077.0
642.5
8397.0
642.5
039
COM[38]
COM[76]
7037.0
642.5
COM[10]
8357.0
642.5
040
COM[39]
COM[78]
6997.0
642.5
COM[6]
COM[12]
8317.0
642.5
041
COM[40]
COM[80]
6957.0
642.5
008
COM[7]
COM[14]
8277.0
642.5
042
COM[41]
COM[82]
6917.0
642.5
009
COM[8]
COM[16]
8237.0
642.5
043
COM[42]
COM[84]
6877.0
642.5
010
COM[9]
COM[18]
8197.0
642.5
044
COM[43]
COM[86]
6837.0
642.5
011
COM[10]
COM[20]
8157.0
642.5
045
COM[44]
COM[88]
6797.0
642.5
012
COM[11]
COM[22]
8117.0
642.5
046
COM[45]
COM[90]
6757.0
642.5
013
COM[12]
COM[24]
8077.0
642.5
047
COM[46]
COM[92]
6717.0
642.5
014
COM[13]
COM[26]
8037.0
642.5
048
COM[47]
COM[94]
6677.0
642.5
015
COM[14]
COM[28]
7997.0
642.5
049
COM[48]
COM[96]
6637.0
642.5
016
COM[15]
COM[30]
7957.0
642.5
050
COM[49]
COM[98]
6597.0
642.5
017
COM[16]
COM[32]
7917.0
642.5
051
COM[50]
COM[100]
6557.0
642.5
018
COM[17]
COM[34]
7877.0
642.5
052
COM[51]
COM[102]
6517.0
642.5
019
COM[18]
COM[36]
7837.0
642.5
053
SEG[311]
6352.6
642.5
020
COM[19]
COM[38]
7797.0
642.5
054
SEG[310]
6312.6
642.5
021
COM[20]
COM[40]
7757.0
642.5
055
SEG[309]
6272.6
642.5
022
COM[21]
COM[42]
7717.0
642.5
056
SEG[308]
6232.6
642.5
023
COM[22]
COM[44]
7677.0
642.5
057
SEG[307]
6192.6
642.5
024
COM[23]
COM[46]
7637.0
642.5
058
SEG[306]
6152.6
642.5
025
COM[24]
COM[48]
7597.0
642.5
059
SEG[305]
6112.6
642.5
026
COM[25]
COM[50]
7557.0
642.5
060
SEG[304]
6072.6
642.5
027
COM[26]
COM[52]
7517.0
642.5
061
SEG[303]
6032.6
642.5
028
COM[27]
COM[54]
7477.0
642.5
062
SEG[302]
5992.6
642.5
029
COM[28]
COM[56]
7437.0
642.5
063
SEG[301]
5952.6
642.5
030
COM[29]
COM[58]
7397.0
642.5
064
SEG[300]
5912.6
642.5
031
COM[30]
COM[60]
7357.0
642.5
065
SEG[299]
5872.6
642.5
032
COM[31]
COM[62]
7317.0
642.5
066
SEG[298]
5832.6
642.5
033
COM[32]
COM[64]
7277.0
642.5
067
SEG[297]
5792.6
642.5
034
COM[33]
COM[66]
7237.0
642.5
068
SEG[296]
5752.6
642.5
No.
CSEL=0
001
COM[0]
COM[0]
8557.0
002
COM[1]
COM[2]
003
COM[2]
004
Y
No.
CSEL=0
CSEL=1
642.5
035
COM[34]
8517.0
642.5
036
COM[4]
8477.0
642.5
COM[3]
COM[6]
8437.0
005
COM[4]
COM[8]
006
COM[5]
007
Ver 1.8
CSEL=1
3/98
2006/08/15
ST7624
PAD
No.
PIN Name
CSEL=0
X
Y
PAD
No.
CSEL=1
PIN Name
CSEL=0
X
Y
CSEL=1
069
SEG[295]
5712.6
642.5
104
SEG[260]
4312.6
642.5
070
SEG[294]
5672.6
642.5
105
SEG[259]
4272.6
642.5
071
SEG[293]
5632.6
642.5
106
SEG[258]
4232.6
642.5
072
SEG[292]
5592.6
642.5
107
SEG[257]
4192.6
642.5
073
SEG[291]
5552.6
642.5
108
SEG[256]
4152.6
642.5
074
SEG[290]
5512.6
642.5
109
SEG[255]
4112.6
642.5
075
SEG[289]
5472.6
642.5
110
SEG[254]
4072.6
642.5
076
SEG[288]
5432.6
642.5
111
SEG[253]
4032.6
642.5
077
SEG[287]
5392.6
642.5
112
SEG[252]
3992.6
642.5
078
SEG[286]
5352.6
642.5
113
SEG[251]
3952.6
642.5
079
SEG[285]
5312.6
642.5
114
SEG[250]
3912.6
642.5
080
SEG[284]
5272.6
642.5
115
SEG[249]
3872.6
642.5
081
SEG[283]
5232.6
642.5
116
SEG[248]
3832.6
642.5
082
SEG[282]
5192.6
642.5
117
SEG[247]
3792.6
642.5
083
SEG[281]
5152.6
642.5
118
SEG[246]
3752.6
642.5
084
SEG[280]
5112.6
642.5
119
SEG[245]
3712.6
642.5
085
SEG[279]
5072.6
642.5
120
SEG[244]
3672.6
642.5
086
SEG[278]
5032.6
642.5
121
SEG[243]
3632.6
642.5
087
SEG[277]
4992.6
642.5
122
SEG[242]
3592.6
642.5
088
SEG[276]
4952.6
642.5
123
SEG[241]
3552.6
642.5
089
SEG[275]
4912.6
642.5
124
SEG[240]
3512.6
642.5
090
SEG[274]
4872.6
642.5
125
SEG[239]
3472.6
642.5
091
SEG[273]
4832.6
642.5
126
SEG[238]
3432.6
642.5
092
SEG[272]
4792.6
642.5
127
SEG[237]
3392.6
642.5
093
SEG[271]
4752.6
642.5
128
SEG[236]
3352.6
642.5
094
SEG[270]
4712.6
642.5
129
SEG[235]
3312.6
642.5
095
SEG[269]
4672.6
642.5
130
SEG[234]
3272.6
642.5
096
SEG[268]
4632.6
642.5
131
SEG[233]
3232.6
642.5
097
SEG[267]
4592.6
642.5
132
SEG[232]
3192.6
642.5
098
SEG[266]
4552.6
642.5
133
SEG[231]
3152.6
642.5
099
SEG[265]
4512.6
642.5
134
SEG[230]
3112.6
642.5
100
SEG[264]
4472.6
642.5
135
SEG[229]
3072.6
642.5
101
SEG[263]
4432.6
642.5
136
SEG[228]
3032.6
642.5
102
SEG[262]
4392.6
642.5
137
SEG[227]
2992.6
642.5
103
SEG[261]
4352.6
642.5
138
SEG[226]
2952.6
642.5
Ver 1.8
4/98
2006/08/15
ST7624
PAD
No.
PIN Name
CSEL=0
X
Y
PAD
No.
CSEL=1
PIN Name
CSEL=0
X
Y
CSEL=1
139
SEG[225]
2912.6
642.5
174
SEG[190]
1512.6
642.5
140
SEG[224]
2872.6
642.5
175
SEG[189]
1472.6
642.5
141
SEG[223]
2832.6
642.5
176
SEG[188]
1432.6
642.5
142
SEG[222]
2792.6
642.5
177
SEG[187]
1392.6
642.5
143
SEG[221]
2752.6
642.5
178
SEG[186]
1352.6
642.5
144
SEG[220]
2712.6
642.5
179
SEG[185]
1312.6
642.5
145
SEG[219]
2672.6
642.5
180
SEG[184]
1272.6
642.5
146
SEG[218]
2632.6
642.5
181
SEG[183]
1232.6
642.5
147
SEG[217]
2592.6
642.5
182
SEG[182]
1192.6
642.5
148
SEG[216]
2552.6
642.5
183
SEG[181]
1152.6
642.5
149
SEG[215]
2512.6
642.5
184
SEG[180]
1112.6
642.5
150
SEG[214]
2472.6
642.5
185
SEG[179]
1072.6
642.5
151
SEG[213]
2432.6
642.5
186
SEG[178]
1032.6
642.5
152
SEG[212]
2392.6
642.5
187
SEG[177]
992.6
642.5
153
SEG[211]
2352.6
642.5
188
SEG[176]
952.6
642.5
154
SEG[210]
2312.6
642.5
189
SEG[175]
912.6
642.5
155
SEG[209]
2272.6
642.5
190
SEG[174]
872.6
642.5
156
SEG[208]
2232.6
642.5
191
SEG[173]
832.6
642.5
157
SEG[207]
2192.6
642.5
192
SEG[172]
792.6
642.5
158
SEG[206]
2152.6
642.5
193
SEG[171]
752.6
642.5
159
SEG[205]
2112.6
642.5
194
SEG[170]
712.6
642.5
160
SEG[204]
2072.6
642.5
195
SEG[169]
672.6
642.5
161
SEG[203]
2032.6
642.5
196
SEG[168]
632.6
642.5
162
SEG[202]
1992.6
642.5
197
SEG[167]
592.6
642.5
163
SEG[201]
1952.6
642.5
198
SEG[166]
552.6
642.5
164
SEG[200]
1912.6
642.5
199
SEG[165]
512.6
642.5
165
SEG[199]
1872.6
642.5
200
SEG[164]
472.6
642.5
166
SEG[198]
1832.6
642.5
201
SEG[163]
432.6
642.5
167
SEG[197]
1792.6
642.5
202
SEG[162]
392.6
642.5
168
SEG[196]
1752.6
642.5
203
SEG[161]
352.6
642.5
169
SEG[195]
1712.6
642.5
204
SEG[160]
312.6
642.5
170
SEG[194]
1672.6
642.5
205
SEG[159]
272.6
642.5
171
SEG[193]
1632.6
642.5
206
SEG[158]
232.6
642.5
172
SEG[192]
1592.6
642.5
207
SEG[157]
192.6
642.5
173
SEG[191]
1552.6
642.5
208
SEG[156]
152.6
642.5
Ver 1.8
5/98
2006/08/15
ST7624
PAD
No.
PIN Name
CSEL=0
X
Y
PAD
No.
CSEL=1
PIN Name
CSEL=0
X
Y
CSEL=1
209
SEG[155]
112.6
642.5
244
SEG[120]
-1287.4
642.5
210
SEG[154]
72.6
642.5
245
SEG[119]
-1327.4
642.5
211
SEG[153]
32.6
642.5
246
SEG[118]
-1367.4
642.5
212
SEG[152]
-7.4
642.5
247
SEG[117]
-1407.4
642.5
213
SEG[151]
-47.4
642.5
248
SEG[116]
-1447.4
642.5
214
SEG[150]
-87.4
642.5
249
SEG[115]
-1487.4
642.5
215
SEG[149]
-127.4
642.5
250
SEG[114]
-1527.4
642.5
216
SEG[148]
-167.4
642.5
251
SEG[113]
-1567.4
642.5
217
SEG[147]
-207.4
642.5
252
SEG[112]
-1607.4
642.5
218
SEG[146]
-247.4
642.5
253
SEG[111]
-1647.4
642.5
219
SEG[145]
-287.4
642.5
254
SEG[110]
-1687.4
642.5
220
SEG[144]
-327.4
642.5
255
SEG[109]
-1727.4
642.5
221
SEG[143]
-367.4
642.5
256
SEG[108]
-1767.4
642.5
222
SEG[142]
-407.4
642.5
257
SEG[107]
-1807.4
642.5
223
SEG[141]
-447.4
642.5
258
SEG[106]
-1847.4
642.5
224
SEG[140]
-487.4
642.5
259
SEG[105]
-1887.4
642.5
225
SEG[139]
-527.4
642.5
260
SEG[104]
-1927.4
642.5
226
SEG[138]
-567.4
642.5
261
SEG[103]
-1967.4
642.5
227
SEG[137]
-607.4
642.5
262
SEG[102]
-2007.4
642.5
228
SEG[136]
-647.4
642.5
263
SEG[101]
-2047.4
642.5
229
SEG[135]
-687.4
642.5
264
SEG[100]
-2087.4
642.5
230
SEG[134]
-727.4
642.5
265
SEG[99]
-2127.4
642.5
231
SEG[133]
-767.4
642.5
266
SEG[98]
-2167.4
642.5
232
SEG[132]
-807.4
642.5
267
SEG[97]
-2207.4
642.5
233
SEG[131]
-847.4
642.5
268
SEG[96]
-2247.4
642.5
234
SEG[130]
-887.4
642.5
269
SEG[95]
-2287.4
642.5
235
SEG[129]
-927.4
642.5
270
SEG[94]
-2327.4
642.5
236
SEG[128]
-967.4
642.5
271
SEG[93]
-2367.4
642.5
237
SEG[127]
-1007.4
642.5
272
SEG[92]
-2407.4
642.5
238
SEG[126]
-1047.4
642.5
273
SEG[91]
-2447.4
642.5
239
SEG[125]
-1087.4
642.5
274
SEG[90]
-2487.4
642.5
240
SEG[124]
-1127.4
642.5
275
SEG[89]
-2527.4
642.5
241
SEG[123]
-1167.4
642.5
276
SEG[88]
-2567.4
642.5
242
SEG[122]
-1207.4
642.5
277
SEG[87]
-2607.4
642.5
243
SEG[121]
-1247.4
642.5
278
SEG[86]
-2647.4
642.5
Ver 1.8
6/98
2006/08/15
ST7624
PAD
No.
PIN Name
CSEL=0
X
Y
PAD
No.
CSEL=1
PIN Name
CSEL=0
X
Y
CSEL=1
279
SEG[85]
-2687.4
642.5
314
SEG[50]
-4087.4
642.5
280
SEG[84]
-2727.4
642.5
315
SEG[49]
-4127.4
642.5
281
SEG[83]
-2767.4
642.5
316
SEG[48]
-4167.4
642.5
282
SEG[82]
-2807.4
642.5
317
SEG[47]
-4207.4
642.5
283
SEG[81]
-2847.4
642.5
318
SEG[46]
-4247.4
642.5
284
SEG[80]
-2887.4
642.5
319
SEG[45]
-4287.4
642.5
285
SEG[79]
-2927.4
642.5
320
SEG[44]
-4327.4
642.5
286
SEG[78]
-2967.4
642.5
321
SEG[43]
-4367.4
642.5
287
SEG[77]
-3007.4
642.5
322
SEG[42]
-4407.4
642.5
288
SEG[76]
-3047.4
642.5
323
SEG[41]
-4447.4
642.5
289
SEG[75]
-3087.4
642.5
324
SEG[40]
-4487.4
642.5
290
SEG[74]
-3127.4
642.5
325
SEG[39]
-4527.4
642.5
291
SEG[73]
-3167.4
642.5
326
SEG[38]
-4567.4
642.5
292
SEG[72]
-3207.4
642.5
327
SEG[37]
-4607.4
642.5
293
SEG[71]
-3247.4
642.5
328
SEG[36]
-4647.4
642.5
294
SEG[70]
-3287.4
642.5
329
SEG[35]
-4687.4
642.5
295
SEG[69]
-3327.4
642.5
330
SEG[34]
-4727.4
642.5
296
SEG[68]
-3367.4
642.5
331
SEG[33]
-4767.4
642.5
297
SEG[67]
-3407.4
642.5
332
SEG[32]
-4807.4
642.5
298
SEG[66]
-3447.4
642.5
333
SEG[31]
-4847.4
642.5
299
SEG[65]
-3487.4
642.5
334
SEG[30]
-4887.4
642.5
300
SEG[64]
-3527.4
642.5
335
SEG[29]
-4927.4
642.5
301
SEG[63]
-3567.4
642.5
336
SEG[28]
-4967.4
642.5
302
SEG[62]
-3607.4
642.5
337
SEG[27]
-5007.4
642.5
303
SEG[61]
-3647.4
642.5
338
SEG[26]
-5047.4
642.5
304
SEG[60]
-3687.4
642.5
339
SEG[25]
-5087.4
642.5
305
SEG[59]
-3727.4
642.5
340
SEG[24]
-5127.4
642.5
306
SEG[58]
-3767.4
642.5
341
SEG[23]
-5167.4
642.5
307
SEG[57]
-3807.4
642.5
342
SEG[22]
-5207.4
642.5
308
SEG[56]
-3847.4
642.5
343
SEG[21]
-5247.4
642.5
309
SEG[55]
-3887.4
642.5
344
SEG[20]
-5287.4
642.5
310
SEG[54]
-3927.4
642.5
345
SEG[19]
-5327.4
642.5
311
SEG[53]
-3967.4
642.5
346
SEG[18]
-5367.4
642.5
312
SEG[52]
-4007.4
642.5
347
SEG[17]
-5407.4
642.5
313
SEG[51]
-4047.4
642.5
348
SEG[16]
-5447.4
642.5
Ver 1.8
7/98
2006/08/15
ST7624
PAD
No.
PIN Name
CSEL=0
X
Y
PAD
CSEL=1
PIN Name
No.
CSEL=0
CSEL=1
X
Y
349
SEG[15]
-5487.4
642.5
384
COM[71]
COM[65]
-7245.75
642.5
350
SEG[14]
-5527.4
642.5
385
COM[72]
COM[63]
-7285.75
642.5
351
SEG[13]
-5567.4
642.5
386
COM[73]
COM[61]
-7325.75
642.5
352
SEG[12]
-5607.4
642.5
387
COM[74]
COM[59]
-7365.75
642.5
353
SEG[11]
-5647.4
642.5
388
COM[75]
COM[57]
-7405.75
642.5
354
SEG[10]
-5687.4
642.5
389
COM[76]
COM[55]
-7445.75
642.5
355
SEG[9]
-5727.4
642.5
390
COM[77]
COM[53]
-7485.75
642.5
356
SEG[8]
-5767.4
642.5
391
COM[78]
COM[51]
-7525.75
642.5
357
SEG[7]
-5807.4
642.5
392
COM[79]
COM[49]
-7565.75
642.5
358
SEG[6]
-5847.4
642.5
393
COM[80]
COM[47]
-7605.75
642.5
359
SEG[5]
-5887.4
642.5
394
COM[81]
COM[45]
-7645.75
642.5
360
SEG[4]
-5927.4
642.5
395
COM[82]
COM[43]
-7685.75
642.5
361
SEG[3]
-5967.4
642.5
396
COM[83]
COM[41]
-7725.75
642.5
362
SEG[2]
-6007.4
642.5
397
COM[84]
COM[39]
-7765.75
642.5
363
SEG[1]
-6047.4
642.5
398
COM[85]
COM[37]
-7805.75
642.5
364
SEG[0]
-6087.4
642.5
399
COM[86]
COM[35]
-7845.75
642.5
365
COM[52]
COM[103]
-6485.75
642.5
400
COM[87]
COM[33]
-7885.75
642.5
366
COM[53]
COM[101]
-6525.75
642.5
401
COM[88]
COM[31]
-7925.75
642.5
367
COM[54]
COM[99]
-6565.75
642.5
402
COM[89]
COM[29]
-7965.75
642.5
368
COM[55]
COM[97]
-6605.75
642.5
403
COM[90]
COM[27]
-8005.75
642.5
369
COM[56]
COM[95]
-6645.75
642.5
404
COM[91]
COM[25]
-8045.75
642.5
370
COM[57]
COM[93]
-6685.75
642.5
405
COM[92]
COM[23]
-8085.75
642.5
371
COM[58]
COM[91]
-6725.75
642.5
406
COM[93]
COM[21]
-8125.75
642.5
372
COM[59]
COM[89]
-6765.75
642.5
407
COM[94]
COM[19]
-8165.75
642.5
373
COM[60]
COM[87]
-6805.75
642.5
408
COM[95]
COM[17]
-8205.75
642.5
374
COM[61]
COM[85]
-6845.75
642.5
409
COM[96]
COM[15]
-8245.75
642.5
375
COM[62]
COM[83]
-6885.75
642.5
410
COM[97]
COM[13]
-8285.75
642.5
376
COM[63]
COM[81]
-6925.75
642.5
411
COM[98]
COM[11]
-8325.75
642.5
377
COM[64]
COM[79]
-6965.75
642.5
412
COM[99]
COM[9]
-8365.75
642.5
378
COM[65]
COM[77]
-7005.75
642.5
413
COM[100]
COM[7]
-8405.75
642.5
379
COM[66]
COM[75]
-7045.75
642.5
414
COM[101]
COM[5]
-8445.75
642.5
380
COM[67]
COM[73]
-7085.75
642.5
415
COM[102]
COM[3]
-8485.75
642.5
381
COM[68]
COM[71]
-7125.75
642.5
416
COM[103]
COM[1]
-8525.75
642.5
382
COM[69]
COM[69]
-7165.75
642.5
417
NC
-8534.45
-679.5
383
COM[70]
COM[67]
-7205.75
642.5
418
NC
-8359.45
-679.5
Ver 1.8
8/98
2006/08/15
ST7624
PAD
No.
PIN Name
CSEL=0
X
Y
PAD
No.
CSEL=1
PIN Name
CSEL=0
X
Y
CSEL=1
419
NC
-8184.45
-679.5
454
V3
-2695.58
-671.0
420
NC
-8009.45
-679.5
455
V4
-2585.58
-671.0
421
NC
-7834.45
-679.5
456
VR
-2475.58
-671.0
422
NC
-7659.45
-679.5
457
VREF
-2365.58
-671.0
423
NC
-7484.45
-679.5
458
VDD
-2255.58
-671.0
424
NC
-7309.45
-679.5
459
CL
-2145.58
-671.0
425
NC
-7134.45
-679.5
460
CLS
-2035.58
-671.0
426
NC
-6959.45
-679.5
461
VSS
-1925.58
-671.0
427
NC
-6784.45
-679.5
462
VDD
-1815.58
-671.0
428
NC
-6609.45
-679.5
463
A0
-1705.58
-671.0
429
NC
-6434.45
-679.5
464
RW_WR
-1595.58
-671.0
430
NC
-6259.45
-679.5
465
VSS
-1485.58
-671.0
431
NC
-6084.45
-679.5
466
VDD
-1375.58
-671.0
432
NC
-5909.45
-679.5
467
D0
-1265.58
-671.0
433
NC
-5734.45
-679.5
468
D1
-1155.58
-671.0
434
NC
-5559.45
-679.5
469
D2
-1045.58
-671.0
435
NC
-5384.45
-679.5
470
D3
-935.58
-671.0
436
NC
-5209.45
-679.5
471
D4
-825.58
-671.0
437
NC
-5034.45
-679.5
472
D5
-715.58
-671.0
438
NC
-4859.45
-679.5
473
D6
-605.58
-671.0
439
NC
-4684.45
-679.5
474
D7
-495.58
-671.0
440
NC
-4509.45
-679.5
475
VSS
-385.58
-671.0
441
NC
-4334.45
-679.5
476
VDD
-275.58
-671.0
442
NC
-4159.45
-679.5
477
D8
-165.58
-671.0
443
NC
-3984.45
-679.5
478
D9
-55.58
-671.0
444
V0IN
-3795.58
-671.0
479
D10
54.42
-671.0
445
V0IN
-3685.58
-671.0
480
D11
164.42
-671.0
446
V0IN
-3575.58
-671.0
481
D12
274.42
-671.0
447
V0IN
-3465.58
-671.0
482
D13
384.42
-671.0
448
V0OUT
-3355.58
-671.0
483
D14
494.42
-671.0
449
V0OUT
-3245.58
-671.0
484
D15
604.42
-671.0
450
V0OUT
-3135.58
-671.0
485
VSS
714.42
-671.0
451
V0OUT
-3025.58
-671.0
486
VDD
824.42
-671.0
452
V1
-2915.58
-671.0
487
E_RD
934.42
-671.0
453
V2
-2805.58
-671.0
488
RST
1044.42
-671.0
Ver 1.8
9/98
2006/08/15
ST7624
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
489
VSS
1154.42
-671.0
523
VDD2
4894.42
-671.0
490
VDD
1264.42
-671.0
524
VDD2
5004.42
-671.0
491
CSEL
1374.42
-671.0
525
VDD2
5114.42
-671.0
492
INTRS
1484.42
-671.0
526
VDD2
5224.42
-671.0
493
IF1
1594.42
-671.0
527
VDD2
5334.42
-671.0
494
IF2
1704.42
-671.0
528
VDD2
5444.42
-671.0
495
IF3
1814.42
-671.0
529
VDD5
5554.42
-671.0
496
VSS
1924.42
-671.0
530
VDD5
5664.42
-671.0
497
VDD
2034.42
-671.0
531
VDD5
5774.42
-671.0
498
SI
2144.42
-671.0
532
VDD5
5884.42
-671.0
499
SCL
2254.42
-671.0
533
TCAP
5994.42
-671.0
500
/CS
2364.42
-671.0
534
CAP2P
6104.42
-671.0
501
VDD
2474.42
-671.0
535
CAP2N
6214.42
-671.0
502
VDD
2584.42
-671.0
536
CAP6P
6324.42
-671.0
503
VDD
2694.42
-671.0
537
CAP2N
6434.42
-671.0
504
VDD
2804.42
-671.0
538
CAP4P
6544.42
-671.0
505
VDD1
2914.42
-671.0
539
CAP7P
6654.42
-671.0
506
VSS
3024.42
-671.0
540
CAP1N
6764.42
-671.0
507
VSS
3134.42
-671.0
541
CAP5P
6874.42
-671.0
508
VSS
3244.42
-671.0
542
CAP3P
6984.42
-671.0
509
VSS
3354.42
-671.0
543
CAP1N
7094.42
-671.0
510
VSS
3464.42
-671.0
544
CAP1P
7204.42
-671.0
511
VSS
3574.42
-671.0
545
VOUTIN
7314.42
-671.0
512
VSS
3684.42
-671.0
546
VOUTIN
7424.42
-671.0
513
VSS
3794.42
-671.0
547
VOUTIN
7534.42
-671.0
514
VSS
3904.42
-671.0
548
VOUTIN
7644.42
-671.0
515
VSS
4014.42
-671.0
549
VOUTIN
7754.42
-671.0
516
VSS
4124.42
-671.0
550
VOUTIN
7864.42
-671.0
517
VSS
4234.42
-671.0
551
VOUTOUT
7974.42
-671.0
518
VSS
4344.42
-671.0
552
VOUTOUT
8084.42
-671.0
519
VSS
4454.42
-671.0
553
VOUTOUT
8194.42
-671.0
520
VDD4
4564.42
-671.0
554
VOUTOUT
8304.42
-671.0
521
VDD3
4674.42
-671.0
555
VOUTOUT
8414.42
-671.0
522
VDD3
4784.42
-671.0
556
VOUTOUT
8524.42
-671.0
Ver 1.8
10/98
2006/08/15
ST7624
5. BLOCK DIAGRAM
SEG0 TO SEG311
COM0 TO COM103
VDD1
VDD
V0 In
V1
V2
V3
V4
SEGMENT DRIVERS
COMMON
DRIVERS
CSEL
VSS
DATA LATCHES
COMMON
OUTPUT
CONTROLLER
CIRCUIT
V/F
Circuit
FRC/PWM FUNCTION
CIRCUIT
V0 out
VREF
INTRS
RESET
V/R
Circuit
VR
OSCILLATOR
DISPLAY DATA RAM
(DDRAM)
[104X104X16]
TIMING
GENERATOR
VOUTin
VOUTout
Cap1N
Cap2P
Cap2N
Cap3P
Cap4P
Cap5P
Cap6P
Cap7P
CLS
CL
DISPLAY
ADDRESS
COUNTER
V/C
Circuit
VDD2
VDD3
VDD4
VDD5
ADDRESS COUNTER
OTP
DATA
REGISTER
INSTRUCTION
REGISTER
BUS
HOLDER
INSTRUCTION
DECODER
MPU INTERFACE(PARALLEL & SERIAL)
TCAP
D0 to D15
SI
11/98
SCL
E_RD
RW_WR
A0
/CS
/RST
IF3
IF2
IF1
Ver 1.8
2006/08/15
ST7624
6. PIN DESCRIPTION
6.1 POWER SUPPLY
Name
I/O
Description
VDD
Supply
Power supply for logic circuit
VDD1
Supply
Power supply for OSC circuit
VDD2
Supply
Power supply for Booster Circuit
VDD3
Supply
Power supply for LCD.
VDD4
Supply
Power supply for LCD.
VDD5
Supply
Power supply for LCD.
VSS
Supply
Ground. Ground system should be connected together.
VOUTOUT
Supply
VOUTIN
Supply
If the internal voltage generator is used, the VOUTIN & VOUTOUT must be connected together.
If an external supply is used, this pin must be left open.
An external LCD supply voltage can be supplied using the VOUTIN pad. In this case, VOUTOUT has to
be left open, and the internal voltage generator has to be programmed to zero. (SET register VC=0)
LCD driver supply voltages
The voltage determined by LCD pixel is impedance-converted by an operational amplifier for
application.
V0In
V0In & V0out should be connected together.
V0out
Voltages should have the following relationship;
V1
I/O
V2
V0 ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS
When the internal power circuit is active, these voltages are generated as following table according
V3
to the state of LCD bias.
V4
LCD bias
V1
V2
V3
V4
1/N bias
(N-1) / N x V0
(N-2) / N x V0
(2/N) x V0
(1/N) x V0
NOTE: N = 5 to 12
6.2 LCD Power Supply Pins
Pin Name
I/O
Function
CAP1P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
CAP1N
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal.
CAP2P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
CAP2N
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal.
CAP3P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
CAP4P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
CAP5P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
Ver 1.8
12/98
2006/08/15
ST7624
CAP6P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
CAP7P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
VREF
O
Reference voltage output for monitor only. Left it open.
6.3 SYSTEM CONTROL
Name
I/O
CLS
I
Description
When using internal clock oscillator, connect CLS to VDD.
When using external clock oscillator, connect CLS to VSS.
When using internal clock oscillator, it’s oscillator output.
CL
I/O
When using external clock oscillator, it’s clock input.
This terminal selects the resistors for the V0 voltage level adjustment.
INTRS
I
VR
I
INTRS = “H”: Use the internal resistors
No use. Left it open.
Select Common output direction.
CSEL=”L”, COM0~COM51 is in one side, COM52~COM103 is in the opposite side.
CSEL
I
CSEL=”H”, COM2n(even number) is in the one side, COM2n+1 (odd number) is in the opposite side.
Reference “Pad Center Coordinates”
TCAP
I/O
Test pin. Left it open.
6.4 MICROPROCESSOR INTERFACE
Name
I/O
RST
I
Description
Reset input pin
When RST is “L”, initialization is executed.
Parallel / Serial data input select input
IF[3:1]
I
IF1
IF2
IF3
MPU interface type
H
H
H
80 series 16-bit parallel
H
H
L
80 series 8-bit parallel
H
L
L
68 series 16-bit parallel
L
H
H
68 series 8-bit parallel
L
L
H
9-bit serial (3 line)
L
L
L
8-bit serial (4 line)
Chip select input pins
/CS
I
Data/instruction I/O is enabled only when /CS is "L". When chip select is non-active, D0 to D15
become high impedance while parallel interface.
Register select input pin
A0
Ver 1.8
I
− A0 = "H": D0 to D15 or SI are display data
13/98
2006/08/15
ST7624
− A0 = "L": D0 to D15 or SI are control data
In 3-line interface contact A0 to VSS or VDD, do not let it floating.
Read / Write execution control pin
MPU type
RW_WR
Description
Read / Write control input pin
6800-series
RW_WR
RW = “H” : read
RW
RW = “L” : write
I
Write enable clock input pin
8080-series
/WR
The data on D0 to D15 are latched at the
rising edge of the /WR signal.
When in serial interface, must contact it to VSS or VDD.
Read / Write execution control pin
MPU Type
E_RD
Description
Read / Write control input pin
RW = “H”: When E is “H”, D0 to D15 are in an output
6800-series
E_RD
E
I
status.
RW = “L”: The data on D0 to D15 are latched at the
falling edge of the E signal.
Read enable clock input pin
8080-series
/RD
When /RD is “L”, D0 to D15 are in an output status.
When in serial interface, must contact it to VSS or VDD.
Name
I/O
Description
They connect to the standard 8-bit or 16 bit MPU bus via the 8/16 –bit bi-directional bus.
When the following interface is selected and the /CS pin is high, the following pins become high
impedance.
D15 to D0
I/O
1.
8-bit parallel: D15-D8 are in the state of high impedance, should contact to “H” or “L”level.
2.
Serial interface: D15-D0 are in the state of high impedance, should contact to “H” or
“L”level.
This pin is used to input serial data when the serial interface is selected.(3 line and 4 line)
SI
I
When not use contact it to VSS or VDD.
This pin is used to input serial clock when the serial interface is selected.
SCL
I
The data is converted in the rising edge. (3 line and 4 line)
When not use contact it to VSS or VDD.
NOTE: Microprocessor interface pins should not be floating in any operation mode.
Ver 1.8
14/98
2006/08/15
ST7624
6.6 LCD DRIVER OUTPUTS
Name
I/O
Description
LCD segment driver outputs
The display data and the M signal control the output voltage of segment driver.
Segment driver output voltage
SEG0
Display data
M (Internal)
to
Normal display
Reverse display
O
SEG311
H
H
V0
V2
H
L
VSS
V3
L
H
V2
V0
L
L
V3
VSS
VSS
VSS
Power save mode
LCD common driver outputs
The internal scanning data and M signal control the output voltage of common driver.
Scan data
M (Internal)
Common driver output voltage
H
H
VSS
H
L
V0
L
H
V1
L
L
V4
COM0
to
O
COM103
Power save mode
VSS
ST7624 I/O PIN ITO Resister Limitation
PIN Name
ITO Resister
INTRS,IF[3:1],CLS,CSEL
No Limitation
VREF, TCAP
Floating
Vdd, Vdd1~Vdd5, Vss, VOUTIN, VOUTOUT,V0in,V0out,CL,VR
<100Ω
V0in,V0out,V1,V2, V3, V4
CAP1P,CAP1N,CAP2P,CAP2N,CAP3P,CAP4P,CAP5P,CAP6P,CAP7P
<100Ω
A0, RW_WR, E_RD, /CS, D0 …D15, SCL, SI
<1KΩ
RST
<10KΩ
Ver 1.8
15/98
2006/08/15
ST7624
7. FUNCTIONAL DESCRIPTION
7.1 MICROPROCESSOR INTERFACE
Chip Select Input
There is /CS pin for chip selection. The ST7624 can interface with an MPU when /CS is "L".In case of serial interface, the
internal shift register and the counter are reset.
7.1.1 Selecting Parallel / Serial Interface
ST7624 has seven types of interface with an MPU, which are three serial and four parallel interfaces. This parallel or serial
interface is determined by IF pin as shown in table 7.1.1.
Table 7.1.1 Parallel / Serial Interface Mode
IF1
IF2
IF3
Interface type
/CS
A0
/RD(E)
/WR(R/W)
D15 to D8 D7 to D0
SI
SCL
H
H
H
80 serial 16-bit parallel
/CS
A0
/RD
/WR
D15 to D8 D7 to D0
--
--
H
H
L
80 serial 8-bit parallel
/CS
A0
/RD
/WR
D7 to D0
--
--
H
L
L
68 serial 16-bit parallel
/CS
A0
E
R/W
D15 to D8 D7 to D0
--
--
L
H
H
68 serial 8-bit parallel
/CS
A0
E
R/W
--
--
L
L
H
9-bit SPI mode (3 line)
/CS
--
--
--
--
SI
SCL
L
L
L
8-bit SPI mode (4 line)
/CS
A0
--
--
--
SI
SCL
--
--
D7 to D0
--:Must be fixed to either H or L.
NOTE: When these pins are set to any other combination, A0, E_RD, and RW_WR inputs are disabled and D0 to D15 are
to be high impedance.
7.1.2 8- or 16-bit Parallel Interface
The ST7624 identifies type of the data bus signals according to combinations of A0, /RD (E) and /WR (W/R) signals, as
shown in table 7.1.2.
Table 7.1.2 Parallel Data Transfer
Common
6800-series
8080-series
Description
A0
R/W
E
/RD
/WR
H
H
H
L
H
Display data read out
H
L
H
H
L
Display data write
L
H
H
L
H
Register status read
L
L
H
H
L
Writes to internal register (instruction)
Relation between Data Bus and Gradation Data
ST7624 offers the 65K color display, dithered 262K color display, and dithered 16M color display.
When using 65K, 262K, and 16M color, you can specify color for each of R, G, B using the palette function.
Ver 1.8
16/98
2006/08/15
ST7624
Use the command for switching between these modes.
(1) 65K color display
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGG
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGBBBBB
2nd write
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
2. 16-bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGGGGGBBBBB (16 bits)
Data is acquired through signal write operation and then written to the display RAM.
(2) 262K color display
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXX
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGXX
2nd write
D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXX
3rd write
A single pixel of data is read after the third write operation as shown, and it is written in the display RAM.
2. 16 bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXXGGGGGGXX
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXXXXXXXXXXXX
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
“XXXX” are dummy bits, and they are ignored for display.
(3) 16M color display
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRR
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGGG
2nd write
D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBB
3rd write
A single pixel of data is read after the third write operation as shown, and it is written in the display RAM.
2. 16 bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRRGGGGGGGG
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBBXXXXXXXX
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
Ver 1.8
17/98
2006/08/15
ST7624
7.1.3 8- and 9-bit Serial Interface
The 8-bit serial interface uses four pins /CS, SI, SCL, and A0 to enter commands and data. Meanwhile, the 9-bit serial
interface uses three pins /CS, SI and SCL for the same purpose.
Data read is not available with the serial interface. Data entered must be 8 bits. Refer to the following chart for entering
commands, parameters or gray-scale data.
The relation between gray-scale data and data bus in the serial input is the same as that in the 8-bit parallel interface mode
at every gradation.
(1) 8-bit serial interface (4 line )
When entering data (parameters): A0= HIGH at the rising edge of the 8th SCL.
When entering command: A0= LOW at the rising edge of the 8th SCL
/CS
SI
D7
D6
D5
D4
D3
D2
D1
D0
1
2
3
4
5
6
7
8
D7
D6
1
2
SCL
A0
(2) 9-bit serial interface (3 line )
When entering data (parameters): SI= HIGH at the rising edge of the 1st SCL.
When entering command: SI= LOW at the rising edge of the 1st SCL.
/CS
SI
A0
D7
D6
D5
D4
D3
D2
D1
D0
A0
D7
D6
1
2
3
4
5
6
7
8
9
1
2
3
SCL
l
If /CS is caused to HIGH before 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before entering
succeeding sets of data, you must correctly input the data concerned again.
l
In order to avoid data transfer error due to incoming noise, it is recommended to set /CS at HIGH on byte basis to
initialize the serial-to-parallel conversion counter and the register.
l
When executing the command RAMWR, set /CS to HIGH after writing the last address (after starting the 9th pulse in
case of 9-bit serial input or after starting the 8th pulse in case of 8-bit serial input).
Ver 1.8
18/98
2006/08/15
ST7624
7-2 ACCESS TO DDRAM AND INTERNAL REGISTERS
ST7624 realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the bus
holder attached to the internal, requiring the cycle time alone without needing the wait time.
For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the
DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is
dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system bus
in the succeeding read cycle. Fig. 7.2.1 illustrates these relations.
MPU signal
Write
Operation
A0
RW_WR
DATA
N
D(N)
D(N+1) D(N+2)
D(N+3)
N
D(N)
D(N+1)
D(N+2)
D(N+3)
N
N+1
N+2
N+3
Dummy
D(N)
Internal signals
RW_WR
BUS HOLDER
COLUMN ADDRESS
MPU signal
Read
Operation
A0
RW_WR
E_RD
DATA
N
D(N+1)
Internal signals
RW_WR
E_RD
BUS HOLDER
N
COLUMN ADDRESS
N
D(N)
D(N+1)
D(N+2)
D(N)
D(N+1)
D(N+2)
Fig 7.2.1
Ver 1.8
19/98
2006/08/15
ST7624
7-3 DISPLAY DATA RAM (DDRAM)
7.3.1 DDRAM
It is 104 X 104 X 16 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the page
address and column address. Since display data from MCU D7 to D0 and D15 to D8 correspond to one or two pixels of
RGB, data transfer related restrictions are reduced, realizing the display flexing.
The RAM on ST7624 is separated to a block per 4 lines to allow the display system to process data on the block basis.
MPU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for the
liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM
configuration.
Memory Map (When using the 65Kcolor. 8-bit mode,)
RGB alignment (Command of data control parameter2=000)
Data control command (BCH)
Column
P11:0(DATCTL)
LCD
read
P11:1(DATCTL)
direction
Color
Data
Page
0
1
103
103
102
0
R
G
B
R
G
B
R
G
B
D7
D2
D4
D7
D2
D4
D7
D2
D4
D6
D1
D3
D6
D1
D3
D6
D1
D3
D5
D0
D2
D5
D0
D2
D5
D0
D2
P10:0
P10:1
D4
D7
D1
D4
D7
D1
D4
D7
D1
(DATCTL)
(DATCTL)
D3
D6
D0
D3
D6
D0
D3
D6
D0
Block
D5
0
1
24
25
SEGout
0
103
1
102
2
101
3
100
4
99
5
98
6
97
7
96
96
7
97
6
98
5
99
4
100
3
101
2
102
1
103
0
0
D5
1
2
3
4
D5
5
309
310
311
You can change position of R and B with DATCTL command.
Ver 1.8
20/98
2006/08/15
ST7624
Memory Map (When using the 65K color. 16-bit mode)
RGB alignment (Command of data control parameter2=000)
Data control command (BCH)
Column
P11:0(DATCTL)
LCD
read
P11:1(DATCTL)
direction
Color
Data
Page
Block
0
1
103
103
102
0
R
G
B
R
G
B
R
G
B
D15
D10
D4
D15
D10
D4
D15
D10
D4
D14
D9
D3
D14
D9
D3
D14
D9
D3
D13
D8
D2
D13
D8
D2
D13
D8
D2
P10:0
P10:1
D12
D7
D1
D12
D7
D1
D12
D7
D1
(DATCTL)
(DATCTL)
D11
D6
D0
D11
D6
D0
D11
D6
D0
D5
0
1
24
25
SEGout
0
103
1
102
2
101
3
100
4
99
5
98
6
97
7
96
96
7
97
6
98
5
99
4
100
3
101
2
102
1
103
0
0
D5
1
2
3
4
D5
5
309
310
311
You can change position of R and B with DATCTL command.
Ver 1.8
21/98
2006/08/15
ST7624
Memory Map (When using the 262K color. 8-bit mode,)
RGB alignment (Command of data control parameter2=000)
Data control command (BCH)
Column
P11:0(DATCTL)
LCD
read
P11:1(DATCTL)
direction
Color
Data
Page
Block
0
1
24
25
SEGout
0
1
103
103
102
0
R
G
B
R
G
B
R
G
B
D7
D7
D7
D7
D7
D7
D7
D7
D7
D6
D6
D6
D6
D6
D6
D6
D6
D6
D5
D5
D5
D5
D5
D5
D5
D5
D5
P10:0
P10:1
D4
D4
D4
D4
D4
D4
D4
D4
D4
(DATCTL)
(DATCTL)
D3
D3
D3
D3
D3
D3
D3
D3
D3
D2
D2
D2
D2
D2
D2
D2
D2
D2
0
1
2
3
4
5
309
310
311
0
103
1
102
2
101
3
100
4
99
5
98
6
97
7
96
96
7
97
6
98
5
99
4
100
3
101
2
102
1
103
0
You can change position of R and B with DATCTL command.
Ver 1.8
22/98
2006/08/15
ST7624
Memory Map (When using the 262K color. 16-bit mode)
RGB alignment (Command of data control parameter2=000)
Data control command (BCH)
Column
P11:0(DATCTL)
LCD
read
P11:1(DATCTL)
direction
Color
Data
Page
Block
0
1
24
25
SEGout
0
1
103
103
102
0
R
G
B
R
G
B
R
G
B
D15
D7
D15
D15
D7
D15
D15
D7
D15
D14
D6
D14
D14
D6
D14
D14
D6
D14
D13
D5
D13
D13
D5
D13
D13
D5
D13
P10:0
P10:1
D12
D4
D12
D12
D4
D12
D12
D4
D12
(DATCTL)
(DATCTL)
D11
D3
D11
D11
D3
D11
D11
D3
D11
D10
D2
D10
D10
D2
D10
D10
D2
D10
0
1
2
3
4
5
309
310
311
0
103
1
102
2
101
3
100
4
99
5
98
6
97
7
96
96
7
97
6
98
5
99
4
100
3
101
2
102
1
103
0
You can change position of R and B with DATCTL command.
Ver 1.8
23/98
2006/08/15
ST7624
Memory Map (When using the 16M color. 8-bit mode,)
RGB alignment (Command of data control parameter2=000)
Data control command (BCH)
Column
P11:0(DATCTL)
LCD
read
P11:1(DATCTL)
direction
Color
Data
Page
Block
0
1
24
25
SEGout
0
1
103
103
102
0
R
G
B
R
G
B
R
G
B
D7
D7
D7
D7
D7
D7
D7
D7
D7
D6
D6
D6
D6
D6
D6
D6
D6
D6
D5
D5
D5
D5
D5
D5
D5
D5
D5
D4
D4
D4
D4
D4
D4
D4
D4
D4
P10:0
P10:1
D3
D3
D3
D3
D3
D3
D3
D3
D3
(DATCTL)
(DATCTL)
D2
D2
D2
D2
D2
D2
D2
D2
D2
D1
D1
D1
D1
D1
D1
D1
D1
D1
D0
D0
D0
D0
D0
D0
D0
D0
D0
0
1
2
3
4
5
309
310
311
0
103
1
102
2
101
3
100
4
99
5
98
6
97
7
96
96
7
97
6
98
5
99
4
100
3
101
2
102
1
103
0
You can change position of R and B with DATCTL command.
Ver 1.8
24/98
2006/08/15
ST7624
Memory Map (When using the 16M color. 16-bit mode)
RGB alignment (Command of data control parameter2=000)
Data control command (BCH)
Column
P11:0(DATCTL)
LCD
read
P11:1(DATCTL)
direction
Color
Data
Page
Block
0
1
24
25
SEGout
0
1
103
103
102
0
R
G
B
R
G
B
R
G
B
D15
D7
D15
D15
D7
D15
D15
D7
D15
D14
D6
D14
D14
D6
D14
D14
D6
D14
D13
D5
D13
D13
D5
D13
D13
D5
D13
D12
D4
D12
D12
D4
D12
D12
D4
D12
P10:0
P10:1
D11
D3
D11
D11
D3
D11
D11
D3
D11
(DATCTL)
(DATCTL)
D10
D2
D10
D10
D2
D10
D10
D2
D10
D9
D1
D9
D9
D1
D9
D9
D1
D9
D8
D0
D8
D8
D0
D8
D8
D0
D8
0
1
2
3
4
5
309
310
311
0
103
1
102
2
101
3
100
4
99
5
98
6
97
7
96
96
7
97
6
98
5
99
4
100
3
101
2
102
1
103
0
You can change position of R and B with DATCTL command.
Ver 1.8
25/98
2006/08/15
ST7624
7.3.2 Page Address Control Circuit
This circuit is used to control the address in the page direction when MPU accesses the DDRAM or when reading the
DDRAM to display image on the LCD.
You can specify a scope of the page address with page address set command. When the page-direction scan is specified
with DATCTL command and the address are incremented from the start up to the end page, the column address is
incremented by 1 and the page address returns to start page.
The DDRAM supports up to 104 lines, and thus the total page becomes 104.
In the read operation, as the end page is reached, the column address is automatically incremented by 1 and the page
address is returned to start page.
Using the address normal/reverse parameter of DATCTL command allows you to reverse the correspondence between the
DDRAM address and command output.
7.3.3 Column Address Control Circuit
This circuit is used to control the address in the column direction when MPU accesses the DDRAM. You can specify a
scope of the column address using column address set command. When the column-direction scan is specified with
DATCTL command and the address are incremented from the start up to the end page, the page address is incremented
by 1 and the column address returns to start column.
In the read operation, too, the column address is automatically incremented by 1 and returned to start page as the end
column is reached.
Just like the page address control circuit, using the column address normal/reverse parameter of DATCTL command
enables to reverse the correspondence between the DDRAM column address and segment output. This arrangement
relaxes restrictions in the chip layout on the LCD module.
7.3.4 I/O Buffer Circuit
It is the bi-directional buffer used when MPU reads or writes the DDRAM. Since MPU’s read or write of DDRAM is
performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM while the
LCD is turned on does not cause troubles such as flicking of the display images.
7.3.5 Block Address Circuit
The circuit associates pages on DDRAM with COM output. ST7624 processes signals for the liquid crystal display on
4-page basis. Thus, when specifying a specific area in the area scroll display or partial display, you must designate it in
block.
7.3.6 Display data Latch Circuit
This circuit is used to temporarily hold display data to be output from the DDRAM to the SEG decoder circuit. Since display
normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in
the DDRAM.
Ver 1.8
26/98
2006/08/15
ST7624
7.4 Area Scroll Display
Using area scroll set and scroll start set commands allows you to scroll the display screen partially. You can select any one
of the following four scroll patterns.
Fixed area
Scroll area
DDRAM
0
1
2
23 blocks
=92 line
20
21
Fixed area
23
Scroll area
24
25
Ver 1.8
Background area
27/98
2006/08/15
ST7624
7.5 Partial Display
Using partial in command allows you turn on the partial display (division by line) of the screen. This mode requires less
current consumption than the whole screen display, making it suitable for the equipment in the standby state.
: Display area (partial display area)
: Non-display area
If the partial display region is out of the Max. Display range, it would be no operation
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 7.5.1.Reference Example for Partial Display
Ver 1.8
28/98
2006/08/15
ST7624
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 7.5.2.Partial Display (Partial Display Duty=16,initial COM0=0)
7.6 Gray-Scale Display
ST7624 incorporates a 4FRC & 31 PWM function circuit to display a 64 gray-scale display.
7.7 Oscillation circuit
This is on-chip Oscillator without external resistor. When the internal oscillator is used, CLS must connect to VDD; when
the external oscillator is used, CL could be input pin. This oscillator signal is used in the voltage converter and display
timing generation circuit.
7.8 Display Timing Generator Circuit
This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation
clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is
generated in synchronization with the display clock and the display data latch circuit latches the 104-bit display data in
synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the
access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M), which
enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start
signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving
waveform and internal timing signal are shown in Figure 7.8.1.
Ver 1.8
29/98
2006/08/15
ST7624
103 104
1
2
3
4
5
6
7
8
9
10
11
12
97
98
99
100
101 102 103 104
1
2
3
4
5
6
CL(Internal)
FR(Internal)
M(Internal)
COM0
V0
V1
V2
V3
V4
VSS
COM1
V0
V1
V2
V3
V4
VSS
SEGn
V0
V1
V2
V3
V4
VSS
Figure 7.8.1 2-frame AC Driving Waveform (Duty Ratio: 1/104)
103
104
1
2
3
4
5
6
7
8
9
10
11
12
95
96
97
98
99
100
101
102
103
104
1
2
3
4
CL(Internal)
FR(Internal)
M(Internal)
VLCD
V1
V2
V3
V4
Vss
COM0
VLCD
V1
V2
V3
V4
Vss
COM1
VLCD
V1
V2
V3
V4
Vss
SEGn
Figure 7.8.2 N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/104)
7.9 Liquid Crystal drive Circuit
This driver circuit is configured by 104-channel common drivers and 312-channel segment drivers. This LCD panel driver
voltage depends on the combination of display data and M signal.
Ver 1.8
30/98
2006/08/15
ST7624
VDD
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
M
COM0
COM1
COM0
COM2
COM3
COM4
COM5
COM6
COM1
COM7
COM8
COM9
COM2
COM10
COM11
COM12
COM13
COM14
SEG0
SEG 0
1
2
3
4
SEG1
Ver 1.8
31/98
2006/08/15
ST7624
7.10 Liquid Crystal Driver Power Circuit
The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power
consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage
follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table
7.10.1 shows the referenced combinations in using Power Supply circuits.
Table 7.10.1 Recommended Power Supply Combinations
Power
User setup
V/C
V/R
V/F
circuits
circuits
circuits
111
ON
ON
ON
011
OFF
ON
ON
control
VOUT
V0
V1 to V4
Open
Open
Open
Open
Open
(VC VR VF)
Only the internal power
supply circuits are used
Only the voltage
regulator circuits and
External
voltage follower circuits
input
are used
Only the voltage follower
External
001
OFF
OFF
ON
Open
circuits are used
Only the external power
000
OFF
OFF
supply circuits are used
Ver 1.8
Open
input
32/98
OFF
External
External
input
input
Open
2006/08/15
ST7624
7.10.1 Voltage Converter Circuits
The Step-up Voltage Circuits
Ver 1.8
33/98
2006/08/15
ST7624
7.10.2 Voltage Regulator Circuits
SET VOP (SETVOP)
The set VOP function is used to program the optimum LCD supply voltage V0.
SETVOP
Reset state of Vop[8:0] is 257DEC = 13.88V.
The VOP value is programmed via the Vop[8:0] register.
V0=a+( Vop[8:6]Vop[5:0]).b
Ex:Vop[5:0]=000001, Vop[8:6]=100
→ Vop [8:0]=100000001
→ 3.6+257x0.04=13.88
l
a is a fixed constant value (see table 7.10.2).
l
b is a fixed constant value (see table 7.10.2).
l
Vop[8:0] is the programmed VOP value. The programming range for Vop[8:0] is 4 to 410 (19Ahex).
l
Vop[5:0] is the set contrast value which can be set via the interface and is in two’s complement format.(See
command VOLUP & VOLDOWN)
Table 7.10.2
SYMBOL
VALUE
UNIT
a
3.6
V
b
0.04
V
The VOP[8:0] value must be in the VLCD programming range as given in Fig.7.10.2. Evaluating equation (1), values
outside the programming range indicated in Fig.7.10.2 may result. Calculated values below VOP[8:0]=4 will be
mapped to VOP[8:0]=4, resulting VOP values higher than VOP[8:0]=410 will be mapped to VOP[8:0]=410.
Ver 1.8
34/98
2006/08/15
ST7624
VLCD
Programming range (05HEX to 19AHEX)
b
a
Vop
00
01
02
03
04
05
06
.....
410DEC
Vop[8:0] programming, (05H to 19AH )
Fig. 7.10.2 VLCD programming range
As the programming range for the internally generated V0 allows values above the max(18V). Allowed V0
(18V) the user has to ensure while setting the VOP register and the temperature compensation, that under all
conditions and including all tolerances the V0 remains below 18V.
Ver 1.8
35/98
2006/08/15
ST7624
Booster Efficiency
By Booster Stages (2X, 3X, 4X, 5X, 6X, 7X, 8X) and Booster Efficiency (Level1~4) commands, we could easily set the best
Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level4 is higher than
level1), The Boost Efficiency is better than lower level, and it just needs few more power consumption current. It could be
applied to each multiple voltage Condition.
When the LCD Panel loading is heavier, the performance of Booster will be not in a good working condition. Users could
set the BE level to be higher and just need few more current. Never consider to change to higher Booster Stage at
beginning stage unless it really necessary.
The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output
condition. Users could see the Booster Stage Command as a large scale operation, and see the Booster Efficiency
Command as a small scale operation. These commands are very convenient for using.
Level1
Vout Voltage
Level2
Level3
Level4
5X boost
Loading
VSS Current
Level1
Level2
Level3
Level4
5X Current
Loading
Ver 1.8
36/98
2006/08/15
ST7624
RESET CIRCUIT
When Power is Turned On
Input power (VDD,VDD1~VDD5)
↓
Be sure to apply POWER-ON RESET (RES = LOW)
↓
<Display Setting>
<<State after resetting>>
Display control (DISCTL)
Setting clock dividing ratio:
1 dividing
Duty setting:
1/4
Setting reverse rotation number of line:
11h reverse rotations
Common scan direction (COMSCN)
Setting scan direction:
COM0 -> COM51, COM52 -> COM103
Oscillation ON (OSCON)
Oscillation OFF
↓
Sleep-out (SLIPOUT)
Sleep-in
↓
<Power Supply Setting>
<<State after resetting>>
Electronic volume control (VOLCTR)
Setting volume value:
0
Setting built-in resistance value:
0 (3.76)
Power control (PWRCTR)
Setting operation of power supply circuit:
All OFF
↓
<Display Setting 2>
<<State after resetting>>
Normal rotation of display (DISNOR)/Inversion of display (DISINV): Normal rotation of display
Partial-in (PTLIN)/Partial-out (PTLOUT)
Partial-out
Setting fix area:
0
Area scroll set (ASSET)
Setting area scroll region:
0
Setting area scroll type:
Full-screen scroll
Scroll start set (SCSTART)
Setting scroll start address:
0
↓
<Display Setting 3>
<<State after resetting>>
Data control (DATCTL)
Setting normal rotation/reversion of page address:
Normal rotation
Setting normal rotation/reversion of column address:
Normal rotation
Setting direction of address scanner:
Ver 1.8
Column direction
37/98
2006/08/15
ST7624
Setting RGB arrangement:
RGB
Setting gradation:
↓
<RAM Setting>
65K
<<State after resetting>>
Page address set (PASET)
Setting start page address:
0
Setting end page address:
0
Column address set (CASET)
Setting start column address:
0
Setting end column address:
0
↓
<RAM Write>
<<State after resetting>>
Memory write command (RAMWR)
Writing displayed data : Repeat as many as the number needed
and exit by entering other command.
↓
<Waiting (approximately 100ms)>
Wait until the power supply voltage has stabilized.
Enter the power supply control command first, then wait at least
100ms before entering the display ON command when the built-in
power supply circuit operates.
If you do not wait, an unwanted display may appear on the
liquid crystal panel.
↓
Display ON (DISON):
Display OFF
(Note) If changes are unnecessary after resetting, command input is unnecessary.
Ver 1.8
38/98
2006/08/15
ST7624
8. COMMANDS
8.1 Command table
Ext=0
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
DISON
0
1
0
1
0
1
0
1
1
1
1
Display On
AF
None
1
DISOFF
0
1
0
1
0
1
0
1
1
1
0
Display Off
AE
None
2
DISNOR
0
1
0
1
0
1
0
0
1
1
0
Normal Display
A6
None
3
DISINV
0
1
0
1
0
1
0
0
1
1
1
Inverse Display
A7
None
4
COMSCN
0
1
0
1
0
1
1
1
0
1
1
Com Scan Direc.
BB
1 byte
5
DISCTR
0
1
0
1
1
0
0
1
0
1
0
Display Control
CA
3 byte
6
SLPP
0
1
0
0
0
0
0
0
1
0
0
Sleep In/Out Preparation 04
1 byte
7
SLPIN
0
1
0
1
0
0
1
0
1
0
1
Sleep In
95
None
8
SLPOUT
0
1
0
1
0
0
1
0
1
0
0
Sleep Out
94
None
9
PASET
0
1
0
0
1
1
1
0
1
0
1
Page Addr. Set
75
2 byte
10
CASET
0
1
0
0
0
0
1
0
1
0
1
Column Addr. Set
15
2 byte
11
DATCTL
0
1
0
1
0
1
1
1
1
0
0
Data Scan Direction
BC
3 byte
12
RAMWR
0
1
0
0
1
0
1
1
1
0
0
Writing to Memory
5C
Data
13
RAMRD
0
1
0
0
1
0
1
1
1
0
1
Reading from Memory
5D
Data
14
PLTIN
0
1
0
1
0
1
0
1
0
0
0
Partial display in
A8
2 byte
15
PLTOUT
0
1
0
1
0
1
0
1
0
0
1
Partial display out
A9
None
16
RMWIN
0
1
0
1
1
1
0
0
0
0
0
Read and Modify Write
E0
None
17
RMWOUT
0
1
0
1
1
1
0
1
1
1
0
RMW end
EE
None
18
ASCSET
0
1
0
1
0
1
0
1
0
1
0
Area Scroll Set
AA
4 byte
19
SCSTART
0
1
0
1
0
1
0
1
0
1
1
Scroll Start Set
AB
1 byte
20
OSCON
0
1
0
1
1
0
1
0
0
0
1
Internal OSC on
D1
None
21
OSCOFF
0
1
0
1
1
0
1
0
0
1
0
Internal OSC off
D2
None
22
PWRCTL
0
1
0
0
0
1
0
0
0
0
0
Power Control
20
1 byte
23
VOLCTR
0
1
0
1
0
0
0
0
0
0
1
EC control
81
2 byte
24
VOLUP
0
1
0
1
1
0
1
0
1
1
0
EC increase 1
D6
None
25
VOLDOWN
0
1
0
1
1
0
1
0
1
1
1
EC decrease 1
D7
None
26
EPSRRD1
0
1
0
0
1
1
1
1
1
0
0
READ Register1
7C
None
27
EPSRRD2
0
1
0
0
1
1
1
1
1
0
1
READ Register2
7D
None
28
NOP
0
1
0
0
0
1
0
0
1
0
1
NOP Instruction
25
None
29
STREAD
0
0
1
Initial code(1)
0
1
0
0
0
0
0
0
1
1
1
Initial code(1)
07
RESERVED
0
1
0
1
0
0
0
0
0
1
0
Not Use
82
Ver 1.8
Status Read
Function
Hex Parameter Index
Status Read
39/98
30
1 byte
31
32
2006/08/15
ST7624
Ext=1
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Hex Parameter Index
Red1 Set
0
1
0
0
0
1
0
0
0
0
0
FRAME 1 Red PWM Set 20
16 byte
1
Red2 Set
0
1
0
0
0
1
0
0
0
0
1
FRAME 2 Red PWM Set 21
16 byte
2
Red3 Set
0
1
0
0
0
1
0
0
0
1
0
FRAME 3 Red PWM Set 22
16 byte
3
Red4 Set
0
1
0
0
0
1
0
0
0
1
1
FRAME 4 Red PWM Set 23
16 byte
4
Grn1 Set
0
1
0
0
0
1
0
0
1
0
0
FRAME 1 Grn PWM Set
24
16 byte
5
Grn2 Set
0
1
0
0
0
1
0
0
1
0
1
FRAME 2 Grn PWM Set
25
16 byte
6
Grn3 Set
0
1
0
0
0
1
0
0
1
1
0
FRAME 3 Grn PWM Set
26
16 byte
7
Grn4 Set
0
1
0
0
0
1
0
0
1
1
1
FRAME 4 Grn PWM Set
27
16 byte
8
Blu1 Set
0
1
0
0
0
1
0
1
0
0
0
FRAME 1 Blu PWM Set
28
16 byte
9
Blu2 Set
0
1
0
0
0
1
0
1
0
0
1
FRAME 2 Blu PWM Set
29
16 byte
10
Blu3 Set
0
1
0
0
0
1
0
1
0
1
0
FRAME 3 Blu PWM Set
2A
16 byte
11
Blu4 Set
0
1
0
0
0
1
0
1
0
1
1
FRAME 4 Blu PWM Set
2B
16 byte
12
ANASET
0
1
0
0
0
1
1
0
0
1
0
Analog
32
3 byte
13
DITHOFF
0
1
0
0
0
1
1
0
1
0
0
Dithering Circuit Off
34
None
14
DITHON
0
1
0
0
0
1
1
0
1
0
1
Dithering Circuit On
35
None
15
EPCTIN
0
1
0
1
1
0
0
1
1
0
1
Control EEPROM
CD
1 byte
17
EPCOUT
0
1
0
1
1
0
0
1
1
0
0
Cancel EEPROM
CC
None
18
EPMWR
0
1
0
1
1
1
1
1
1
0
0
Write to EEPROM
FC
None
19
EPMRD
0
1
0
1
1
1
1
1
1
0
1
Read from EEPROM
FD
None
20
Ext=1 or Ext=0
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Ext In
0
1
0
0
0
1
1
0
0
0
0
Ext=0 Set
30
None
--
Ext Out
0
1
0
0
0
1
1
0
0
0
1
Ext=1 Set
31
None
--
Ver 1.8
40/98
Function
Hex Parameter Index
2006/08/15
ST7624
EXT=”0”
(1) Display ON (DISON) Command: 1; Parameter: None (AFH)
It is used to turn the display on. When the display is turned on, segment outputs and common outputs are generated at the
level corresponding to the display data and display timing. You can’t turn on the display as long as the sleep mode is
selected. Thus, whenever using this command, you must cancel the sleep mode first.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
1
1
1
(2) Display OFF (DISOFF) Command: 1; Parameter: None (AEH)
As long as the display is turned off, every segment and common outputs are forced to Vss level.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
1
1
0
(3) Normal display (DISNOR) Command: 1; Parameter: None (A6H)
It is used to normally highlight the display area without modifying contents of the display data RAM.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
0
1
1
0
(4) Inverse display (DISINV) Command: 1; Parameter: None (A7)
It is used to inversely highlight the display area without modifying contents of the display data RAM. This command does
not invert non-display areas in case of using partial display.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
0
1
1
1
(5) Common scan (COMSCAN) Command: 1; Parameter: 1 (BBH)
It is used to specify the direction the common output direction. This command helps increasing degrees of freedom of
wiring on the LCD panel.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
1
1
0
1
1
-
Parameter1 (P1)
1
1
0
*
*
*
*
*
P12
P11
P10
Common Scan direction
When 1/104 is selected for the display duty, pins and common output are scanned in the order shown below. When CSEL
=”H”, this function becomes no use.
Common scan direction
P12 P11 P10
COM0 pin
Ver 1.8
COM51 pin
COM52 pin
COM103 pin
0
0
0
0
à
51
52
à
103
0
0
1
0
à
51
103
à
52
0
1
0
51
à
0
52
à
103
0
1
1
51
à
0
103
à
52
41/98
2006/08/15
ST7624
(6) Display control (DISCTL) Command: 1; Parameter: 3 (CAH)
This command and succeeding parameters are used to perform the display timing-related setups. This command must be
selected before using SLPOUT. Don’t change this command while the display is turned on.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
1
0
0
1
0
1
0
-
Parameter1(P1)
1
1
0
*
*
*
P14
P13
P12
*
*
Parameter2(P2)
1
1
0
0
0
0
P24
P23
P22
P21
P20 Drive duty
Parameter3(P3)
1
1
0
*
*
*
P34
P33
P32
P31
P30 FR inverse-set value
CL dividing ratio,
P1: it is used to specify the CL dividing ratio.
P14, P13, P12: CL dividing ratio. They are used to change number of dividing stages of external or internal clock.
P14
P13
P12
CL dividing ratio
0
0
0
Not divide
0
0
1
2 divisions
0
1
0
4 divisions
0
1
1
8 divisions
This command Decides the Oscillator frequency(default=7.8KHz),Related Command 32H.
P2: It is used to specify the duty of the module on block basis.
Duty
*
*
P25
P24
P23
P22
P21
P20
(Numbers of display lines)/4-1
Example: 1/104 duty
0
0
0
1
1
0
0
0
104/4-1=25
P3: It is used to specify number of lines to be inversely highlighted on LCD panel from P33 to P30 (lines can be inversely
highlighted in the range of 2 to 16)
Inversely highlighted line
*
*
*
P34
P33
P32
P31
P30
Inversely highlighted lines-1
Example: 11H
0
0
0
0
1
0
1
0
11-1=10
Example: 13H
0
0
0
1
1
1
0
0
13-1=12
In the default, 11H inverse highlight is selected.
P34=”0”: Inversion occurs every frame. P34=”1”: Independent from frames.
(7) Sleep In/Out Preparation (SLPP) Command: 1; Parameter: 1
Using this command to setup ready status for sleep-in or sleep out.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
0
0
1
0
0
-
Parameter(P1)
1
1
0
0
0
1
1
1
1
1
P10
Sleep in/out ready
P10 =” 1”: Ready for sleep in. P10 = “0”: Ready for sleep out.
Parameter 3FH is used to initialize sleep-in sequencing, and parameter 3EH is used to initialize sleep-out sequencing.
Ver 1.8
42/98
2006/08/15
ST7624
(8)Sleep in (SPLIN) Command: 1; Parameter: None (95H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
1
0
1
0
1
(9)Sleep out (SLPOUT) Command: 1;Parameter: None (94H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
1
0
1
0
0
(10)Page address set (PASET) Command: 1; Parameter: 2 (75H)
When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the
page address area. As the addresses are incremented from the start to the end page in the page-direction scan, the
column address is incremented by 1 and the page address is returned to the start page. Note that the start and end page
must be specified as a pair. Also, the relation “start page <end page” must be maintained.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
1
1
0
1
0
1
-
Parameter1(P1)
1
1
0
0
P16
P15
P14
P13
P12
P11
P10
Start page
Parameter2(P2)
1
1
0
0
P26
P25
P24
P23
P22
P21
P20
End page
(11)Column address set (CASET) Command: 1; Parameter: 2 (15H)
When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the
column address area. As the addresses are incremented from the start to the end column in the column-direction scan, the
page address is incremented by 1 and the column address is returned to the start column. Note that the start and end page
must be specified as a pair. Also, the relation “start column <end column” must be maintained.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
1
0
1
0
1
-
Parameter1(P1)
1
1
0
0
P16
P15
P14
P13
P12
P11
P10
Start address
Parameter2(P2)
1
1
0
0
P26
P25
P24
P23
P22
P21
P20
End address
(12)Data control (DATCTL) Command: 1;Parameter: 3 (BCH)
This command and succeeding parameters are used to perform various setups needed when MPU operates display data
stored on the built-in RAM.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
0
1
0
1
0
1
1
1
1
0
0
-
Normal/reverse display of
Parameter1(P1)
1
1
0
*
*
*
*
*
P12
P11
P10 page address and
page-address scan direction.
Parameter2(P2)
1
1
0
*
*
*
*
*
*
*
P20 RGB arrangement
Parameter3(P3)
1
1
0
*
*
*
*
*
P32
P31
P30 Gray-scale setup
Ver 1.8
43/98
2006/08/15
ST7624
P1: It is used to specify the normal or inverse display of the page address and also to specify the page address scanning
direction.
P10: Normal/reverse display of the page address. P10=0: Normal rotation and P10=1: Reverse rotation.
P11: Normal/reverse turn of column address. P11=0: Normal rotation and P11=1: Reverse rotation.
P12: Address-scan direction. P12=0: In the column direction and P12=1: In the page direction.
Page address and page-address scan direction.
P12=0 Column direction
P11=0
P11=1
P10=0
0
1
2
P10=1
103
102
101
101
102
103
2
1
0
0
103
1
102
2
101
101
2
102
1
103
0
1
102
2
101
101
2
102
1
103
0
P12=1 Page direction
0
103
P11=0
P11=1
P10=0
0
1
2
P10=1
103
102
101
101
102
103
2
1
0
Ver 1.8
44/98
2006/08/15
ST7624
First Pixel
COLUMN
Last Pixel
CSEL=0
COMMAND #BBH
DATA #00H
COMMAND #BCH
DATA #01H
C0
C0
PAG E
DDRAM Scan Direction
PAG E
DDRAM Scan Direction
COLUMN
LCD PANEL
C52
LCD PANEL
C51
C52
( 104 X 104 Pixels )
Last Pixel
First Pixel
035
CO M51
ST7624
( BUMP SIDE )
496
661
496
661
(a) COMMAND #BCH, DATA #00H
(b) COMMAND #BCH, DATA #01H
First Pixel
Last Pixel
COLUMN
CSEL=0
COMMAND #BBH
DATA #00H
COMMAND #BCH
DATA #03H
COLUMN
C0
C0
PAG E
DDRAM Scan Direction
PAG E
DDRAM Scan Direction
LCD PANEL
C52
LCD PANEL
C51
C52
( 104 X 104 Pixels )
C51
( 104 X 104 Pixels )
Last Pixel
First Pixel
COM51
COM0
03 4
03 5
S EG0
S0
496
COM52
COM51
ST7624
( BUMP SIDE )
43 0
43 1
03 5
COM104
COM0
03 4
S0
COM52
S EG0
43 0
43 1
SEG311 S311
C104
SEG311 S311
C104
COM104
COM0
034
S0
S EG0
CO M51
CO M52
431
035
COM104
034
S0
CO M52
S EG0
430
431
COM0
ST7624
( BUMP SIDE )
CSEL=0
COMMAND #BBH
DATA #00H
COMMAND #BCH
DATA #02H
SEG311 S311
C104
SEG311 S311
C104
COM104
C51
( 104 X 104 Pixels )
430
CSEL=0
COMMAND #BBH
DATA #00H
COMMAND #BCH
DATA #00H
ST7624
( BUMP SIDE )
661
496
(c) COMMAND #BCH, DATA #02H
661
(d) COMMAND #BCH, DATA #03H
Figure 8.2.1 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H
(a) COMMAND #BCH, DATA #00H
(b) COMMAND #BCH, DATA #01H
(c) COMMAND #BCH, DATA #02H
(d) COMMAND #BCH, DATA #03H
Ver 1.8
45/98
2006/08/15
ST7624
First Pixel
COLUMN
CSEL=0
COMMAND #BBH
DATA #00H
COMMAND #BCH
DATA #04H
Last Pixel
CSEL=0
COMMAND #BBH
DATA #00H
COMMAND #BCH
DATA #05H
C0
C0
DDRAM Scan Direction
PAG E
PAG E
DDRAM Scan Direction
COLUMN
LCD PANEL
C52
LCD PANEL
C51
C52
( 104 X 104 Pixels )
Last Pixel
( 104 X 104 Pixels )
First Pixel
C104
496
ST7624
( BUMP SIDE )
661
496
661
(e) COMMAND #BCH, DATA #04H
(f) COMMAND #BCH, DATA #05H
First Pixel
CSEL=0
COMMAND #BBH
DATA #00H
COMMAND #BCH
DATA #06H
CO M51
SEG311 S311
035
ST7624
( BUMP SIDE )
Last Pixel
COLUMN
CSEL=0
COMMAND #BBH
DATA #00H
COMMAND #BCH
DATA #07H
COLUMN
C0
C0
DDRAM Scan Direction
PA GE
PA GE
DDRAM Scan Direction
LCD PANEL
C52
LCD PANEL
C51
C52
( 104 X 104 Pixels )
C51
( 104 X 104 Pixels )
Last Pixel
First Pixel
C104
ST7624
( BUMP SIDE )
COM51
SEG 311 S311
COM0
034
035
S EG 0
S0
431
COM52
COM104
430
COM51
COM0
034
035
430
S EG 0
COM52
S0
SEG 311 S311
C104
431
COM104
COM0
034
S0
S EG0
CO M66
431
430
COM51
COM104
COM0
03 4
03 5
43 0
S EG0
COM52
S0
SEG311 S311
C104
43 1
COM104
C51
ST7624
( BUMP SIDE )
496
661
496
(g) COMMAND #BCH, DATA #06H
661
(h) COMMAND #BCH, DATA #07H
Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H (continue)
(e) COMMAND #BCH, DATA #04H
(f) COMMAND #BCH, DATA #05H
(g) COMMAND #BCH, DATA #06H
(h) COMMAND #BCH, DATA #07H
P2: RGB arrangement. This parameter allows you to change RGB arrangement of data which is going to be written into
RAM, and therefore causes the inverse RGB rotation of the segment output of ST7624. You can fit RGB arrangement
on the LCD panel according to this parameter setting.
P20
Line
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
…
SEG311
Even page
R
G
B
R
G
B
R
G
…
B
Odd page
R
G
B
R
G
B
R
G
…
B
1
B
G
R
B
G
R
B
G
…
R
2
B
G
R
B
G
R
B
G
…
R
0
1
Ver 1.8
46/98
2006/08/15
ST7624
P3: Gray scale setup. Using this parameter, 64 gray-scale display, you can select the 65K, 262K, and 16M display mode
depending on the difference in RGB data arrangement.
P32
P31
P30
Numbers of gray-scale
0
0
1
64-gray 65K
0
1
0
64-gray 262K
1
0
0
64-gray 16M
(13)Memory write (RAMWR) Command: 1;Parameter: Numbers of data written (5CH)
When MPU writes data to the display memory, this command turns on the data entry mode. Entering this command always
sets the page and column address at the start address. You can rewrite contents of the display data RAM by entering data
succeeding to this command. At the same time, this operation increments the page or column address as applicable. The
write mode is automatically cancelled if any other command is entered.
1. 8-bit bus
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
0
1
1
1
0
0
-
Parameter
1
1
0
A0
RD
RW
D15
D14
…
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
*
*
…
*
*
0
1
0
1
1
1
0
0
Memory write
parameter
1
1
0
Data to be written
Data to be written
2. 16-bit bus
Ver 1.8
Data to be written
47/98
Write date
2006/08/15
ST7624
(14)Memory read (RAMRD) Command: 1; Parameter: Numbers of data read (5DH)
When MPU read data from the display memory, this command turns on the data read mode. Entering this command
always sets the page and column address at the start address. After entering this command, you can read contents of the
display data RAM. At the same time, this operation increments the page or column address as applicable. The data read
mode is automatically cancelled if any other command is entered.
1. 8-bit bus
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
0
1
1
1
0
1
--
Parameter
1
0
1
A0
RD
RW
D15
Command
0
1
0
*
parameter
1
0
1
Data to be read
Data to be read
2. 16-bit bus
D14
….
D9
D8
*
*
*
*
D7
D6
D5
D4
D3
D2
D1
D0
Function
0
1
0
1
1
1
0
1
Memory read
Data to be read
Read date
(15)Partial in (PTLIN) Command: 1; Parameter: 2 (A8H)
This command and succeeding parameters specify the partial display area. This command is used to turn on partial display
of the screen (dividing screen by lines) in order to save power. Since ST7624 processes the liquid crystal display signal on
4-line basis (block basis), the display and non-display areas are also specified on 4-bit line (block basis).
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
0
1
0
0
0
--
Parameter(P1)
1
1
0
*
*
0
P14
P13
P12
P11
P10
Start block address
Parameter(P2)
1
1
0
*
*
0
P24
P23
P22
P21
P20
End block address
A block address that can be specified for the partial display must be the display one (don’t try to specify an address not to
be displayed when scrolled).
(16)Partial out (PTLOUT) Command: 1; Parameter: 0 (A9H)
This command is used to exit from the partial display mode.
Command
Ver 1.8
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
0
0
1
48/98
2006/08/15
ST7624
(17)Read modify write in (RMWIN) Command: 1; Parameter: 0 (E0H)
This command is used along with the column address set command, page address set command and read modify write out
command. This function is used when frequently modifying data to specify a specific display area such as blinking cursor.
First set a specific display area using the column and page address commands. Then, enter this command to set the
column and page addresses at the start address of the specific area. When this operation is complete, the column (page)
address won’t be modified by the display data read command. It is incremented only when the display data write command
is used. You can cancel this mode by entering the read modify write out or any other command.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
0
0
0
0
0
Page address set
Column address set
Read-modify-write cycle
Dummy read
NO
Data read
Data write
Is modification
Complete
YES
END
(18)Read modify write out (RMWOUT) Command: 1; Parameter: 0 (EEH)
Enter this command cancels the read modify write mode
Command
Ver 1.8
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
0
1
1
1
0
49/98
2006/08/15
ST7624
(19)Area scroll set (ASCSET) Command: 1; Parameter: 4 (AAH)
It is used when scrolling only the specified portion of the screen (dividing the screen by lines). This command and
succeeding parameters specify the type of area scroll, FIX area and scroll area.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
1
0
1
0
1
0
1
0
Parameter(P1)
1
1
0
*
*
0
P14
P13
P12
P11
P10
Top block address
Parameter(P2)
1
1
0
*
*
0
P24
P23
P22
P21
P20
Bottom block address
Parameter(P3)
1
1
0
*
*
0
P34
P33
P32
P31
P30
Number of specified blocks
Parameter(P4)
1
1
0
*
*
*
*
*
*
P41
P40
Area scroll mode
Function
--
P4: It is used to specify an area scroll mode.
P41
P40
Type of area scroll
0
0
Center screen scroll
0
1
Top screen scroll
1
0
Bottom screen scroll
1
1
Whole screen scroll
Center screen scroll
Fixed area
Top screen scroll
Bottom screen scroll
Whole screen scroll
Scroll area
Since ST7624 processes the liquid crystal display signals on the four-line basis (block basis), FIX and scroll areas are also
specified on the four-line basis (block basis).
DDRAM address corresponding to the top FIX area is set in the block address incrementing direction starting with 0 block.
DDRAM address corresponding to the bottom FIX area is set in the block address decreasing direction starting with 41st
block. Other DDRAM blocks excluding the top and bottom FIX areas are assigned to the scroll + background areas.
Ver 1.8
50/98
2006/08/15
ST7624
P1: It is used to specify the top block address of the scroll+ background areas. Specify the 0th block for the top screen scroll
or whole screen scroll.
P2: It specifies the bottom address of the scroll+ background areas. Specify the 32th block for the bottom or whole screen
scroll.
Required relation between the start and end blocks (top block address<bottom block address) must be maintained.
P3: It specifies a specific number of blocks {Numbers of (Top FIX area +Scroll area) block-1}. When the bottom scroll or
whole screen scroll, the value is identical with P2.
You can turn on the area scroll function by executing the area scroll set command first and then specifying the display start
block of the scroll area with the scroll start set command.
[Area Scroll Setup Example]
In the center screen scroll of 1/92 duty (display range: 92 lines=23 blocks), if 8 lines=2 blocks and 8 lines=2 blocks are
specified for the top and bottom FIX areas, 76 lines =19 blocks is specified for the scroll areas, respectively, 12 lines = 3
blocks on the DDRAM are usable as the background area. Value of each parameter at this time is as shown below.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
P1
1
1
0
*
*
0
0
0
0
1
0
Top block address = 2
P2
1
1
0
*
*
0
1
0
1
1
1
Bottom block address = 23
P3
1
1
0
*
*
0
1
0
1
0
0
Number of specific blocks = 23
P4
1
1
0
*
*
*
*
*
*
0
0
Area scroll mode = center
(20)Scroll start address set (SCSTART) Command:1 Parameter: 1 (ABH)
This command and succeeding parameters are used to specify the start block address of the scroll area. Note that you
must execute this command after executing the area scroll set command. Scroll becomes available by dynamically
changing the start block address.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
1
0
1
0
1
0
1
1
Parameter(P1)
1
1
0
*
*
0
P14
P13
P12
P11
P10
Ver 1.8
51/98
Function
-Start block address
2006/08/15
ST7624
(21)Internal oscillation on (OSCON) Command: 1; Parameter: 0 (D1H)
This command turns on the internal oscillation circuit. It is valid only when the internal oscillation circuit of CLS = HIGH is
used.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
0
0
1
(22)Internal oscillation off (OSOFF) Command: 1; Parameter: 0 (D2H)
It turns off the internal oscillation circuit. This circuit is turned off in the reset mode.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
0
1
0
(23)Power control set (PWRCTR) Command: 1; Parameter: 1 (20H)
This command is used to turn on or off the Booster circuit, voltage follower circuit, and voltage regulator circuit.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
1
0
0
1
0
0
0
0
0
Parameter(P1)
1
1
0
*
*
*
*
P13
*
P11
P10
Function
-LCD drive power
P10: It turns on or off the voltage regulator circuit.
P10 = “1”: ON. P10 =” 0”: OFF
P11: It turns on or off the voltage follower circuit.
P11 = “1”: ON. P11 =” 0”: OFF
P13:It turns on or off the Booster.
P13 = “1”: ON. P13 =” 0”: OFF
(24)Electronic volume control (VOLCTR) Command: 1; Parameter: 2 (81H)
The command is used to program the optimum LCD supply voltage VLCD. Reference to 7.10.2
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
1
0
0
0
0
0
0
1
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Set Vop[5:0]
Parameter(P2)
1
1
0
*
*
*
*
*
P18
P17
P16
Set Vop[8:6]
Function
--
(25)Increment electronic control (VOLUP) Command: 1; Parameter: 0 (D6H)
With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted.
This command increments electronic control value VOP[5:0] of voltage regulator circuit by 1.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
1
1
0
If you set the electronic control value to 111111, the control value is set to 000000 after this command has been executed.
Ver 1.8
52/98
2006/08/15
ST7624
(26)Decrement electronic control (VOLDOWN) Command: 1; Parameter: 0 (D7H)
With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted.
This command decrements electronic control value VOP[5:0] of voltage regulator circuit by 1.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
1
1
1
If you set the electronic control value to 000000, the control value is set to 111111 after this command has been executed.
Table 8.1.1 Possible VOP[5:0] values
Electronic Control Value
Decimal Equivalent
VLCD Offset
111111
31
+1240 mV
111110
30
+1200 mV
111101
29
+1160 mV
…
…
…
000010
2
+80 mV
000001
1
+40 mV
000000
0
0 mV
111111
-1
-40 mV
111110
-2
-80 mV
…
…
…
100010
-30
-1200 mV
100001
-31
-1240 mV
100000
-32
-1280mV
(27)Read Register 1 (EPSRRD1) Command: 1; Parameter: 0 (7CH)
Issue the EPSRRD1 and STREAD (Status Read) commands in succession to read the Electronic Control value.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
1
1
0
0
Issue the Status Read command immediately after this command. Also, always issue the NOP command after the
STREAD (Status Read) command.
Ver 1.8
53/98
2006/08/15
ST7624
(28)Read Register 2 (EPSRRD2) Command: 1 ;Parameter: 0 (7DH)
Issue the EPSRRD1 and STREAD (Status Read) commands in succession to read the built-in resistance ratio.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
1
1
0
1
Command
Issue the Status Read command immediately after this command. Also, always issue the NOP command after the
STREAD (Status Read) command.
(29)Non-operating (NOP) Command: 1; Parameter: 0 (25H)
This command does not affect the operation.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
0
0
1
0
1
Command
This command, however, has the function of canceling the IC test mode. Thus, it is recommended to enter it periodically to
prevent malfunctioning due to noise and such.
(30)Status read (STREAD) Command: 1; Parameter: None
It is the command for reading the internal condition of the IC. One status can be displayed depending on the setting.
A0
RD
RW
0
0
1
Command
D7
D6
D5
D4
D3
D2
D1
D0
(7) Status data
Status after reset or after NOP operation
D7: Area scroll mode
Refer to P41 (ASCSET)
D6: Area scroll mode
Refer to P40 (ASCSET)
D5: RMW on/off
0 : Out
1 : In
D4: Scan direction
0 : Column
1 : Page
D3: Display ON/OFF
0 : OFF
1 : ON
D2: EEPROM access
0: OutAccess
1: InAccess
D1: Display normal/inverse
0 : Normal
1 : Inverse
D0: Partial display
0 : OFF
1 : ON
(31) Initial code –(1) Command: 1; Parameter: 1 (07H)
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
0
0
1
1
1
07H
Parameter(P1)
1
1
0
0
0
0
1
1
0
0
1
19H
This command is used for EEPROM internal ACK signal generating ,suggest using this command before EEPROM
read/write operation . This command improve the EEPROM internal ACK signal under unstable power system.
(32)Reserved (82H)
Do not use this command
Command
Ver 1.8
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
0
0
0
1
0
54/98
2006/08/15
ST7624
EXT=”1”
(1)Set Red 1 value (Red1 set) Command: 1; Parameter: 16 (20H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Red1 Set
0
1
0
0
0
1
0
0
0
0
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set red level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set red level 1 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set red level 15 and 1st frame
Function
FRAME 1 Red PWM Set
Function
-
(2)Set Red 2 value (Red2 set) Command: 1; Parameter: 16 (21H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Red2 Set
0
1
0
0
0
1
0
0
0
0
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set red level 0 and 2nd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set red level 1 and 2nd frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set red level 15 and 2nd frame
FRAME 2 Red PWM Set
Function
-
(3) Set Red 3 value (Red3 set) Command: 1; Parameter: 16 (22H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Red3 Set
0
1
0
0
0
1
0
0
0
1
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set red level 0 and 3rd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set red level 1 and 3rdframe
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set red level 15 and 3rd frame
Ver 1.8
55/98
Function
FRAME 3 Red PWM Set
Function
-
2006/08/15
ST7624
(4) Set Red 4 value (Red4 set) Command: 1; Parameter: 16 (23H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Red4 Set
0
1
0
0
0
1
0
0
0
1
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set red level 0 and 4th frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set red level 1 and 4thframe
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set red level 15 and 4th frame
Function
FRAME 4 Red PWM Set
Function
-
The default value of Red level set
RED1SET
RED2SET
RED3SET
RED4SET
FRAM1
FRAM2
FRAM3
FRAME4
red level0
00
00
00
00
red level1
02
02
02
02
red level2
05
05
05
05
red level3
07
07
07
08
red level4
0A
0A
0A
0B
red level5
0D
0D
0D
0C
red level6
0F
10
0F
10
red level7
11
12
11
12
red level8
13
14
13
14
red level9
16
16
16
15
red level10
18
18
18
17
red level11
19
19
19
1A
red level12
1B
1B
1B
1A
red level13
1C
1C
1C
1D
red level14
1D
1D
1D
1E
red level15
1E
1E
1E
1E
Ver 1.8
56/98
2006/08/15
ST7624
The modulation range of Red level set
RED1SET
RED2SET
RED3SET
RED4SET
FRAM1
FRAM2
FRAM3
FRAME4
red level0
0
0
0
0
red level1
0-7
0-7
0-7
0-7
red level2
0-F
0-F
0-F
0-F
red level3
0-F
0-F
0-F
0-F
red level4
8-F
8-F
8-F
8-F
red level5
0-1F
0-1F
0-1F
0-1F
red level6
0-1F
0-1F
0-1F
0-1F
red level7
0-1F
0-1F
0-1F
0-1F
red level8
10-17
10-17
10-17
10-17
red level9
10-1F
10-1F
10-1F
10-1F
red level10
10-1F
10-1F
10-1F
10-1F
red level11
10-1F
10-1F
10-1F
10-1F
red level12
10-1F
10-1F
10-1F
10-1F
red level13
10-1F
10-1F
10-1F
10-1F
red level14
10-1F
10-1F
10-1F
10-1F
red level15
18-1F
18-1F
18-1F
18-1F
(5) Set Green 1 value (Grn1 set) Command: 1; Parameter: 16 (24H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Grn 1 Set
0
1
0
0
0
1
0
0
1
0
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set green level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set green level 1 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set green level 15 and 1st frame
FRAME 1 Grn PWM Set
Function
-
(6) Set Green 2 value (Grn2 set) Command: 1;Parameter: 16 (25H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Grn2 Set
0
1
0
0
0
1
0
0
1
0
1
Ver 1.8
57/98
Function
FRAME 2 Grn PWM Set
2006/08/15
ST7624
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set green level 0 and 2nd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set green level 1 and 2nd frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set green level 15 and 2nd frame
Function
-
(7) Set Green 3 value (Grn3 set) Command: 1; Parameter: 16 (26H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Grn3 Set
0
1
0
0
0
1
0
0
1
0
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set green level 0 and 3rd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set green level 1 and 3rdframe
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set green level 15 and 3rd frame
FRAME 3 Grn PWM Set
Function
-
(8) Set Green 4 value (Grn4 set) Command: 1;Parameter: 16 (27H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Grn4 Set
0
1
0
0
0
1
0
0
1
1
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14
P13 P12 P11 P10 Set green level 0 and 4th frame
Parameter2(P2)
1
1
0
*
*
*
P24
P23 P22 P21 P20 Set green level 1 and 4thframe
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set green level 15 and 4th frame
FRAME 4 Grn PWM Set
Function
-
The default value of Green level set
GRN1SET
GRN2SET
GRN3SET
GRN4SET
FRAM1
FRAM2
FRAM3
FRAME4
green level0
00
00
00
00
green level1
02
02
02
02
green level2
05
05
05
05
green level3
07
07
07
08
Ver 1.8
58/98
2006/08/15
ST7624
green level4
0A
0A
0A
0B
green level5
0D
0D
0D
0C
green level6
0F
10
0F
10
green level7
11
12
11
12
green level8
13
14
13
14
green level9
16
16
16
15
green level10
18
18
18
17
green level11
19
19
19
1A
green level12
1B
1B
1B
1A
green level13
1C
1C
1C
1D
green level14
1D
1D
1D
1E
green level15
1E
1E
1E
1E
GRN1SET
GRN2SET
GRN3SET
GRN4SET
FRAM1
FRAM2
FRAM3
FRAME4
green level0
0
0
0
0
green level1
0-7
0-7
0-7
0-7
green level2
0-F
0-F
0-F
0-F
green level3
0-F
0-F
0-F
0-F
green level4
8-F
8-F
8-F
8-F
green level5
0-1F
0-1F
0-1F
0-1F
green level6
0-1F
0-1F
0-1F
0-1F
green level7
0-1F
0-1F
0-1F
0-1F
green level8
10-17
10-17
10-17
10-17
green level9
10-1F
10-1F
10-1F
10-1F
green level10
10-1F
10-1F
10-1F
10-1F
green level11
10-1F
10-1F
10-1F
10-1F
green level12
10-1F
10-1F
10-1F
10-1F
green level13
10-1F
10-1F
10-1F
10-1F
green level14
10-1F
10-1F
10-1F
10-1F
green level15
18-1F
18-1F
18-1F
18-1F
The modulation range of Green level set
Ver 1.8
59/98
2006/08/15
ST7624
(9) Set Blue 1 value (Blu 1 set) Command: 1; Parameter: 16 (28H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Grn 1 Set
0
1
0
0
0
1
0
0
1
0
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set blue level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set blue level 1 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set blue level 15 and 1st frame
Function
FRAME 1 Blu PWM Set
Function
-
(10) Set Blue 2 value (Blu2 set) Command: 1; Parameter: 16 (29H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Grn2 Set
0
1
0
0
0
1
0
0
1
0
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set blue level 0 and 2nd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set blue level 1 and 2nd frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set blue level 15 and 2nd frame
FRAME 2 Blu PWM Set
Function
-
(11) Set Blue 3 value (Blu3 set) Command: 1; Parameter: 16 (2AH)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Grn3 Set
0
1
0
0
0
1
0
0
1
1
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14
P13
P12
P11
P10 Set blue level 0 and 3rd frame
Parameter2(P2)
1
1
0
*
*
*
P24
P23
P22
P21
P20 Set blue level 1 and 3rdframe
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set blue level 15 and 3rd frame
Ver 1.8
60/98
Function
FRAME 3 Blu PWM Set
Function
-
2006/08/15
ST7624
(12) Set Blue 4 value (Blu4 set) Command: 1; Parameter: 16 (2BH)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Grn4 Set
0
1
0
0
0
1
0
0
1
1
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
0
0
1
0
0
0
0
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set blue level 0 and 4th frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set blue level 1 and 4thframe
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set blue level 15 and 4th frame
Function
FRAME 4 Blu PWM Set
Function
-
The default value of Blue level set
GRN1SET
GRN2SET
GRN3SET
GRN4SET
FRAM1
FRAM2
FRAM3
FRAME4
blue level0
00
00
00
00
blue level1
02
02
02
02
blue level2
05
05
05
05
blue level3
07
07
07
08
blue level4
0A
0A
0A
0B
blue level5
0D
0D
0D
0C
blue level6
0F
10
0F
10
blue level7
11
12
11
12
blue level8
13
14
13
14
blue level9
16
16
16
15
blue level10
18
18
18
17
blue level11
19
19
19
1A
blue level12
1B
1B
1B
1A
blue level13
1C
1C
1C
1D
blue level14
1D
1D
1D
1E
blue level15
1E
1E
1E
1E
Ver 1.8
61/98
2006/08/15
ST7624
The modulation range of Blue level set
GRN1SET
GRN2SET
GRN3SET
GRN4SET
FRAM1
FRAM2
FRAM3
FRAME4
blue level0
0
0
0
0
blue level1
0-7
0-7
0-7
0-7
blue level2
0-F
0-F
0-F
0-F
blue level3
0-F
0-F
0-F
0-F
blue level4
8-F
8-F
8-F
8-F
blue level5
0-1F
0-1F
0-1F
0-1F
blue level6
0-1F
0-1F
0-1F
0-1F
blue level7
0-1F
0-1F
0-1F
0-1F
blue level8
10-17
10-17
10-17
10-17
blue level9
10-1F
10-1F
10-1F
10-1F
blue level10
10-1F
10-1F
10-1F
10-1F
blue level11
10-1F
10-1F
10-1F
10-1F
blue level12
10-1F
10-1F
10-1F
10-1F
blue level13
10-1F
10-1F
10-1F
10-1F
blue level14
10-1F
10-1F
10-1F
10-1F
blue level15
18-1F
18-1F
18-1F
18-1F
(13) ANASET Command 1; Parameter: 3 (32H)
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
1
0
0
1
0
Parameter1(P1)
1
1
0
*
*
*
*
*
P12
P11
P10 OSC frequency Adjustment
Parameter2(P2)
1
1
0
*
*
*
*
*
*
P21
P20 Booster Efficiency Set
Parameter3(P3)
1
1
0
*
*
*
*
*
P32
P31
P30 Bias setting
-
P1: Oscillator frequency adjustment(CL division ratio ,plz reference “Command CAH”)
P12
P11
Frame
OSC Frequency
frequency
CL=X1(KHz)
Note
P10
0
0
0
77 ± 5%
8.09 ± 5%
0
0
1
80 ± 20%
8.40 ± 20%
0
1
0
87 ± 20%
9.14 ± 20%
0
1
1
100 ± 20%
10.50 ± 20%
1
0
0
105 ± 20%
11.03 ± 20%
1
0
1
118 ± 20%
12.39 ± 20%
1
1
0
133 ± 20%
13.97 ± 20%
1
1
1
155 ± 20%
16.28 ± 20%
Default
Frame Frequency = OSC Frequency/(Duty+1)
Ver 1.8
62/98
2006/08/15
ST7624
Example: using 96duty ,(P12,P11,P10)=(000),Frame Frequency=8.085k/(96+1)=83.35Hz
P2: Booster Efficiency set(Suggest using default value)
P21
P20
Frequency(Hz)
0
0
Level 1
0
1
Level 2 (Default)
1
0
Level 3
1
1
Level 4
P3: Select LCD bias ratio of the voltage required for driving the LCD.
P32
P31
P30
LCD bias
0
0
0
1/12
0
0
1
1/11
0
1
0
1/10
0
1
1
1/9
1
0
0
1/8
1
0
1
1/7
1
1
0
1/6
1
1
1
1/5
(14) Color Dither OFF (DITHOFF) Command: 1; Parameter: None (34H)
Turn off the dithering circuit.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
1
0
0
(15) Color Dither ON (DITHON) Command: 1; Parameter: None (35H)
Turn on the dithering circuit.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
1
0
1
(16) Control EEPROM (EPCTIN) Command: 1; Parameter: 1 (CDH)
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
1
1
0
0
1
1
0
1
Parameter (P1)
1
1
0
0
0
P15
0
0
0
0
0
P15: when setting “1” è The Write Enable of EEPROM will be opened.
P15: when setting “0” è The Read Enable of EEPROM will be opened.
(17) Cancel EEPROM (EPCOUT) Command: 1;Parameter:None (CCH)
Command
Ver 1.8
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
0
1
1
0
0
63/98
2006/08/15
ST7624
(18) Write data to EEPROM (EPMWR) Command: 1; Parameter: None (FCH)
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
1
1
1
0
0
(19) Read data from EEPROM (EPMWR) Command: 1; Parameter: None (FDH)
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
1
1
1
0
1
EXT=”1” or “0”
(1) Extension instruction disable (EXT IN) Command:1 Parameter: None (30H)
Use the “Ext=0” command table
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
0
0
0
(2) Extension instruction enable (EXT OUT) Command:1 Parameter: None (31H)
Use the extended command table (EXT=”1”)
Command
Ver 1.8
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
0
0
1
64/98
2006/08/15
ST7624
8.5 Referential Instruction Setup Flow
8.5.1 EEPROM Setting Flow
The ST7624 chip provide the Write and Read function to write the Electronic Control value and Built-in resistance ratio into
and read them from the built-in EEPROM. Using the Write and Read functions, you can store these values appropriate to
each LCD panel. This function is very convenient for user in setting from some different panel’s voltage. But using this
function must attention the setting procedure. Please see the following diagram.
Note: When “Writing” value to EEPROM, the voltage of VOUT IN must be more than 17V.
Figure 8.5.1.1 Flow of EC value adjustment and writing into EEPROM
Ver 1.8
65/98
2006/08/15
ST7624
Note: When “Reading” value from EEPROM, the voltage of VOUT IN must be more than 10V.
Figure 8.5.1.2 EEPROM Reading flow
Ver 1.8
66/98
2006/08/15
ST7624
Example:EEPROM Read Operation
void ReadEEPROM( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0007 );
Write( DATA, 0x0019 );
// Ext = 0
// Initial code (1)
Write( COMMAND, 0x0031 );
Write( COMMAND, 0x00CD );
Write( DATA, 0x0000 );
Delay( 50ms );
Write( COMMAND, 0x00FD );
Delay( 50ms );
Write( COMMAND, 0x00CC );
Write( COMMAND, 0x0030 );
// Ext = 1
// EEPROM ON
// Entry "Read Mode"
// Waite for EEPROM Operation ( 50ms )
// Start EEPROM Reading Operation
// Waite for EEPROM Operation ( 50ms )
// Exist EEPORM Mode step.1
// Exist EEPORM Mode step.2
}
Example:EEPROM Write Operation
void WriteEEPROM( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0007 );
Write( DATA, 0x0019 );
// Ext = 0
// Initial code(1)
Write( COMMAND, 0x00AE );
Write( COMMAND, 0x0031 );
Write( COMMAND, 0x00CD );
Write( DATA, 0x0020 );
Delay( 50ms );
Write( COMMAND, 0x00FC );
Delay( 50ms );
Write( COMMAND, 0x00CC );
Write( COMMAND, 0x0030 );
//Display Off
// Ext = 1
// EEPROM ON
// Entry "Write Mode"
// Waite for EEPROM Operation ( 50ms )
// Start EEPROM Writing Operation
// Waite for EEPROM Operation ( 50ms )
// Exist EEPORM Mode step.1
// Exist EEPORM Mode step.2
}
Ver 1.8
67/98
2006/08/15
ST7624
8.5.2 Initializing with the Built-in Power Supply Circuits
User System Setup by External Pins
Start of Initialization
Power On and Keeping the /RES Pin="L"
Waiting for Stabilizing the Power
/RES Pin="H" and wait time > 1.8 us
Sleep Out Flow
User Application Setup by Internal Instructions
[Internal OSC On]
[Display Control]
[COM Scan Direction]
User LCD Power Setup by Internal Instructions
[Analog Control - LCD Bias Select]
[Electronic Volume Control]
[DC-DC Step-up Register Select]
Read EEPROM Flow
[Normal / Inverse Display]
[Data Display Setting]
[Display On]
[Column Address Setting]
[Page Address Setting]
[Entry Data Write Mode]
End of Initialization
Figure 8.5.2.1 Initializing with the Built-in Power Supply Circuits
Ver 1.8
68/98
2006/08/15
ST7624
Example:Initial code for 96X96
void ST7624_Init( void )
{
Write( COMMAND, 0x0030 );
//Ext = 0
SleepOut()
//Sleep Out Flow
Write( COMMAND, 0x00D1 );
Write( COMMAND, 0x0020 );
Write( DATA, 0x000B );
//OSC On
//Power Control Set
//Booster Regulator Follower On
Write( COMMAND, 0x0081 );
Write( DATA, 0x0004 );
Write( DATA, 0x0004 );
//Electronic Control
//Vop=14.0V
Write( COMMAND, 0x00CA );
Write( DATA, 0x0000 );
Write( DATA, 0x0017 );
Write( DATA, 0x0000 );
//Display Control
//CL=X1
//Duty=96
//FR Inverse-Set Value
Write( COMMAND, 0x00A6 );
// Normal Display
Write( COMMAND, 0x00BB );
Write( DATA, 0x0001 );
//COM Scan Direction
// 0→51 103→52
Write( COMMAND, 0x00BC );
Write( DATA, 0x0000 );
Write( DATA, 0x0000 );
Write( DATA, 0x0001 );
//Data Scan Direction
//Normal
//RGB Arrangement
//65K COLOR
Write( COMMAND, 0x0075 );
Write( DATA, 0x0000 );
Write( DATA, 0x005F );
// Page Address Set
//Start Page=0
//End Page =95
Write( COMMAND, 0x0015 );
Write( DATA, 0x0000 );
Write( DATA, 0x005F );
//Column Address Set
//Start Column=0
//End Column =95
Write( COMMAND, 0x0031 );
//Ext = 1
Write( COMMAND, 0x0032 );
Write( DATA, 0x0000 );
Write( DATA, 0x0001 );
Write( DATA, 0x0001 );
//Analog Circuit Set
//OSC Frequency =000 (Default)
//Booster Efficiency=01(Default)
//Bias=1/11
Write( COMMAND, 0x0034 );
//Dithering Off
ReadEEPROM();
//Read EEPROM Flow
Write( COMMAND, 0x00AF );
//Display On
}
Ver 1.8
69/98
2006/08/15
ST7624
8.5.3 Sleep In/Out
Normal State
Sleep In Status
Start of Sleep In
Start of Sleep Out
Sleep In Sequencing :
[Display Off: AEH]
[Booster Off Only: 20H^03H]
[Set Sleep In Preparation: 04H^3FH]
Sleep Out Sequencing :
[Set Sleep Out Preparation: 04H^3EH]
[Set Analog Power Control: 20H^0BH]
Delay 500ms
[Set Sleep Out by Instruction: 94H]
[Set Sleep In by Instruction: 95H]
Delay 100ms
End of Sleep In
[Display On: AFH]
End of Sleep Out
Fig 8.5.3.1 Sleep In/Out
Example:Sleep In Operation
void SleepIn( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AE );
Write( COMMAND, 0x0020);
Write( DATA, 0x0003 );
Write( COMMAND, 0x0004 );
Write( DATA, 0x003F );
Delay( 500ms);
Write( COMMAND, 0x0095 );
// Ext = 0
// Display Off
// Power Control
// B/F/R = Off/On/On
// Sleep Preparation
// Sleep In Ready
// Sleep In
}
Example:Sleep Out Operation
void SleepOut( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0004 );
Write( DATA, 0x003E );
Write( COMMAND, 0x0020 );
Write( DATA, 0x000B );
Write( COMMAND, 0x0094 );
Delay( 100ms );
Write( COMMAND, 0x00AF );
// Ext = 0
// Sleep Preparation
// Sleep Out Ready
// Power Control
// B/F/R = On/On/On
// Sleep Out
// Display On
}
Ver 1.8
70/98
2006/08/15
ST7624
8.5.4 Data Displaying
Normal State
Display Data RAM Addressing by Instruction
[Data Control: BCH]
[Set Page Address: 75H]
[Set Column Address: 15H]
[Entry Memory Write Mode: 5CH]
Display Data Write
[Display Data Write]
No
End of Display Data Write ?
Yes
End of Data Display
Figure 8.5.4.1 Data Displaying
Example:Display for 104X104
void Display( char *pattern )
{
unsigned char i, j;
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0015 );
Write( DATA, 0 );
Write( DATA, 103 );
Write( COMMAND, 0x0075 );
Write( DATA, 0 );
Write( DATA, 103 );
Write( COMMAND, 0x005C )
for( j = 0; j < 104 ; j++ )
for( i = 0 ; i < 104 ; i++ )
Write( DATA, pattern[j*104+i] );
// Ext = 0
// Column address set
// From column0 to column103
// Page address set
// From page0 to page103
// Entry Memory Write Mode
// Display Data Write
}
Ver 1.8
71/98
2006/08/15
ST7624
8.5.5 Partial Display In/Out
Normal State
[Partial Display In: A8H]
[Set Start Block Address]
[Set End Block Address]
In Partial Display Mode
For User Application
Display Data RAM Addressing by Instruction
[Set Page Address: 75H]
[Set Column Address: 15H]
Display Data Write
No
Exit Partial Display ?
Yes
[Partial Display Out: A9H]
End of Partial Display
Figure 8.5.5.1 Partial Display In/Out
Example:Partial Display In Operation
void PartailIn( unsigned char start_block, unsigned char end_block )
{
Write( COMMAND, 0x0030 );
// Ext = 0
Write( COMMAND, 0x00A8);
// Partial Display In Function
Write( DATA, start_block );
// Start Block
Write( DATA, end_block );
// End Block
}
void PartailOut( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00A9 );
// Ext = 0
// Partial Display Out Function
}
Ver 1.8
72/98
2006/08/15
ST7624
extern unsigned char *display_pattern;
void main()
{
PartialIn( 11, 18 );
// entry partial display mode
Windowing( 0, 11*4, 103, 18*4 );
PartialDisplay( display_pattern );
.
.
.
PartialOut();
// set the page and column range
// Fill the data into partial display area
// Out of partial display mode
}
8.5.6 Scroll Display
Normal State
Set Area Scroll by Instruction
[Set Top Block Address]
[Set Bottom Block Address]
[Set Numbers of Specified Blocks]
[Set Area Scroll Mode]
Set Scroll Start Address by Instruction
[Set Start Block Address]
Scroll Up:
Start Block Address : from Top Block Address to Bottom Block Address
Scroll Down:
Start Block Address : from Bottom Block Address to Top Block Address
Yes
Next Start Block Address
Continue Scrolling ?
No
Reset Area Scroll by Instruction
[Set Top Block Address]
[Set Bottom Block Address]
[Set Numbers of Specified Blocks]
[Set Area Scroll Mode]
End of Scroll Mode
Figure 8.5.6.1 Scroll Display
Ver 1.8
73/98
2006/08/15
ST7624
Example:Screen Scroll Operation
void CenterScreenScroll( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AA);
Write( DATA, 0x000A );
Write( DATA, 0x0014 );
Write( DATA, 0x0014 );
Write( DATA, 0x0000 );
// Ext = 0
// Partial Display In Function
// Top_Block=10
// Bottom_Block=20
// Number of Specified Blocks=Bottom_Block=20
// Area Scroll Type=Center Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void TopScreenScroll( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AA);
Write( DATA, 0x0000 );
Write( DATA, 0x0014 );
Write( DATA, 0x0014 );
Write( DATA, 0x0001 );
// Ext = 0
// Partial Display In Function
// Top_Block=0
// Bottom_Block=20
// Number of Specified Blocks=Bottom_Block=20
// Area Scroll Type=Top Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void BottomScreenScroll( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AA);
Write( DATA, 0x000A );
Write( DATA, 0x0019 );
Write( DATA, 0x0019 );
Write( DATA, 0x0002 );
// Ext = 0
// Partial Display In Function
// Top_Block=10
// Bottom_Block=25
// Number of Specified Blocks=Bottom_Block=25
// Area Scroll Type=Bottom Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void WholeScreenScroll( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AA);
Write( DATA, 0x0000 );
Write( DATA, 0x0019 );
Write( DATA, 0x0019 );
Write( DATA, 0x0003 );
// Ext = 0
// Partial Display In Function
// Top_Block=0
// Bottom_Block=25
// Number of Specified Blocks=Bottom_Block=25
// Area Scroll Type=Whole Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
Ver 1.8
74/98
2006/08/15
ST7624
void ScrollUp( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AB);
Write( DATA, Top_Block);
Delay();
// Ext = 0
// Scroll Start Set
// Start Block Address=Top_Block
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Top_Block +1 );
Delay();
// Scroll Start Set
// Start Block Address= Top_Block+1
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Top_Block +2 );
Delay();
……
……
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block );
Delay();
// Scroll Start Set
// Start Block Address= Top_Block +2
// Delay
// Scroll Start Set
// Start Block Address= Bottom_Block
// Delay
}
void ScrollDown( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block);
Delay();
// Ext = 0
// Scroll Start Set
// Start Block Address= Bottom_Block
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block -1 );
Delay();
// Scroll Start Set
// Start Block Address= Bottom_Block -1
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block -2 );
Delay();
……
……
Write( COMMAND, 0x00AB);
Write( DATA, Top _Block );
Delay();
// Scroll Start Set
// Start Block Address= Bottom_Block -2
// Delay
// Scroll Start Set
// Start Block Address= Top_Block
// Delay
}
Ver 1.8
75/98
2006/08/15
ST7624
8.5.7 Read-Modify-Write Cycle
Normal State
[Page Address Set: 75H]
[Column Address Set: 15H]
[Read-Modify-Write In: E0H]
Read-Modify-Write Cycle
Dummy Read
Pixel Read
Pixel Modify
Pixel Write
No
Modify Complete ?
YES
[Read-Modify-Write Out: EEH]
End of Read-Modify-Write Cycle
Figure 8.5.7.1 Read-Write-Modify Cycle
Example:Read-Write-Modify Cycle
void ReadModifyWriteIn( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00E0 );
}
void ReadModifyWriteOut( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00EE );
}
// Ext = 0
// Entry the Read-Modify-Write mode
// Ext = 0
// Out of partial display mode
extern unsigned char *display_pattern;
void main()
{
unsigned pixel, i;
Windowing( 11, 31, 80, 50 );
Ver 1.8
// set the page and column range
76/98
2006/08/15
ST7624
ReadModifyWriteIn();
// entry the Read-Modify-Write mode
for( i = 0 ; i < 1000 ; i++ )
{
Read( DATA );
pixel = Read( DATA );
pixel = pixel & 0x07FF;
Write( DATA, pixel );
}
// For dummy read
// Pixel read
// Pixel modify: red filter
ReadModifyWriteOut();
// Out of Read-Modify-Write mode
}
8.5.8 Display On / OFF
Normal State
Display OFF State
[Set Display OFF : AEH]
[Set Display ON : AFH]
End of Display OFF
End of Display ON
Figure 8.5.8.1 Display Off
Figure 8.5.8.2 Display On
Example:Display OFF Operation
void DisplayOff( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AE );
// Ext = 0
// Display Off
}
Example:Display ON Operation
void DisplayOn( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AF );
// Ext = 0
// Display On
}
Ver 1.8
77/98
2006/08/15
ST7624
8.5.9 Power OFF
Normal State
Execute the “Sleep In Flow”
Keeping /RES Pin =“L”
Power Off (VDD-VSS)
End of Power OFF
VDD
/RES
tR
Internal
State
Normal State
Execute “Sleep In Flow”
Reset
tR > 12 ms
Power Off
After Sleep In Flow, keep the /RES = Low
Figure 8.5.9.1 Power off
Note:The sequence is that users must set the VDD to low after keeping the /RES=low time longger
than 12ms.
Ver 1.8
78/98
2006/08/15
ST7624
9. LIMITING VALUES
In accordance with the Absolute Maximum Rating System; see notes 1 and 2.
Parameter
Symbol
Conditions
Unit
Power Supply Voltage
VDD, VDD1~5
–0.5 ~ +4.0
V
Power supply voltage (VDD standard)
VOUTIN
–0.5 ~ +20
V
Power supply voltage (VDD standard)
V1, V2, V3, V4
0.3 to VOUTIN
V
Input voltage
VIN
–0.5 to VDD+0.5
V
Output voltage
VO
–0.5 to VDD+0.5
V
Operating temperature (Die)
TOPR
–30 to +85
°C
Storage temperature (Die)
TSTR
–40 to +125
°C
VDD
/RES
tR
Internal
State
Normal State
Execute “Sleep In Flow”
Reset
tR > 12 ms
Power Off
After Sleep In Flow, keep the /RES = Low
Notes
1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to
VSS unless otherwise noted.
3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that
VOUTIN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ Vss
4.V0 tolerance +/- 0.1V
Ver 1.8
79/98
2006/08/15
ST7624
10. HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”).
11. DC CHARACTERISTICS
VDD = 2.4 V to 3.3V; VSS = 0 V; V0 = 3.76 to 18.0V; Tamb = -30℃ to +85℃; unless otherwise specified.
Rating
Item
Applicable
Symbol Condition
Units
Typ.
Max.
2.4
—
3.3
V
Vss
2.4
—
3.3
V
VSS
VDD
V
*2
0.2 x VDD V
*2
VDD
V
*3
*3
VDD
Operating Voltage (1)
Pin
Min.
VDD1
VDD2
VDD3
Operating Voltage (2)
VDD4
VDD5
High-level Input Voltage
VIHC
0.8 x VDD —
Low-level Input Voltage
VILC
VSS
High-level Output Voltage
VOHC
0.8 x VDD —
Low-level Output Voltage
VOLC
VSS
—
0.2 x VDD V
Input leakage current
ILI
VIN = VDD or VSS
–1.0
—
1.0
μA
*4
Output leakage current
ILO
VIN = VDD or VSS
–3.0
—
3.0
μA
*5
—
2.0
—
Liquid Crystal Driver ON
Ta =
VOUTIN =
25°C
15.0 V
—
KΩ
RON
Resistance
(Relative VOUTIN = 8.0
To VSS) V
Internal Oscillator fOSC
Oscillator
Ta = 25°C
External
fCL
Frequency Input
1/104 duty
SEGn
COMn *6
—
3.2
—
—
8.09
—
kHz
*7
—
250.79 —
kHz
OSC
31 PWM
Frame frequency fFRAME
fFRAME=fOSC/(Duty+1)
Hz
Rating
Item
Internal Power
Input voltage
Symbol
Condition
Units Applicable Pin
Min.
Typ.
Max.
VDD
(Relative To VSS)
2.4
—
3.3
V
VOUTOUT
(Relative To VSS)
—
—
18
V
VOUTOUT
VOUTIN
(Relative To VSS)
—
—
18
V
VOUTIN
Supply Step-up output
voltage Circuit
Voltage regulator
Circuit Operating
Voltage
Ver 1.8
80/98
2006/08/15
ST7624
Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs when
an external power supply is used .
Rating
Test pattern
Symbol
Display Pattern
VDD = 2.8V, BoosterX7
ISS
Normal
Power Down
Condition
V0 – VSS = 14.0 V, 1/11 Bias
ISS
Ta = 25°C
Units
Notes
—
μA
*8
10
μA
die
Min.
Typ.
Max.
—
350(die)
—
—
PS.V0 tolerance +/- 0.1V
Notes to the DC characteristics
1. The maximum possible VOUT voltage that may be generated is dependent on voltage, temperature and (display) load.
2. Internal clock
3. Power-down mode. During power down all static currents are switched off.
4. If external VOUT, the display load current is not transmitted to IDD.
5. VOUT external voltage applied to VOUTIN pin; VOUTIN disconnected from VOUTOUT
References for items market with *
*1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden
fluctuations to the voltage while the MPU is being accessed.
*2 The A0, D0 to D5, D6 (SI), D7 (SCL), D8 to D15, /RD (E), /WR ,/(R/W), /CS, and RESB terminals.
*3 The D0 to D7 terminals.
*4 The A0,/RD (E), /WR ,/(R/W), /CS, and RESB terminals.
*5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state.
*6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the
various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range.
RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.)
*7 The relationship between the oscillator frequency and the frame rate frequency.
*8,9It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on.
Ver 1.8
81/98
2006/08/15
ST7624
12. TIMING CHARACTERISTICS
Condition:Bare Die
System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)
A0
tAW8
tAH8
/CS
tCYC8,tCYCR8
tCCLR,tCCLW
WR,RD
tCCHR,tCCHW
tDS8
tDH8
D0 to D7
(Write)
tACC8
tOH8
D0 to D7
(Read)
Figure 39.
(VDD = 3.3V , Ta =-30°C~85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH8
10
—
Address setup time
tAW8
10
—
System cycle time
tCYC8
150
—
fCYC8
6.67
—
Enable L pulse width (WRITE)
tCCLW
50
—
Enable H pulse width (WRITE)
tCCHW
100
—
System cycle time(READ)
tCYCR8
490
tCCLR
140
—
Enable H pulse width (READ)
tCCHR
350
—
WRITE data setup time
tDS8
70
—
tDH8
10
—
Address hold time
A0
System cycle frequency
WR
Enable L pulse width (READ)
RD
WRITE data hold time
D0 to D7
READ access time
tACC8
CL = 100 pF
—
70
READ Output disable time
tOH8
CL = 100 pF
—
50
Ver 1.8
82/98
ns
MHz
ns
2006/08/15
ST7624
(VDD = 2.8 V , Ta =-30°C~85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH8
10
—
Address setup time
tAW8
10
—
System cycle time
tCYC8
180
—
fCYC8
5.56
—
Enable L pulse width (WRITE)
tCCLW
60
—
Enable H pulse width (WRITE)
tCCHW
120
—
System cycle time(READ)
tCYCR8
620
tCCLR
190
—
Enable H pulse width (READ)
tCCHR
420
—
WRITE data setup time
tDS8
80
—
tDH8
30
—
Address hold time
A0
System cycle frequency
WR
Enable L pulse width (READ)
RD
WRITE data hold time
D0 to D7
READ access time
tACC8
CL = 100 pF
—
140
READ Output disable time
tOH8
CL = 100 pF
—
100
ns
MHz
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tCCLW and tCCLR are specified as the overlap between /CS being “L” and WR and RD being at the “L” level.
Ver 1.8
83/98
2006/08/15
ST7624
System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)
A0
R/W
tAW6
tAH6
/CS
tCYC6,tCYCR6
tCCLR,tCCLW
E
tCCHR,tCCHW
tDS6
tDH6
D0 to D7
(Write)
tACC6
tOH6
D0 to D7
(Read)
Figure 40.
(VDD = 3.3 V , Ta =-30°C~85°C , die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH6
10
—
Address setup time
tAW6
10
—
System cycle time
tCYC6
150
—
fCYC6
6.67
—
Enable L pulse width (WRITE)
tEWLW
90
—
Enable H pulse width (WRITE)
tEWHW
60
—
System cycle time(READ)
tCYCR6
500
—
tEWLR
340
—
Enable H pulse width (READ)
tEWHR
160
—
WRITE data setup time
tDS6
70
—
tDH6
10
—
Address hold time
A0
System cycle frequency
WR
Enable L pulse width (READ)
RD
WRITE data hold time
D0 to D7
READ access time
tACC6
CL = 100 pF
—
70
READ Output disable time
tOH6
CL = 100 pF
—
50
Ver 1.8
84/98
ns
MHz
ns
2006/08/15
ST7624
(VDD = 2.8V , Ta =-30°C~85°C , die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH6
10
—
Address setup time
tAW6
10
—
System cycle time
tCYC6
180
—
fCYC6
5.56
—
Enable L pulse width (WRITE)
tEWLW
110
—
Enable H pulse width (WRITE)
tEWHW
70
—
System cycle time(READ)
tCYCR6
590
—
tEWLR
400
—
Enable H pulse width (READ)
tEWHR
190
—
WRITE data setup time
tDS6
80
—
tDH6
10
—
Address hold time
A0
System cycle frequency
WR
RD
Enable L pulse width (READ)
WRITE data hold time
D0 to D7
READ access time
tACC6
CL = 100 pF
—
140
READ Output disable time
tOH6
CL = 100 pF
—
100
ns
MHz
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tEWLW and tEWLR are specified as the overlap between /CS being “L” and E.
SERIAL INTERFACE(4-Line Interface)
tCCSS
tCSH
/CS
tSAS
tSAH
A0
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Fig 41.
Ver 1.8
85/98
2006/08/15
ST7624
(VDD=3.3V, Ta =-30°C~85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tSCYC
100
—
fSCYC
10
tSHW
70
—
tSLW
30
—
tSAS
20
—
Address hold time
tSAH
50
—
Data setup time
tSDS
20
—
tSDH
30
—
tCSS
20
—
tCSH
50
—
Serial clock period
Serial clock frequency
SCL “H” pulse width
MHz
SCL
SCL “L” pulse width
Address setup time
A0
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
ns
ns
(VDD=2.8V, Ta =-30°C~85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tSCYC
110
—
fSCYC
9.09
tSHW
80
—
tSLW
30
—
tSAS
20
—
Address hold time
tSAH
50
—
Data setup time
tSDS
20
—
tSDH
30
—
tCSS
20
—
tCSH
60
—
Serial clock period
Serial clock frequency
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
A0
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
ns
MHz
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
Ver 1.8
86/98
2006/08/15
ST7624
SERIAL INTERFACE(3-Line Interface)
tCCSS
tCSH
/CS
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Fig 42.
(VDD=3.3V, Ta =-30°C~85°C, die)
Rating
Item
Signal
Serial clock period
Serial clock frequency
SCL “H” pulse width
Symbol
Condition
Units
Min.
Max.
tSCYC
100
—
fSCYC
10
tSHW
70
—
tSLW
30
—
tSDS
20
—
tSDH
30
—
tCSS
20
—
tCSH
60
—
MHz
SCL
SCL “L” pulse width
Data setup time
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
ns
ns
(VDD=2.8V, Ta =-30°C~85°C, die)
Rating
Item
Signal
Serial clock period
Serial clock frequency
SCL “H” pulse width
Symbol
Condition
Units
Min.
Max.
tSCYC
110
—
fSCYC
9.09
tSHW
80
—
tSLW
30
—
tSDS
20
—
tSDH
40
—
tCSS
20
—
tCSH
60
—
SCL
SCL “L” pulse width
Data setup time
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
Ver 1.8
87/98
ns
MHz
ns
2006/08/15
ST7624
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
13. RESET TIMING
tRW
/RES
tR
Internal
status
During reset
Reset complete
Fig 43.
(VDD = 3.3V , Ta = –30 to 85°C, die)
Rating
Item
Signal
Reset time
Reset “L” pulse width
RESB
Symbol
Condition
Units
Min.
Typ.
Max.
tR
—
—
1
us
tRW
1
—
—
us
(VDD = 2.8V , Ta = –30 to 85°C, die)
Rating
Item
Signal
Reset time
Reset “L” pulse width
RESB
Symbol
Condition
Units
Min.
Typ.
Max.
tR
—
—
1.5
us
tRW
1.5
—
—
us
14. THE MPU INTERFACE (REFERENCE EXAMPLES)
The ST7624 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial
interface it is possible to operate the ST7624 series chips with fewer signal lines.
The display area can be enlarged by using multiple ST7624 Series chips. When this is done, the chip select signal can be
used to select the individual Ics to access.
(1) 8080-8bits Series MPUs
VDD
VCC
VDD
A0
A0
GND
/CS
DO to D7
RD
WR
RES
ST7624
MPU
/CS
IF1
IF2
IF3
D0 to D7
E_RD
RW_WR
/RES
VSS
RESET
VSS
Ver 1.8
88/98
2006/08/15
ST7624
(2) 6800-8bits Series MPUs
V DD
V DD
A0
A0
/CS
/CS
D O to D 7
RD
WR
RES
GND
IF1
IF2
IF3
ST7624
MPU
V CC
D0 to D 7
E_RD
RW _W R
/RES
V SS
RESET
V SS
(3) Using the Serial Interface (4-line interface)
V DD
V DD
V CC
A0
/CS
/CS
IF1
IF2
IF3
Port 1
Port 2
RES
GND
ST7624
MPU
A0
SI
SCL
/RES
V SS
RESET
VSS
(4) Using the Serial Interface (3-line interface)
V DD or V SS
V CC
V DD
IF1
IF2
IF3
/CS
Port 1
Port 2
RES
GND
ST7624
MPU
/CS
SI
SC L
/RES
V SS
RESET
V SS
Ver 1.8
89/98
2006/08/15
ST7624
15.APPLICATION NOTE
Resolution : 104 X 104 Color start
CSEL = L
Common Scan Command : BBH
Parameter : P12,P11,P10=001
(Reference Page 45)
pixel
com 0
Display 104x104 Pixels
com 51
com 52
com 103
com0
com51
seg311
seg311
seg0
com103
com52
s eg0
ST7624(BUMP SIDE)
Resolution : 104 X 104 Color
CSEL = H
start pixel
com 0
com 1
com 2
com 3
Display 104x104 Pixels
com 100
com 101
com 102
com 103
com2
com0
com102
com100
seg311
s eg311
seg0
com101
com103
com1
com3
s eg0
ST7624(BUMP SIDE)
Note : the View Angle of panel can be changed by software(Command BCH)
Ver 1.8
90/98
2006/08/15
ST7624
Resolution : 96 X 96 Color
CSEL = H
start pixel
com 0
com 1
com 2
com 3
Display 96x96 Pixels
com 92
com 93
com 94
com 95
com2
com0
com94
com92
seg287
s eg287
seg0
com93
com95
com1
com3
s eg0
ST7624(BUMP SIDE)
Resolution : 96 X 64 Color
CSEL = H
start pixel
com0
com1
com2
com3
Display 96x64Pixels
com60
com61
com62
com63
com2
com0
seg287
seg0
com61
com63
com1
com3
com62
com60
seg287
seg0
ST7624(BUMP SIDE)
Note : the View Angle of panel can be changed by software(Command BCH)
Ver 1.8
91/98
2006/08/15
ST7624
444
447
448
.
.
.
1uF/25V
.
.
.
1M-ohm
R1 C1
451
452
C2 C3 C4 C5
Interface : 8080series-8bits
VDD,VDD1=2.4V~3.3V
VDD2~VDD5=2.4V~3.3V
Booster : X7
CSEL = H
IF1 = H ; IF2 = H ; IF3 = L
C1~C5 : 0.1uF~1.0uF/25V
C6~C13 : 1.0~2.2uF/25V
Vop = 12~15V
Bias = 1/11(under 1/104 duty)
R1=1M-ohm
1uF/25V
1uF/25V
1uF/25V
1uF/25V
A0
D0
D1
D2
D3
D4
D5
D6
D7
/CS
.
.
.
.
.
.
528
529
.
.
.
532
533
534
C6
com103
364
seg0
053
seg311
052
com102
001
c om0
V3
455
456
457
458
459
460
461
462
463
519
520
521
522
523
1uF/25V
365
V0OUT
V1
V2
.
.
VSS
com1
454
504
505
506
VDD
416
V0IN
V0OUT
535
V4
VR
VREF
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_RD
RST
VSS
VDD
CSEL
INTRS
IF1
IF2
IF3
VSS
VDD
SI
SCL
/CS
VDD
VDD
VDD1
VSS
VSS
VDD4
VDD3
VDD3
VDD2
VDD2
VDD5
ST7624(BUMP SIDE)
/RD
RST
com1
453
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/WR
V0IN
VDD5
TCAP
CAP2P
com103
seg0
seg311
CAP2N
C7
1uF/25V
536
537
com102
CAP6P
C8
1uF/25V
CAP2N
538
CAP4P
539
CAP7P
540
C9
1uF/25V
541
542
CAP5P
CAP3P
543
CAP1N
C11
544
545
.
.
550
551
.
.
C12
92/98
C10
1uF/25V 1uF/25V 1uF/25V
Ver 1.8
CAP1N
556
CAP1P
VLCDIN
VLCDIN
VLCDOUT
VLCDOUT
com0
2006/08/15
ST7624
444
447
448
.
.
.
1uF/25V
.
.
.
R1
1M-ohm
C1
451
452
C2 C3 C4 C5
Interface : 8080series-16bits
VDD,VDD1=2.4V~3.3V
VDD2~VDD5=2.4V~3.3V
Booster : X7
CSEL = H
IF1 = H ; IF2 = H ; IF3 = H
C1~C5 : 0.1uF~1.0uF/25V
C6~C13 : 1.0~2.2uF/25V
Vop = 12~15V
Bias = 1/11(under 1/104 duty)
R1=1M-ohm
1uF/25V
1uF/25V
1uF/25V
1uF/25V
A0
D0
D1
D2
D3
D4
D5
D6
D7
/RD
RST
/CS
.
.
.
.
.
.
528
529
.
.
.
532
533
534
C6
C7
1uF/25V
com103
364
seg0
053
seg311
052
com102
001
com0
V3
455
456
457
458
459
460
461
462
463
519
520
521
522
523
1uF/25V
365
V2
.
.
VSS
com1
454
504
505
506
VDD
416
V0OUT
V1
535
536
V4
VR
VREF
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_RD
RST
VSS
VDD
CSEL
INTRS
IF1
IF2
IF3
VSS
VDD
SI
SCL
/CS
VDD
VDD
VDD1
VSS
VSS
VDD4
VDD3
VDD3
VDD2
VDD2
VDD5
ST7624(BUMP SIDE)
D8
D9
D10
D11
D12
D13
D14
D15
com1
V0IN
V0OUT
453
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/WR
V0IN
VDD5
TCAP
CAP2P
com103
seg0
seg311
CAP2N
com102
CAP6P
537
C8
1uF/25V
CAP2N
538
539
CAP4P
CAP7P
540
CAP1N
C9
1uF/25V
541
542
C11
544
545
.
.
550
551
.
.
C12
93/98
C10
1uF/25V 1uF/25V 1uF/25V
Ver 1.8
543
556
CAP5P
CAP3P
CAP1N
CAP1P
VLCDIN
VLCDIN
VLCDOUT
VLCDOUT
com0
2006/08/15
ST7624
444
447
448
.
.
.
1uF/25V
.
.
.
R1
1M-ohm
C1
451
452
C2 C3 C4 C5
Interface : 6800series-8bits
VDD,VDD1=2.4V~3.3V
VDD2~VDD5=2.4V~3.3V
Booster : X7
CSEL = H
IF1 = L ; IF2 = H ; IF3 = H
C1~C5 : 0.1uF~1.0uF/25V
C6~C13 : 1.0~2.2uF/25V
Vop = 12~15V
Bias = 1/11(under 1/104 duty)
R1=1M-ohm
1uF/25V
1uF/25V
1uF/25V
1uF/25V
A0
D0
D1
D2
D3
D4
D5
D6
D7
/CS
.
.
.
.
.
.
528
529
.
.
.
532
533
534
C6
com 103
364
seg0
053
seg311
052
com 102
001
c om0
V3
455
456
457
458
459
460
461
462
463
519
520
521
522
523
1uF/25V
365
V0OUT
V1
V2
.
.
VSS
com1
454
504
505
506
VDD
416
V0IN
V0OUT
535
V4
VR
VREF
VDD
CL
CLS
VSS
VDD
A0
RW_W R
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_RD
RST
VSS
VDD
CSEL
INTRS
IF1
IF2
IF3
VSS
VDD
SI
SCL
/CS
VDD
VDD
VDD1
VSS
VSS
VDD4
VDD3
VDD3
VDD2
VDD2
VDD5
ST7624(BUMP SIDE)
E
RST
c om1
453
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
R/W
V0IN
VDD5
TCAP
CAP2P
com103
seg0
s eg311
CAP2N
C7
1uF/25V
536
com102
CAP6P
537
C8
1uF/25V
CAP2N
538
CAP4P
539
CAP7P
540
CAP1N
C9
1uF/25V
541
CAP5P
542
CAP1N
C11
544
545
.
.
550
551
.
.
C12
94/98
C10
1uF/25V 1uF/25V 1uF/25V
Ver 1.8
CAP3P
543
556
CAP1P
VLCDIN
VLCDIN
VLCDOUT
VLCDOUT
c om0
2006/08/15
ST7624
444
447
448
.
.
.
C1
1uF/25V
.
.
.
1M-ohm
R1
451
452
C2 C3 C4 C5
Interface : 6800series-16bits
VDD,VDD1=2.4V~3.3V
VDD2~VDD5=2.4V~3.3V
Booster : X7
CSEL = H
IF1 = H ; IF2 = L ; IF3 = L
C1~C5 : 0.1uF~1.0uF/25V
C6~C13 : 1.0~2.2uF/25V
Vop = 12~15V
Bias = 1/11(under 1/104 duty)
R1=1M-ohm
1uF/25V
1uF/25V
1uF/25V
1uF/25V
A0
D0
D1
D2
D3
D4
D5
D6
D7
E
RST
/CS
.
.
.
.
.
.
528
529
.
.
.
532
533
534
C6
com103
364
seg0
053
s eg311
052
com102
001
com0
V3
455
456
457
458
459
460
461
462
463
519
520
521
522
523
1uF/25V
365
V0OUT
V1
V2
.
.
VSS
c om1
454
504
505
506
VDD
416
V0IN
V0OUT
535
V4
VR
VREF
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_RD
RST
VSS
VDD
CSEL
INTRS
IF1
IF2
IF3
VSS
VDD
SI
SCL
/CS
VDD
VDD
VDD1
VSS
VSS
VDD4
VDD3
VDD3
VDD2
VDD2
VDD5
ST7624(BUMP SIDE)
D8
D9
D10
D11
D12
D13
D14
D15
com1
453
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
R/W
V0IN
VDD5
TCAP
CAP2P
com103
seg0
s eg311
CAP2N
C7
1uF/25V
536
537
com102
CAP6P
C8
1uF/25V
CAP2N
538
CAP4P
539
CAP7P
540
C10
1uF/25V
541
542
CAP5P
CAP3P
543
CAP1N
C12
544
545
.
.
550
551
.
.
C13
95/98
C11
1uF/25V 1uF/25V 1uF/25V
Ver 1.8
CAP1N
556
CAP1P
VLCDIN
VLCDIN
VLCDOUT
VLCDOUT
com0
2006/08/15
ST7624
444
447
448
.
.
.
R1
1uF/25V
.
.
.
1M-ohm
C1
451
452
C2 C3 C4 C5
Interface : 4-line
VDD,VDD1=2.4V~3.3V
VDD2~VDD5=2.4V~3.3V
Booster : X7
CSEL = H
IF1 = L ; IF2 = L ; IF3 = L
C1~C5 : 0.1uF~1.0uF/25V
C6~C13 : 1.0~2.2uF/25V
Vop = 12~15V
Bias = 1/11(under 1/104 duty)
R1=1M-ohm
1uF/25V
1uF/25V
1uF/25V
1uF/25V
A0
.
.
.
.
.
.
528
529
.
.
.
532
533
534
C6
com103
364
seg0
053
seg311
052
com102
001
c om0
V3
455
456
457
458
459
460
461
462
463
519
520
521
522
523
1uF/25V
365
V0OUT
V1
V2
.
.
VSS
com1
454
504
505
506
VDD
416
V0IN
V0OUT
535
V4
VR
VREF
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_RD
RST
VSS
VDD
CSEL
INTRS
IF1
IF2
IF3
VSS
VDD
SI
SCL
/CS
VDD
VDD
VDD1
VSS
VSS
VDD4
VDD3
VDD3
VDD2
VDD2
VDD5
ST7624(BUMP SIDE)
SI
SCL
/CS
c om1
453
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
RST
V0IN
VDD5
TCAP
CAP2P
com103
seg0
seg311
CAP2N
C7
1uF/25V
536
com102
CAP6P
537
C8
1uF/25V
CAP2N
538
CAP4P
539
540
CAP7P
CAP1N
C9
1uF/25V
541
CAP5P
542
CAP1N
C11
544
545
.
.
550
551
.
.
C12
96/98
C10
1uF/25V 1uF/25V 1uF/25V
Ver 1.8
CAP3P
543
556
CAP1P
VLCDIN
VLCDIN
VLCDOUT
VLCDOUT
c om0
2006/08/15
ST7624
444
R1
C1
1uF/25V
447
448
.
.
.
1M-ohm
.
.
.
Interface : 3-line
VDD,VDD1=2.4V~3.3V
VDD2~VDD5=2.4V~3.3V
Booster : X7
CSEL = H
IF1 = L ; IF2 = L ; IF3 = H
C1~C5 : 0.1uF~1.0uF/25V
C6~C13 : 1.0~2.2uF/25V
Vop = 12~15V
Bias = 1/11(under 1/104 duty)
R1=1M-ohm
451
452
C2 C3 C4 C5
1uF/25V
1uF/25V
1uF/25V
1uF/25V
.
.
.
.
.
.
528
529
.
.
.
532
533
534
C6
com103
364
seg0
053
seg311
052
com102
001
c om0
V3
455
456
457
458
459
460
461
462
463
519
520
521
522
523
1uF/25V
365
V2
.
.
VSS
com1
454
504
505
506
VDD
416
V0OUT
V1
535
V4
VR
VREF
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_RD
RST
VSS
VDD
CSEL
INTRS
IF1
IF2
IF3
VSS
VDD
SI
SCL
/CS
VDD
VDD
VDD1
VSS
VSS
VDD4
VDD3
VDD3
VDD2
VDD2
VDD5
ST7624(BUMP SIDE)
SI
SCL
/CS
c om1
V0IN
V0OUT
453
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
RST
V0IN
VDD5
TCAP
CAP2P
com103
seg0
seg311
CAP2N
C7
1uF/25V
536
com102
CAP6P
537
C8
1uF/25V
CAP2N
538
CAP4P
539
540
CAP7P
CAP1N
C9
1uF/25V
541
CAP5P
542
C10
CAP1N
C11
544
545
.
.
550
551
.
.
C12
1uF/25V 1uF/25V 1uF/25V
CAP3P
543
556
CAP1P
VLCDIN
VLCDIN
VLCDOUT
VLCDOUT
c om0
NOTE: Microprocessor interface pins should not be floating in any operation mode.
Ver 1.8
97/98
2006/08/15
ST7624
ST7624 Specification Revision History
Version
Date
Description
1.0
2004/12/08 Remove Preliminary and modify Timing Characteristic
1.1
2005/01/14 Correct 8080/6800 interface Timing
1.2
2005/03/12 Modify EEPROM flow and Parallel Timing
1.3
2005/05/03 Remove IIC Interface
1.4
2005/05/18 Modify Program Flow
1.5
2005/06/02 Modify Application Note
Modify Limiting Value and DC Characteristic
1. Temperature gradient (Add tolerance) on Page1
1.6
2005/09/07 2. supply voltage (no tolerance).
3. Bump height on Page2
4. Operating and storage temperature.
Ver 1.8
1.7
2005/9/15
1. Add die in Temperature Range of Time
2. Add die in Display on Current (Typ)
1.8
2006/8/15
Add microprocessor notice item(p.14, p.97).
98/98
2006/08/15