CS4340 24-Bit, 96 kHz Stereo D/A Converter for Audio Features ! 101 dB Dynamic Range ! -91 dB THD+N ! +3.0 V or +5.0 V Power Supply ! Low Clock Jitter Sensitivity ! Filtered Line-level Outputs ! On-chip Digital De-emphasis for 32, 44.1 and 48 kHz ! 33 mW with 3V Supply ! Popguard® Technology for Control of Clicks and Pops ! Lead-free Packaging Available Description The CS4340 is a complete stereo digital-to-analog system including digital interpolation, fourth-order delta-sigma dig- ital-to-analog conversion, digital de-emphasis and switched capacitor analog filtering. The advantages of this architecture include: ideal differential linearity, no distortion mechanisms due to resistor matching errors, no linearity drift over time and temperature and a high tolerance to clock jitter. The CS4340 accepts data at audio sample rates from 4 kHz to 100 kHz, consumes very little power, and operates over a wide power supply range. The features of the CS4340 are ideal for DVD players, CD players, set-top box and automotive systems. ORDERING INFORMATION CS4340-DSZ 16-pin SOIC, Lead Free, CS4340-KS 16-pin SOIC CS4340-KSZ 16-pin SOIC, Lead Free, CS4340-CZZ 16-pin TSSOP, Lead Free, CDB4340 Evaluation Board -40 to 85 °C -10 to 70 °C -10 to 70 °C -10 to 70 °C I SCLK/DEM1 DEM0 RST De-emphasis LRCK Serial Input Interface SDATA DIF0 DIF1 www.cirrus.com MUTEC External Mute Control Interpolation Filter ∆Σ DAC Analog Filter AOUTL Interpolation Filter ∆Σ DAC Analog Filter AOUTR MCLK Copyright © Cirrus Logic, Inc. 2005 (All Rights Reserved) JULY '05 DS297F3 1 CS4340 TABLE OF CONTENTS 1. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 4 SPECIFIED OPERATING CONDITIONS .............................................................................................. 4 ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 4 ANALOG CHARACTERISTICS (CS4340-KS/KSZ/CZZ)....................................................................... 5 ANALOG CHARACTERISTICS (CS4340-DSZ) .................................................................................... 7 COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE........................................ 8 SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE........................................................ 11 SWITCHING CHARACTERISTICS - INTERNAL SERIAL CLOCK ..................................................... 12 DC ELECTRICAL CHARACTERISTICS.............................................................................................. 13 DIGITAL INPUT CHARACTERISTICS ................................................................................................ 13 DIGITAL INTERFACE SPECIFICATIONS........................................................................................... 13 2. PIN DESCRIPTION .............................................................................................................................. 14 3. TYPICAL CONNECTION DIAGRAM ................................................................................................. 15 4. APPLICATIONS ................................................................................................................................... 16 4.1 Sample Rate Range/Operational Mode ........................................................................................ 16 4.2 System Clocking ........................................................................................................................... 16 4.2.1 Internal Serial Clock Mode ............................................................................................... 16 4.2.2 External Serial Clock Mode .............................................................................................. 17 4.3 Digital Interface Format ................................................................................................................. 17 4.4 De-Emphasis ................................................................................................................................ 18 4.5 Power-up Sequence .................................................................................................................... 19 4.6 Popguard® Transient Control ........................................................................................................ 19 4.6.1 Power-up .......................................................................................................................... 19 4.6.2 Power-down ..................................................................................................................... 19 4.6.3 Discharge Time ................................................................................................................ 19 4.7 Mute Control ................................................................................................................................. 20 4.8 Grounding and Power Supply Arrangements ............................................................................... 20 Contacting Cirrus Logic Support For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find one nearest you go to www.cirrus.com IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. 2 DS297F3 CS4340 5. PARAMETER DEFINITIONS ................................................................................................................21 6. REFERENCES ......................................................................................................................................22 7. PACKAGE DIMENSIONS ....................................................................................................................23 7.1 SOIC ..............................................................................................................................................23 7.2 TSSOP ..........................................................................................................................................24 8. PACKAGE THERMAL RESISTANCE .................................................................................................25 LIST OF FIGURES Figure 1. Output Test Load ...........................................................................................................................6 Figure 2. Maximum Loading..........................................................................................................................6 Figure 3. Single-Speed Stopband Rejection .................................................................................................9 Figure 4. Single-Speed Transition Band .......................................................................................................9 Figure 5. Single-Speed Transition Band (Detail)...........................................................................................9 Figure 6. Single-Speed Passband Ripple .....................................................................................................9 Figure 7. Double-Speed Stopband Rejection................................................................................................9 Figure 8. Double-Speed Transition Band......................................................................................................9 Figure 9. Double-Speed Transition Band (Detail) .......................................................................................10 Figure 10. Double-Speed Passband Ripple................................................................................................10 Figure 11. Serial Input Timing (External SCLK) ..........................................................................................11 Figure 12. Internal Serial Mode Input Timing ..............................................................................................12 Figure 13. Internal Serial Clock Generation ................................................................................................12 Figure 14. Typical Connection Diagram......................................................................................................15 Figure 15. CS4340 Format 0 - I2S up to 24-Bit Data ..................................................................................17 Figure 16. CS4340 Format 1 - Left Justified up to 24-Bit Data ...................................................................17 Figure 17. CS4340 Format 2 - Right Justified, 24-Bit Data.........................................................................18 Figure 18. CS4340 Format 3 - Right Justified, 16-Bit Data.........................................................................18 Figure 19. De-Emphasis Curve...................................................................................................................18 LIST OF TABLES Table 1.CS4340 Speed Modes ...................................................................................................................16 Table 2.Single-Speed Mode Standard Frequencies ...................................................................................16 Table 3.Double-Speed Mode Standard Frequencies..................................................................................16 Table 4.Internal SCLK/LRCK Ratio.............................................................................................................17 Table 5.Digital Interface Format - DIF1 and DIF0 .......................................................................................17 Table 6.De-Emphasis Control .....................................................................................................................18 DS297F3 3 CS4340 1. CHARACTERISTICS AND SPECIFICATIONS (Min/Max performance characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics are derived from measurements taken at TA = 25°C.) SPECIFIED OPERATING CONDITIONS (All voltages with respect to AGND = 0 V.) Parameters Symbol Min Nom Max Units Nominal 3.3V Nominal 5.0V VA VA 2.7 4.75 3.3 5.0 3.6 5.5 V V -KS/KSZ/CZZ -DSZ TA TA -10 -40 - +70 +85 °C °C DC Power Supply Specified Operating Temperature (Power Applied) ABSOLUTE MAXIMUM RATINGS (AGND = 0 V; all voltages with respect to AGND. Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.) Parameters Symbol Min VA -0.3 6.0 V Iin - ±10 mA VIND -0.3 VA+0.4 V Ambient Operating Temperature (power applied) TA -55 125 °C Storage Temperature Tstg -65 150 °C DC Power Supply Input Current Digital Input Voltage (Note 1) Max Units Notes: 1. Any pin except supplies. 4 DS297F3 CS4340 ANALOG CHARACTERISTICS (CS4340-KS/KSZ/CZZ) (Test conditions (unless otherwise specified): Input test signal is a 997 Hz sine wave at 0 dBFS; measurement bandwidth is 10 Hz to 20 kHz; test load RL = 10 kΩ, CL = 10 pF (see Figure 1).) VA = 5.0 V Parameter Single-Speed Mode Dynamic Range 18 to 24-Bit 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit Double-Speed Mode Dynamic Range 18 to 24-Bit 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit DS297F3 VA = 3.0 V Min Typ Max Min Typ Max Unit 93 96 - 98 101 92 95 - 89 92 - 94 97 92 95 - dB dB dB dB - -91 -78 -38 -90 -72 -32 -86 - - -94 -74 -34 -91 -72 -32 -89 - dB dB dB dB dB dB 93 96 - 98 101 92 95 - 89 92 - 94 97 92 95 - dB dB dB dB - -91 -78 -38 -90 -72 -32 -86 - - -94 -74 -34 -91 -72 -32 -89 - dB dB dB dB dB dB Fs = 48 kHz (Note 2) unweighted A-Weighted unweighted A-Weighted (Note 2) 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB Fs = 96 kHz (Note 2) unweighted A-Weighted unweighted A-Weighted (Note 2) 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB 5 CS4340 ANALOG CHARACTERISTICS (CS4340-KS/KSZ/CZZ) Parameters Symbol (Continued) Min Typ Max Units - 102 - dB Interchannel Gain Mismatch - 0.1 - dB Gain Drift - ±100 - ppm/°C 0.6•VA 0.7•VA 0.8•VA Vpp - 100 - Ω Dynamic Performance for All Modes Interchannel Isolation (1 kHz) DC Accuracy Analog Output Characteristics and Specifications Full Scale Output Voltage Output Impedance Minimum AC-Load Resistance (Note 3) RL - 3 - kΩ Maximum Load Capacitance (Note 3) CL - 100 - pF Notes: 2. One-half LSB of triangular PDF dither is added to data. 3. Refer to Figure 2. . 3.3 µF AOUTx + V out R L AGND C L Capacitive Load -- C L (pF) 125 100 75 25 2.5 3 Figure 1. Output Test Load 6 Safe Operating Region 50 5 10 15 20 Resistive Load -- RL (kΩ ) Figure 2. Maximum Loading DS297F3 CS4340 ANALOG CHARACTERISTICS (CS4340-DSZ) (Test conditions (unless otherwise specified): Input test signal is a 997 Hz sine wave at 0 dBFS; measurement bandwidth is 10 Hz to 20 kHz; test load RL = 10 kΩ, CL = 10 pF (see Figure 1).) VA = 5.0 V Parameter Single-Speed Mode Dynamic Range 18 to 24-Bit 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit Double-Speed Mode Dynamic Range 18 to 24-Bit 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit DS297F3 VA = 3.0 V Min Typ Max Min Typ Max Unit 93 96 - 98 101 92 95 - 89 92 - 94 97 92 95 - dB dB dB dB - -91 -78 -38 -90 -72 -32 -86 - - -94 -74 -34 -91 -72 -32 -87 - dB dB dB dB dB dB 93 96 - 98 101 92 95 - 89 92 - 94 97 92 95 - dB dB dB dB - -91 -78 -38 -90 -72 -32 -86 - - -94 -74 -34 -91 -72 -32 -87 - dB dB dB dB dB dB Fs = 48 kHz (Note 2) unweighted A-Weighted unweighted A-Weighted (Note 2) 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB Fs = 96 kHz (Note 2) unweighted A-Weighted unweighted A-Weighted (Note 2) 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB 7 CS4340 ANALOG CHARACTERISTICS (CS4340-DSZ) (Continued) Parameters Symbol Min Typ Max Units - 102 - dB Interchannel Gain Mismatch - 0.1 - dB Gain Drift - ±100 - ppm/°C 0.6•VA 0.7•VA 0.8•VA Vpp - 100 - Ω Dynamic Performance for All Modes Interchannel Isolation (1 kHz) DC Accuracy Analog Output Characteristics and Specifications Full Scale Output Voltage Output Impedance Minimum AC-Load Resistance (Note 3) RL - 3 - kΩ Maximum Load Capacitance (Note 3) CL - 100 - pF COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE (The filter characteristics and the X-axis of the response plots have been normalized to the sample rate (Fs) and can be referenced to the desired sample rate by multiplying the given characteristic by Fs.) Parameter Min Typ Max Unit 0 0 - 0.4535 0.4998 Fs Fs Single-Speed Mode - (4 kHz to 50 kHz sample rates) Passband to -0.05 dB corner to -3 dB corner Frequency Response 10 Hz to 20 kHz -0.02 - +0.08 dB 0.5465 - - Fs 50 - - dB - 9/Fs - s 0 - 20 kHz - ±0.36/Fs - s Fs = 44.1 kHz - - +0.05/-0.14 dB 0 0 - 0.4621 0.4982 Fs Fs Frequency Response 10 Hz to 20 kHz -0.06 - +0.2 dB StopBand 0.577 - - Fs 55 - - dB - 4/Fs - s - ±1.39/Fs ±0.23/Fs - s s StopBand StopBand Attenuation (Note 4) Group Delay Passband Group Delay Deviation De-emphasis Error (Relative to 1 kHz) (Note 5) Double-Speed Mode - (50 kHz to 100 kHz sample rates) Passband to -0.1 dB corner to -3 dB corner StopBand Attenuation (Note 4) Group Delay Passband Group Delay Deviation 0 - 40 kHz 0 - 20 kHz Notes: 4. For Single-Speed Mode, the measurement bandwidth is 0.5465 Fs to 3 Fs. For Double-Speed Mode, the measurement bandwidth is 0.577 Fs to 1.4 Fs. 5. De-emphasis is only available in Single-Speed Mode. 8 DS297F3 CS4340 Figure 3. Single-Speed Stopband Rejection Figure 5. Single-Speed Transition Band (Detail) Figure 7. Double-Speed Stopband Rejection DS297F3 Figure 4. Single-Speed Transition Band Figure 6. Single-Speed Passband Ripple Figure 8. Double-Speed Transition Band 9 CS4340 Figure 9. Double-Speed Transition Band (Detail) 10 Figure 10. Double-Speed Passband Ripple DS297F3 CS4340 SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE Parameters Min Max Units MCLK Frequency 1.024 25.6 MHz MCLK Duty Cycle 45 55 % 4 50 50 100 kHz kHz 40 60 % Input Sample Rate Symbol Single-Speed Mode Double-Speed Mode Fs Fs LRCK Duty Cycle SCLK Pulse Width Low tsclkl 20 - ns SCLK Pulse Width High tsclkh 20 - ns - 128xFs 64xFs Hz Hz SCLK Frequency Single-Speed Mode Double-Speed Mode SCLK rising to LRCK edge delay tslrd 20 - ns SCLK rising to LRCK edge setup time tslrs 20 - ns SDIN valid to SCLK rising setup time tsdlrs 20 - ns SCLK rising to SDIN hold time tsdh 20 - ns LRCK t sclkh t slrs t slrd t sclkl SCLK t sdlrs t sdh SDATA Figure 11. Serial Input Timing (External SCLK) DS297F3 11 CS4340 SWITCHING CHARACTERISTICS - INTERNAL SERIAL CLOCK Parameters Min Typ Max Units MCLK Frequency 1.024 - 25.6 MHz MCLK Duty Cycle 45 - 55 % 4 50 - 50 100 kHz kHz Input Sample Rate Symbol Single-Speed Mode Double-Speed Mode Fs Fs LRCK Duty Cycle % (Note 6) SCLK Period tsclkw 1 ---------------SCLK - - s tsclkr - t sclkw -------------2 - s SDATA valid to SCLK rising setup time tsdlrs 1 ---------------------- + 10 ( 512 )Fs - - ns SCLK rising to SDATA hold time MCLK / LRCK = 512, 256 or 128 tsdh 1 ---------------------- + 15 ( 512 )Fs - - ns SCLK rising to SDATA hold time MCLK / LRCK = 384 or 192 tsdh 1 ---------------------- + 15 ( 384 )Fs - - ns (Note 7) SCLK rising to LRCK edge Notes: 6. The Duty Cycle must be 50% +/− 1/2 MCLK Period. 7. See section 4.2.1 for derived internal frequencies. LRCK t sclkr SDATA t sclkw t sdlrs t sdh *INTERNAL SCLK Figure 12. Internal Serial Mode Input Timing *The SCLK pulses shown are internal to the CS4340. LRCK MCLK 1 N 2 N *INTERNAL SCLK SDATA Figure 13. Internal Serial Clock Generation * The SCLK pulses shown are internal to the CS4340. N equals MCLK divided by SCLK 12 DS297F3 CS4340 DC ELECTRICAL CHARACTERISTICS (AGND = 0 V; all voltages with respect to AGND.) Parameters Symbol Min Typ Max Units IA IA - 15 11 18 14 mA mA - 75 33 90 42 mW mW - 60 30 - µA µA - 0.3 0.09 - mW mW - 60 40 - dB dB VQ Nominal Voltage Output Impedance Maximum allowable DC current source/sink - 0.45•VA 250 0.01 - kΩ Filt+ Nominal Voltage Output Impedance Maximum allowable DC current source/sink - VA 250 0.01 - mA MUTEC Low-Level Output Voltage - 0 - V MUTEC High-Level Output Voltage - VA - V Maximum MUTEC Drive Current - 3 - mA Normal Operation (Note 8) Power Supply Current VA = 5.0 V VA = 3.0 V Power Dissipation VA = 5.0 V VA = 3.0 V Power-down Mode (Note 9) Power Supply Current VA = 5.0 V VA = 3.0 V Power Dissipation VA = 5.0 V VA = 3.0 V IA All Modes of Operation Power Supply Rejection Ratio (Note 10) 1 kHz 60 Hz PSRR V mA V kΩ Notes: 8. Normal operation is defined as RST = HI with a 997 Hz, 0 dBFS input sampled at the highest Fs for each speed mode, and open outputs, unless otherwise specified. 9. Power Down Mode is defined as RST = LO with all clocks and data lines held static. 10. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figure 14. Increasing the capacitance will also increase the PSRR. DIGITAL INPUT CHARACTERISTICS (AGND = 0 V; all voltages with respect to AGND.) Parameters Input Leakage Current Symbol Min Typ Max Units Iin - - ±10 µA - 8 - pF Input Capacitance DIGITAL INTERFACE SPECIFICATIONS Parameters (AGND = 0 V; all voltages with respect to AGND.) Symbol Min Max Units High-Level Input Voltage VIH 2.0 - V Low-Level Input Voltage VIL - 0.8 V High-Level Input Voltage VIH 2.0 - V Low-Level Input Voltage VIL - 0.8 V 3.3 V Logic (3.0 V to 3.6 V DC Supply) 5.0 V Logic (4.75 V to 5.25 V DC Supply) DS297F3 13 CS4340 2. PIN DESCRIPTION RST 1 16 MUTEC SDATA 2 15 AOUTL SCLK/DEM1 3 14 VA LRCK 4 13 AGND MCLK 5 12 AOUTR DIF1 6 11 REF_GND DIF0 7 10 VQ DEM0 8 9 FILT+ Pin Name # Pin Description RST 1 Reset (Input) - Powers down device. SDATA 2 Serial Audio Data (Input) - Input for two’s complement serial audio data. SCLK 3 Serial Clock (Input) -Serial clock for the serial audio interface. DEM1 DEM0 3 8 De-emphasis Control (Input) - Selects the standard 15 µs/50 µs digital de-emphasis filter response for 44.1 kHz sample rate. LRCK 4 Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial audio data line. MCLK 5 Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. DIF1 DIF0 6 7 Digital Interface Format (Input) - Defines the required relationship between the Left Right Clock, Serial Clock and Serial Audio Data. FILT+ 9 Positive Voltage Reference (Output) - Positive voltage reference for the internal sampling circuits. VQ 10 Quiescent Voltage (Output) - Filter connection for internal quiescent reference voltage. REF_GND 11 Reference Ground (Input) - Ground reference for the internal sampling circuits. AOUTR AOUTL 12 15 Analog Outputs (Output) - The full scale analog output level is specified in the Analog Characteristics table. AGND 13 Analog Ground (Input) VA 14 Power (Input) - Positive power for the analog, digital and serial audio interface sections. MUTEC 16 Mute Control (Output) - Control signal for an optional mute circuit. 14 DS297F3 CS4340 3. TYPICAL CONNECTION DIAGRAM +3.0 V to +5.0 V + 0.1 µF 14 1 µF VA 2 Serial Audio Data Processor 3 4 SDATA 3.3 µF SCLK/DEM1 AOUT L 560 Ω Left Audio O utput 15 + LRCK C 10 k Ω RL CS4340 M UTEC 16 External Clock 5 M CLK FILT+ VQ 6 7 Mode Configuration OPTIONAL MUTE CIRCUIT 9 + 10 .1 µF + 1 µF 0.1 µF 1 µF 11 REF_GND DIF1 3.3 µF DIF0 560 Ω Right Audio O utput 12 8 AOUTR DEM0 1 + 10 k Ω RST RL C AGND 13 C= R L + 560 4 π F S R L 560 Figure 14. Typical Connection Diagram DS297F3 15 CS4340 4. APPLICATIONS 4.1 Sample Rate Range/Operational Mode The device operates in one of two operational modes determined by the Master Clock to Left/Right Clock ratio (see section 4.2). Sample rates outside the specified range for each mode are not supported. Input Sample Rate (Fs) 4 kHz - 50 kHz 50 kHz - 100 kHz MODE Single-Speed Mode Double-Speed Mode Table 1. CS4340 Speed Modes 4.2 System Clocking The device requires external generation of the master (MCLK) and left/right (LRCK) clocks. The device also requires external generation of the serial clock (SCLK) if the internal serial clock is not used. The LRCK, defined also as the input sample rate Fs, must be synchronously derived from MCLK according to specified ratios. The specified ratios of MCLK to LRCK, along with several standard audio sample rates and the required MCLK frequency, are illustrated in Tables 2 and 3. Sample Rate (kHz) 32 44.1 48 256x 8.1920 11.2896 12.2880 MCLK (MHz) 384x 12.2880 16.9344 18.4320 512x 16.3840 22.5792 24.5760 Table 2. Single-Speed Mode Standard Frequencies Sample Rate (kHz) 64 88.2 96 MCLK (MHz) 128x 8.1920 11.2896 12.2880 192x 12.2880 16.9344 18.4320 Table 3. Double-Speed Mode Standard Frequencies 4.2.1 Internal Serial Clock Mode The device will enter the Internal Serial Clock Mode if no low to high transitions are detected on the SCLK pin for 2 consecutive periods of LRCK. In this mode, the SCLK is internally derived and synchronous with MCLK and LRCK. The SCLK/LRCK ratio is either 32, 48, or 64 depending upon the MCLK/LRCK ratio and the Digital Interface Format selection (see Table 4). 16 DS297F3 CS4340 The internal serial clock is utilized when additional de-emphasis control is required. Operation in the Internal Serial Clock mode is identical to operation with an external SCLK synchronized with LRCK; however, External SCLK mode is recommended for system clocking applications. Input MCLK/LRCK Ratio 512, 256, 128 384, 192 512, 256, 128 Digital Interface Format Selection Left Justified 24 Right Justified Right Justified Bits 24 Bits 16 Bits I2S up to 24 Bits X - - X Internal SCLK/LRCK Ratio 32 X X X X 48 - X X - 64 Table 4. Internal SCLK/LRCK Ratio 4.2.2 External Serial Clock Mode The device will enter the External Serial Clock Mode whenever 16 low to high transitions are detected on the SCLK pin during any phase of the LRCK period. The device will revert to Internal Serial Clock Mode if no low to high transitions are detected on the SCLK pin for 2 consecutive periods of LRCK. 4.3 Digital Interface Format The device will accept audio samples in several digital interface formats as illustrated in Table 5. The desired format is selected via the DIF1 and DIF0 pins. For an illustration of the required relationship between LRCK, SCLK and SDIN, see Figures 15 through 18. DIF1 0 0 1 1 DIF0 0 1 0 1 DESCRIPTION FORMAT 0 1 2 3 I2S, up to 24-bit data Left Justified, up to 24-bit data Right Justified, 24-bit Data Right Justified, 16-bit Data FIGURE 15 16 17 18 Table 5. Digital Interface Format - DIF1 and DIF0 Left C ha nnel LR C K R ig ht C ha nnel SCLK SDIN MSB +5 +4 +3 +2 +1 -1 -2 -3 -4 -5 LSB MSB -1 -2 -3 -4 +5 +4 +3 +2 +1 LSB Figure 15. CS4340 Format 0 - I2S up to 24-Bit Data Left C ha nnel LR C K R ig ht C ha nnel SCLK SDIN MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 -4 +5 +4 +3 +2 +1 LSB Figure 16. CS4340 Format 1 - Left Justified up to 24-Bit Data DS297F3 17 CS4340 LRCK R ight Cha nnel Left Channel SCLK SDIN 0 7 23 22 21 20 19 18 6 5 4 3 2 1 0 7 23 22 21 20 19 18 6 5 4 3 2 1 0 Figure 17. CS4340 Format 2 - Right Justified, 24-Bit Data 32 clo cks LRCK R ight Cha nnel Left Channel SCLK SDIN 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Figure 18. CS4340 Format 3 - Right Justified, 16-Bit Data 32 clo cks 4.4 De-Emphasis The device includes on-chip digital de-emphasis. Figure 19 shows the de-emphasis curve for Fs equal to 44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in sample rate, Fs. Pin 8 is available for de-emphasis control and selects the 44.1 kHz de-emphasis filter. If the Internal Serial Clock is used, pin 3 is also available for additional de-emphasis control and, in combination with pin 8, selects either the 32, 44.1, or 48 kHz de-emphasis filter. Please see Table 6 for the desired de-emphasis control. Gain dB Internal SCLK T1=50 µs 0dB T2 = 15 µs -10dB DEM1 0 0 1 1 DEM0 Description 0 Disabled 1 44.1 kHz 0 48 kHz 1 32 kHz External SCLK DEM0 Description 0 1 Disabled 44.1 kHz Table 6. De-Emphasis Control F1 3.183 kHz F2 Frequency 10.61 kHz Figure 19. De-Emphasis Curve 18 DS297F3 CS4340 4.5 Power-up Sequence Reliable power-up can be accomplished by keeping the device in reset until the power supply and configuration pins are stable, and the clocks are locked to the appropriate frequencies discussed in section 4.2. It is also recommended that reset be enabled if the analog supply drops below the minimum specified operating voltage to prevent power glitch related issues. 4.6 Popguard® Transient Control The CS4340 uses Popguard® technology to minimize the effects of output transients during power-up and powerdown. This technology, when used with external DC-blocking capacitors in series with the audio outputs, minimizes the audio transients commonly produced by single-ended single-supply converters. It is activated inside the DAC when RST is enabled/disabled and requires no other external control, aside from choosing the appropriate DCblocking capacitors. 4.6.1 Power-up When the device is initially powered-up, the audio outputs, AOUTL and AOUTR, are clamped to AGND. Following a delay of approximately 1000 sample periods, each output begins to ramp toward the quiescent voltage. Approximately 10,000 LRCK cycles later, the outputs reach VQ and audio output begins. This gradual voltage ramping allows time for the external DC-blocking capacitors to charge to the quiescent voltage, minimizing the power-up transient. 4.6.2 Power-down To prevent transients at power-down, the device must first enter its power-down state by enabling RST. When this occurs, audio output ceases and the internal output buffers are disconnected from AOUTL and AOUTR. In their place, a soft-start current sink is substituted which allows the DC-blocking capacitors to slowly discharge. Once this charge is dissipated, the power to the device may be turned off and the system is ready for the next power-on. 4.6.3 Discharge Time To prevent an audio transient at the next power-on, it is necessary to ensure that the DC-blocking capacitors have fully discharged before turning on the power or exiting the power-down state. If not, a transient will occur when the audio outputs are initially clamped to AGND. The time that the device must remain in the powerdown state is related to the value of the DC-blocking capacitance. For example, with a 3.3 µF capacitor, the minimum power-down time will be approximately 0.4 seconds. DS297F3 19 CS4340 4.7 Mute Control The Mute Control pin goes high during power-up initialization, reset, or if the MCLK to LRCK ratio is incorrect. The pin will also go high following the reception of 8192 consecutive audio samples of static 0 or -1 on both the left and right channels. A single sample of non-zero data on either channel will cause the Mute Control pin to go low. This pin is intended to be used as a control for an external mute circuit to prevent the clicks and pops that can occur in any single-ended single supply system. Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute circuit. See the CDB4340 data sheet for a suggested mute circuit. 4.8 Grounding and Power Supply Arrangements As with any high resolution converter, the CS4340 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 14 shows the recommended power arrangements, with VA connected to a clean supply. If the ground planes are split between digital ground and analog ground, REF_GND & AGND should be connected to the analog ground plane. Decoupling capacitors should be as close to the DAC as possible, with the low value ceramic capacitor being the closest. To further minimize impedance, these capacitors should be located on the same layer as the DAC. All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the modulators. The FILT+ and VQ decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize the electrical path from FILT+ and REF_GND (as well as VQ and REF_GND), and should also be located on the same layer as the DAC. The CDB4340 evaluation board demonstrates the optimum layout and power supply arrangements. 20 DS297F3 CS4340 5. PARAMETER DEFINITIONS Total Harmonic Distortion + Noise (THD+N) A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels. Dynamic Range The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full scale. This technique ensures that the distortion components are below the noise level and do not effect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter’s output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Error The deviation from the nominal full scale analog output for a full scale digital input. Gain Drift The change in gain value with temperature. Units in ppm/°C. DS297F3 21 CS4340 6. REFERENCES 1) CDB4340 Evaluation Board Datasheet 22 DS297F3 CS4340 7. PACKAGE DIMENSIONS 7.1 SOIC 16L SOIC (150 MIL BODY) PACKAGE DRAWING E H 1 b c D SEATING PLANE ∝ A L e DIM A A1 b C D E e H L ∝ MIN 0.053 0.004 0.013 0.0075 0.386 0.150 0.040 0.228 0.016 0° A1 INCHES NOM 0.064 0.006 0.016 0.008 0.390 0.154 0.050 0.236 0.025 4° MAX 0.069 0.010 0.020 0.010 0.394 0.157 0.060 0.244 0.050 8° MIN 1.35 0.10 0.33 0.19 9.80 3.80 1.02 5.80 0.40 0° MILLIMETERS NOM 1.63 0.15 0.41 0.20 9.91 3.90 1.27 6.0 0.64 4° MAX 1.75 0.25 0.51 0.25 10.00 4.00 1.52 6.20 1.27 8° JEDEC #: MS-012 Controling Dimension is Millimeters DS297F3 23 CS4340 7.2 TSSOP 16L TSSOP (4.4 mm BODY) PACKAGE DRAWING N D E11 A2 E A ∝ e b2 SIDE VIEW A1 L END VIEW SEATING PLANE 1 2 3 TOP VIEW DIM A A1 A2 b D E E1 e L ∝ MIN -0.002 0.03346 0.00748 0.193 0.248 0.169 -0.020 0° INCHES NOM -0.004 0.0354 0.0096 0.1969 0.2519 0.1732 0.026 BSC 0.024 4° MAX 0.043 0.006 0.037 0.012 0.201 0.256 0.177 -0.028 8° MIN -0.05 0.85 0.19 4.90 6.30 4.30 -0.50 0° MILLIMETERS NOM --0.90 0.245 5.00 6.40 4.40 0.065 BSC 0.60 4° NOTE MAX 1.10 0.15 0.95 0.30 5.10 6.50 4.50 -0.70 8° 2,3 1 1 JEDEC #: MO-153 Controlling Dimension is Millimeters Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side. 2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least material condition. 3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips. 24 DS297F3 CS4340 8. PACKAGE THERMAL RESISTANCE Package SOIC TSSOP DS297F3 (for multi-layer boards) (for multi-layer boards) Symbol Min Typ Max Units θJA θJA - 74 89 - °C/Watt °C/Watt 25