ABB 5SDA09D2604

Key Parameters
VRRM =
2600
IFAVM =
1020
IFSM
=
11.5
VF0
=
0.87
rF
=
0.39
Avalanche Rectifier Diode
V
A
kA
V
mΩ
Ω
5SDA 09D2604
Doc. No. 5SYA 1121 - 01 Apr-98
Features
•
•
•
•
•
Optimized for line frequency rectifiers
Low on-state voltage, narrow VF-bands for parallel operation
Self protected against transient overvoltages
Guaranteed maximum avalanche power dissipation
Industry standard housing
Blocking
Part number
5SDA 09D2604
5SDA 09D2304
5SDA 09D2004
Condition
VRRM
2600
2300
2000
f
= 50 Hz
tP
= 10 ms
VRSM
2860
2530
2200
tP
= 10 ms
Tj
= 160°C
IRRM
≤
50
mA
VRRM
Tj
= 160°C
PRSM
≤
70
kW
tP
= 20 µs
Tj
=
≤
50
kW
tP
= 20 µs
Tj
= 160°C
Mechanical data
FM
a
Mounting force
min.
10 kN
max.
12 kN
m
Acceleration
Device unclamped
Device clamped
Weight
DS
Surface creepage distance
Da
Air strike distance
2
50 m/s
2
200 m/s
0.25 kg
30 mm
20.5 mm
ABB Semiconductors AG
45°C
ABB Semiconductors AG
5SDA 09D2604
On-state
IFAVM
Max. average on-state current
1020 A
IFRMS
Max. RMS on-state current
1600 A
IFSM
Max. peak non-repetitive
11.5 kA
tp
=
10 ms
Tj =
surge current
12.5 kA
tp
=
8.3 ms
After surge:
2
tp
=
10 ms
VD = VR = 0V
2
650⋅103 A s
tp
=
8.3 ms
IF
= 1000 - 3000 A
Tj =
160°C
IF
=
Tj =
25°C
2
It
3
Limiting load integral
Half sine wave, TC = 85°C
660⋅10 A s
VF0
Threshold voltage
0.87 V
rF
Slope resistance
0.39 mΩ
VF min
On-state voltage
1.35 V
VF max
On-state voltage
1.50 V
1800 A
160°C
Thermal
Tj
Storage and operating
-40...160°C
junction temperature range
RthJC
RthCH
Thermal resistance
80 K/kW
Anode side cooled
junction to case
80 K/kW
Cathode side cooled
40 K/kW
Double side cooled
16 K/kW
Single side cooled
8 K/kW
Double side cooled
Thermal resistance case to
heat sink
45
Analytical function for transient thermal impedance:
4
∑ R (1- e
ZthJC(t) =
i
-t/τ i
)
40
Fm =10...12 kN
Zth
35
Double Side Cooling
[K/kW]
30
25
i =1
20
15
i
1
2
3
4
10
R (K/kW)
20.95
10.57
7.15
1.33
5
τi (s)
0.396
0.072
0.009
0.0044
For a given case temperature Tc at ambient temperature Ta the
maximum on-state current can be calculated as follows:
IFAVM =
where
P=
-VF0 +
2
(VF0)2 + 4 * f * rf * P
2 * f 2 * rf
TJ max - TC
Rthjc
or
P=
TJ max - TA
Rthja
0
10-3
IFAVM (A)
T max (°C)
Rthja (K/kW)
2
f =
1
2.5
3.1
6
2
3 4 5 67
10-2
2
3 4 5 67
P (W)
Tc (°C)
RthJC (K/kW)
10-1
t [s]
2
3 4 5 56
VF0 (V)
Ta (°C)
100
2
3 4 5 67
101
rF (Ω)
for DC current
for half-sine wave
for 120°el., sine
for 60° el., sine
Doc. No. 5SYA 1121 - 01 Apr-98
ABB Semiconductors AG
Fabrikstrasse 3
CH-5600 Switzerland
Telephone +41 (0)62 888 6419
Fax
+41 (0)62 888 6306