ARIZONA MICROTEK, INC. AZV99 PECL/LVDS Oscillator Gain Stage & Buffer with Selectable Enable FEATURES • • • • • • • Green and RoHS Compliant / Lead (Pb) Free Packages Available Similar Operation as AZ100LVEL16VT except with LVDS Outputs Operating Range of 3.0V to 5.5V Minimizes External Components Selectable Enable Polarity and Threshold (CMOS/TTL or PECL) Available in a 2x2 or 3x3mm MLP Package S–Parameter (.s2p) and IBIS Model Files Available on Arizona Microtek Website PACKAGE AVAILABILITY PACKAGE PART NUMBER MARKING NOTES MLP 8 (2x2x0.75) Green / RoHS Compliant / Lead (Pb) Free AZV99NG V1G <Date Code> 1,2 MLP 8 (2x2x0.75) AZV99NA V9 <Date Code> 1,2 AZV99NBG V8G <Date Code> 1,2 AZV99NDG V2G <Date Code> 1,2 AZV99LG AZMG V99 <Date Code> 1,2 AZV99T+ AZ+ V99 1,2,3 AZV99XP N/A 4 MLP 8 (2x2x0.75) Green / RoHS Compliant / Lead (Pb) Free MLP 8 (2x2x0.75) Green / RoHS Compliant / Lead (Pb) Free MLP 16 (3x3) Green / RoHS Compliant / Lead (Pb) Free TSSOP 8 RoHS Compliant / Lead (Pb) Free DIE 1 2 3 4 Add R1 at end of part number for 7 inch (1K parts), R2 for 13 inch (2.5K parts) Tape & Reel. Date code format: “Y” for year followed by “WW” for week. Date Code “YWW” on underside of part. Waffle Pack DESCRIPTION The AZV99 is a specialized oscillator gain stage with LVDS output buffer including an enable. The enable input (EN) allows continuous oscillator operation by only controlling the QHG /Q ¯ HG outputs. ¯ to VBB. The VBB pin can The AZV99 also provides a VBB and 470Ω internal bias resistors from D to VBB and D support 1.5 mA sink/source current. Bypassing VBB to ground with a 0.01 μF capacitor is recommended. MLP 16, 3x3 mm Package (L) or DIE (X) The MLP 16 and die versions of the AZV99 provide a selectable enable (EN). Enable polarity and threshold can be selected to accommodate either CMOS/TTL or PECL input levels. See the enable truth table for enable function. If enable pull-up is desired in the CMOS/TTL mode, an external ≤20kΩ resistor connecting EN to VCC will override the on-chip pull-down resistor. Outputs Q/Q ¯ each have a selectable on-chip pull-down current source. See the current source truth table for current source functions. External resistors may also be used to increase pull-down current to a maximum of 25mA (includes internal on-chip current source). 1630 S. STAPLEY DR., SUITE 127 • MESA, ARIZONA 85204 • USA • (480) 962-5881 • FAX (480) 890-2541 www.azmicrotek.com AZV99 MLP 8, 2x2 mm Package, NA, NB & ND Options The MLP 8 NA, NB and ND options of the AZV99 provide a PECL/ECL level enable input (EN ¯¯¯). When the ¯¯¯ EN input is LOW, the Q ¯ and QHG/Q ¯ HG outputs pass data from the inputs. When ¯¯¯ EN is HIGH, the Q ¯ output continues to pass data while the QHG output is forced high and the Q ¯ HG output is forced low. Only the Q ¯ output operates with a current source (4 mA) to VEE. This is accomplished by internal bonding of CS-SEL. An external resistor may also be used to increase pull-down current to a maximum of 25mA (includes 4mA on-chip current source). The AZV99NB and AZV99ND versions operates with a single ended data input (D). The D ¯ input is internally bonded directly to the VBB pin bypassing the 470Ω bias resistor. TSSOP 8 Package (T), MLP 8 Package, (N) The TSSOP 8 (T) and MLP 8 (N) versions of the AZV99 provide a CMOS/TTL level enable input (EN). When the EN input is HIGH, the Q ¯ and QHG/Q ¯ HG outputs pass data from the inputs. When EN is LOW, the Q ¯ output continues to pass data while the QHG output is forced high and the Q ¯ HG output is forced low. Only the Q ¯ output operates with a current source (4 mA) to VEE. This is accomplished by internal bonding of CS-SEL. An external resistor may also be used to increase pull-down current to a maximum of 25mA (includes 4mA on-chip current source). The TSSOP 8 (T) and MLP 8 (N) AZV99 operates with a single ended data input (D). The D ¯ input is internally bonded directly to the VBB pin bypassing the 470Ω bias resistor. NOTE: Specifications in the ECL/PECL tables are valid when thermal equilibrium is established. PIN DESCRIPTION 4mA EA. Q PIN D/D ¯ Q/Q ¯ QHG/Q ¯ HG VBB EN-SEL EN/EN ¯¯ CS-SEL VEE VCC FUNCTION Data Inputs PECL Data Outputs LVDS Data Outputs Reference Voltage Output Selects Enable Logic Enable Input Selects Q and Q ¯ Current Source Magnitude Negative Supply Positive Supply Q CS-SEL D QHG D QHG 470 VBB VEE EN/EN CMOS/TTL THRESHOLD EN-SEL ENABLE TRUTH TABLE EN-SEL EN/EN ¯¯¯ Q/Q ¯ QHG Q ¯ HG NC PECL Low or NC Data Data Data NC PECL High or VCC Data High Low CMOS/TTL Low, VEE or NC VEE1 Data High Low VEE1 CMOS/TTL High or VCC2 Data Data Data 1 EN-SEL connections must be less than 1Ω. 2 An external ≤20kΩ pull-up resistor between EN and VCC ensures a High when the EN pin is not driven. April 2007 * REV - 9 www.azmicrotek.com 2 CURRENT SOURCE TRUTH TABLE CS-SEL Q Q ¯ NC 4mA typ. 4mA typ. VEE1 8mA typ. 8mA typ. 0 4mA typ. VCC1 1 CS-SEL connections must be less than 1Ω. AZV99 Absolute Maximum Ratings are those values beyond which device life may be impaired. Symbol VCC VI VD/D¯ IOUT TA TSTG Characteristic Power Supply Input Voltage D/D ¯ Input Voltage Output Current — Continuous Q/Q ¯ — Surge Q/Q ¯ ¯ HG — Continuous QHG/Q ¯ HG — Surge QHG/Q Operating Temperature Range Storage Temperature Range Rating 0 to +6.0 0 to +6.0 ±0.75 with respect to VBB 25 50 5 10 -40 to +85 -65 to +150 Unit Vdc Vdc Vdc mA °C °C 100K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V) Symbol VOH VOL VIH VIL VBB IIL IIH IEE 1. 2. 3. Characteristic 1,2 Output HIGH Voltage Q/Q ¯ Output LOW Voltage1,2 Q/Q ¯ Input HIGH Voltage D/D ¯ 1, EN (EN-SEL open)1 EN (EN-SEL tied to VEE) Input LOW Voltage D/D ¯ 1, EN (EN-SEL open)1 EN (EN-SEL tied to VEE) Reference Voltage1 Input LOW Current EN3 Input HIGH Current EN3 Power Supply Current2 Voltage levels vary 1:1 with VCC. Specified with CS-SEL open. Specified with EN-SEL open. -40°C 0°C 25°C 85°C Unit Min 2255 1375 Max 2465 1745 Min 2275 1400 Max 2465 1680 Min 2275 1400 Max 2465 1680 Min 2275 1400 Max 2465 1680 2135 2000 2560 VCC 2135 2000 2560 VCC 2135 2000 2560 VCC 2135 2000 2560 VCC mV 1400 GND 1910 0.5 1825 800 2050 1400 GND 1910 0.5 1825 800 2050 1400 GND 1910 0.5 1825 800 2050 1400 GND 1910 0.5 1825 800 2050 mV 150 48 150 48 150 48 150 52 mV mV mV μA μA mA 100K PECL DC Characteristics (VEE = GND, VCC = +5.0V) Symbol VOH VOL VIH VIL VBB IIL IIH IEE 1. 2. 3. Characteristic 1,2 Output HIGH Voltage Q/Q ¯ Output LOW Voltage1,2 Q/Q ¯ Input HIGH Voltage D/D ¯ 1, EN (EN-SEL open)1 EN (EN-SEL tied to VEE) Input LOW Voltage D/D ¯ 1, EN (EN-SEL open)1 EN (EN-SEL tied to VEE) Reference Voltage1 Input LOW Current EN3 Input HIGH Current EN3 Power Supply Current2 Voltage levels vary 1:1 with VCC. Specified with CS-SEL open. Specified with EN-SEL open. April 2007 * REV - 9 -40°C 0°C 25°C 85°C Unit Min 3955 3075 Max 4165 3445 Min 3975 3100 Max 4165 3380 Min 3975 3100 Max 4165 3380 Min 3975 3100 Max 4165 3380 3835 2000 4260 VCC 3835 2000 4260 VCC 3835 2000 4260 VCC 3835 2000 4260 VCC mV 3100 GND 3610 0.5 3525 800 3750 3100 GND 3610 0.5 3525 800 3750 3100 GND 3610 0.5 3525 800 3750 3100 GND 3610 0.5 3525 800 3750 mV 150 48 www.azmicrotek.com 3 150 48 150 48 150 52 mV mV mV μA μA mA AZV99 ¯ HG Outputs1 (VEE = GND, VCC = +3.0V to +5.5V) LVDS DC Characteristics for QHG/Q Symbol -40°C Characteristic Min 0°C Max 1600 Min 25°C Max 1600 Min VOH Output HIGH Voltage VOL Output LOW Voltage 900 900 900 VOC Output Common Mode Voltage2 1125 1375 1125 1375 1125 Change in Common Mode Voltage3 -50 50 -50 50 -50 ΔVOC VOUT Single-Ended Output Swing 250 450 250 450 250 VDIFF_OUT Differential Output Swing 500 900 500 900 500 1. Specified with 100Ω resistor connecting QHG and Q ¯ HG together. ¯ HG during a steady state. 2. Common mode voltage is the center voltage between QHG and Q 3. Change in common mode voltage is the difference between common mode voltages at opposite binary states. 85°C Max 1600 1375 50 450 900 Min Max 1600 900 1125 -50 250 500 1375 50 450 900 Unit mV mV mV mV mV mV AC Characteristics (VEE = GND, VCC = +3.0V to +5.5V) Symbol tPLH / tPHL tSKEW VPP (AC) tr / t f 1. 2. 3. 4. Characteristic Min Propagation Delay D to Q/Q ¯ Outputs1 D to QHG/Q ¯ HG Outputs2 Duty Cycle Skew Q/Q ¯3 Differnetial Input Swing4 Output Rise/Fall Times (20% - 80%) (SE) (SE) (SE) -40°C Typ 5 80 Max 400 550 20 1000 Min 0°C Typ 5 80 Max 400 550 20 1000 Min 25°C Typ 5 80 Max 400 550 20 1000 Min 85°C Typ 5 80 Max 430 630 20 1000 100 260 100 260 100 260 100 260 Q/Q ¯1 ¯ HG2 180 280 180 280 180 280 180 280 QHG/Q Specified with CS-SEL connected to VEE and Q/Q ¯ with AC coupled 50Ω loads. ¯ HG together. Specified with 100Ω resistor connecting QHG and Q Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device. The peak-to-peak differential input swing is the range for which AC parameters guaranteed. VD and VD¯ must remain within the range of ±750 mV with respect to VBB. AC PP INPUT D D V PP (AC) April 2007 * REV - 9 www.azmicrotek.com 4 Unit ps ps mV ps AZV99 -10 0.85 -20 Magnitude 0.9 0.8 -30 0.75 -40 0.7 Phase 0 S11 MAG 8mA S11 MAG 4mA S11 PHASE 8mA S11 PHASE 4mA Phase 0.95 S12 MAG 8mA S12 MAG 4mA S12 PHASE 8mA S21 PHASE 4mA -50 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) S11, D to Q ¯ , 50 Ω AC load on Q ¯ 250.00 0.02 200.00 0.015 150.00 Magnitude 0.025 0.01 100.00 0.005 50.00 0 0.00 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) S12, D to Q ¯ , 50 Ω AC load on Q ¯ April 2007 * REV - 9 www.azmicrotek.com 5 180 35 160 30 140 25 120 20 100 15 80 10 60 5 40 0 Phase 40 S21 MAG 8mA S21 MAG 4mA S21 PHASE 8mA S21 PHASE 4mA Phase Magnitude AZV99 S22 MAG 8mA S22 MAG 4mA S22 PHASE 8mA S22 PHASE 4mA 20 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Magnitude S21, D to Q ¯ , 50 Ω AC load on Q ¯ 0.8 180.00 0.7 160.00 0.6 140.00 0.5 120.00 0.4 100.00 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 Frequency (MHz) S22, D to Q ¯ , 50 Ω AC load on Q ¯ April 2007 * REV - 9 www.azmicrotek.com 6 1350 AZV99 AC Coupling Capacitor C2 3.3 or 5 V CMOS R1 See table AZV99 Front End D D VBB C1 0.01 μF Application Circuit for CMOS Inputs R11 Input Type AC Coupled (C2 in circuit) DC Coupled (C2 shorted) 3.3 V 1.1 kΩ 2.0 kΩ CMOS 5 V CMOS 1.6 kΩ 3.3 kΩ 1 R1 should be chosen so that the input swing on the D input with respect to D ¯ is in the range of ±80 to ±1000 mV, per the AC Characteristics table and the D input is < ±750 mV with respect to VBB. Recommended Component Values for CMOS Single Ended Inputs April 2007 * REV - 9 www.azmicrotek.com 7 AZV99 TIMING DIAGRAM D EN/ EN { (PECL) EN-SEL OPEN (EN) (CMOS/TTL) EN-SEL SHORTED TO VEE (EN) Q Q QHG QHG PINOUT FOR AZV99L MLP 16, 3x3mm AZV99L Q Q NC VCC 16 15 14 13 NC 1 12 CS-SEL D 2 11 D 3 10 QHG VBB 4 9 5 6 7 8 EN NC VEE NC QHG EN-SEL TOP VIEW Bottom Center Pad may be left open or tied to VEE April 2007 * REV - 9 www.azmicrotek.com 8 AZV99 LOGIC DIAGRAMS AND PINOUTS FOR AZV99NA, AZV99NB, AZV99ND 4mA 4mA Q VEE D QHG D QHG 470 470 Q VEE D QHG QHG 470 VBB/D VBB AZV99NB AZV99ND AZV99NA EN EN EN operation follows PECL functionality. See the Timing Diagram. MLP 8, 2x2mm MLP 8, 2x2mm D 1 D 2 AZV99NA D 1 AZV99NB 8 Q 2 7 VCC EN 3 6 QHG VEE 4 5 QHG 8 Q 7 VCC VBB/D 6 QHG 5 QHG VEE VBB 3 EN 4 TOP VIEW Bottom Center Pad is the VEE return. MLP 8, 2x2mm Q 1 D AZV99ND 8 VCC 2 7 QHG VBB/D 3 6 QHG EN 4 TOP VIEW 5 VEE Bottom Center Pad may be left open or tied to VEE. Pin 5 is the VEE return. April 2007 * REV - 9 www.azmicrotek.com 9 TOP VIEW Bottom Center Pad may be left open or tied to VEE. Pin 4 is the VEE return. AZV99 LOGIC DIAGRAM AND PINOUTS FOR AZV99T, AZV99N 4mA Q VEE D QHG QHG 470 VBB/D AZV99T AZV99N EN CMOS/TTL THRESHOLD EN follows CMOS/TTL functionality. See the Timing Diagram. Q 1 D 2 VBB / D 3 8 VCC 7 QHG AZV99T TSSOP 8 6 QHG 5 VEE EN 4 MLP 8, 2x2mm Q 1 D AZV99N 8 VCC 2 7 QHG VBB/D 3 6 QHG EN 4 TOP VIEW 5 VEE Bottom Center Pad may be left open or tied to VEE. Pin 5 is the VEE return. April 2007 * REV - 9 www.azmicrotek.com 10 AZV99 DIE PAD COORDINATES AZV99 DIE: AZV99 A B L M DIE SIZE: 950u X 940u DIE THICKNESS: 180u C BOND PAD: 85u X 85u D E F K J I H G PAD COORDINATES1 NAME 1. A B C D E F G H I J K L M 0, 0 is center of die. April 2007 * REV - 9 PAD DESIGNATION D D ¯ VBB EN/EN ¯¯¯ VEE NC EN-SEL Q ¯ HG QHG CS-SEL VCC Q Q ¯ www.azmicrotek.com 11 PAD CENTERS X(Microns) Y(Microns) -342.5 312.5 -342.5 144.5 -342.5 -87.0 -342.5 -255.0 -33.5 -312.5 126.5 -312.5 312.5 -248.5 312.5 -98.5 312.5 51.5 312.5 201.5 302.5 342.5 142.5 342.5 -140.5 342.5 AZV99 PACKAGE DIAGRAM MLP 16 A D D 2 2. INDEX AREA (D/2 x E/2) D2 D2/2 B E2/2 E2 E 2 3x E e 2 e 2x 1 aaa C 2x TOP VIEW aaa C bbb M C A B 5. 16 x b L 3. 3x e BOTTOM VIEW ccc C A3 A 4. 0.08 C A1 SIDE VIEW NOTES: 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME T14-1994. 2. THE TERMINAL #1 AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. 3. DIMENSION b APPLIES TO METALLIZED PAD AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM PAD TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS. 5. INSIDE CORNERS OF METALLIZED PAD MAY BE SQUARE OR ROUNDED April 2007 * REV - 9 www.azmicrotek.com 12 C SEATING PLANE MILLIMETERS DIM A A1 A3 b D D2 E E2 e L aaa bbb ccc MIN MAX 0.80 1.00 0.05 0.00 0.25 REF 0.18 0.30 2.90 3.10 0.25 1.95 2.90 3.10 0.25 1.95 0.50 BSC 0.30 0.50 0.25 0.10 0.10 AZV99 PACKAGE DIAGRAM MLP 8 2x2mm Pin 1 Dot By Marking 2.000±0.050 MLP 8 (2x2mm) 2.000±0.050 TOP VIEW Pin 1 Identification R0.100 TYP 0.350±0.050 0.250±0.050 0.500 bsc 8 1 7 6 2 1.200±0.050 exp. pad 3 5 4 0.600±0.050 exp. pad BOTTOM VIEW 0.900±0.050 0.000-0.050 1 2 SIDE VIEW Note: All dimensions are in mm April 2007 * REV - 9 www.azmicrotek.com 13 3 4 0.203±0.025 1.750 Ref. AZV99 PACKAGE DIAGRAM TSSOP 8 DIM A A1 A2 A3 bp c D E e HE L Lp v w y Z θ NOTES: 1. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 2. MAXIMUM MOLD PROTRUSION FOR D IS 0.15mm. 3. MAXIMUM MOLD PROTRUSION FOR E IS 0.25mm. April 2007 * REV - 9 www.azmicrotek.com 14 MILLIMETERS MIN MAX 1.10 0.05 0.15 0.80 0.95 0.25 0.25 0.45 0.15 0.28 2.90 3.10 2.90 3.10 0.65 4.70 5.10 0.94 0.40 0.70 0.10 0.10 0.10 0.35 0.70 6O 0O AZV99 Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part. April 2007 * REV - 9 www.azmicrotek.com 15