MICROSEMI APT106N60B2C6

APT106N60B2C6
600V 106A 0.035Ω
COOLMOS
Super Junction MOSFET
Power Semiconductors
• Ultra Low RDS(ON)
• Low Miller Capacitance
• Ultra Low Gate Charge, Qg
• Avalanche Energy Rated
D
• Extreme dv/dt Rated
• Dual die (parallel)
G
• Popular T-MAX Package
S
Unless stated otherwise, Microsemi discrete MOSFETs contain a single MOSFET die. This device is made with
two parallel MOSFET die. It is intended for switch-mode operation. It is not suitable for linear mode operation.
All Ratings per die: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol
VDSS
ID
Parameter
APT106N60B2C6
UNIT
600
Volts
Drain-Source Voltage
Continuous Drain Current @ TC = 25°C
1
106
Amps
68
Continuous Drain Current @ TC = 100°C
2
318
IDM
Pulsed Drain Current
VGS
Gate-Source Voltage Continuous
±20
Volts
PD
Total Power Dissipation @ TC = 25°C
833
Watts
TJ,TSTG
Operating and Storage Junction Temperature Range
TL
Lead Temperature: 0.063" from Case for 10 Sec.
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
EAS
Single Pulse Avalanche Energy
-55 - to 150
°C
260
2
18.6
3
Amps
3.4
( Id = 18.6A, Vdd = 50V )
2200
( Id = 18.6A, Vdd = 50V )
mJ
STATIC ELECTRICAL CHARACTERISTICS
BV(DSS)
Drain-Source Breakdown Voltage (VGS = 0V, ID = 500μA)
RDS(on)
Drain-Source On-State Resistance
IDSS
IGSS
VGS(th)
MIN
4
TYP
MAX
600
UNIT
Volts
0.035
(VGS = 10V, ID = 53A)
Ohms
Zero Gate Voltage Drain Current (VDS = 600V, VGS = 0V)
50
Zero Gate Voltage Drain Current (VDS = 600V, VGS = 0V, TC = 150°C)
500
Gate-Source Leakage Current (VGS = ±20V, VDS = 0V)
±200
nA
3.5
Volts
Gate Threshold Voltage (VDS = VGS, ID = 3.4mA)
2.5
3
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
"COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trademark of Infineon Technologies AG."
Microsemi Website - http://www.microsemi.com
μA
6-2010
Characteristic / Test Conditions
050-7208 Rev A
Symbol
DYNAMIC CHARACTERISTICS
APT106N60B2C6
Symbol Characteristic
Test Conditions
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Qg
Total Gate Charge 5
Qgs
Gate-Source Charge
Qgd
Gate-Drain ("Miller ") Charge
td(on)
Turn-on Delay Time
tr
7115
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
6
6
UNIT
pF
229
308
50
nC
160
25
INDUCTIVE SWITCHING
VGS = 15V
VDD = 400V
ID = 106A @ 25°C
RG = 4.3Ω
Fall Time
MAX
8390
VGS = 10V
VDD = 300V
ID = 106A @ 25°C
Turn-off Delay Time
tf
TYP
VGS = 0V
VDS = 25V
f = 1 MHz
Rise Time
td(off)
MIN
79
ns
277
164
2995
INDUCTIVE SWITCHING @ 25°C
VDD = 400V, VGS = 15V
ID = 106A, RG = 4.3Ω
3775
μJ
4055
INDUCTIVE SWITCHING @ 125°C
VDD = 400V, VGS = 15V
ID =106A, RG = 4.3Ω
4200
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Symbol
Characteristic / Test Conditions
MIN
TYP
MAX
IS
Continuous Source Current (Body Diode)
92
ISM
Pulsed Source Current
318
VSD
Diode Forward Voltage
2
(Body Diode)
4
(VGS = 0V, IS = -106A)
0.9
/dt
Peak Diode Recovery dv/dt
t rr
Reverse Recovery Time
(IS = -106A, di/dt = 100A/μs)
Tj = 25°C
1400
Q rr
Reverse Recovery Charge
(IS = -106A, di/dt = 100A/μs)
Tj = 25°C
45
IRRM
Peak Recovery Current
(IS = -106A, di/dt = 100A/μs)
Tj = 25°C
47
dv
7
UNIT
Amps
1.2
Volts
15
V/ns
ns
μC
Amps
THERMAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case
RθJA
Junction to Ambient
MIN
TYP
MAX
UNIT
0.15
°C/W
40
1 Continuous current limited by package lead temperature.
4 Pulse Test: Pulse width < 380 μs, Duty Cycle < 2%
2 Repetitive Rating: Pulse width limited by maximum junction temperature
5 See MIL-STD-750 Method 3471
3 Repetitive avalanche causes additional power losses that can be calculated as 6 Eon includes diode reverse recovery.
PAV = EAR*f . Pulse width tp limited by Tj max.
7 Maximum 125°C diode commutation speed = di/dt 600A/μs
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
D = 0.9
0.14
0.12
0.7
0.10
0.5
0.08
Note:
0.06
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
050-7208 Rev A
6-2010
0.16
0.3
0.04
t1
t2
t
0.1
0.02
SINGLE PULSE
0.05
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0
10
-5
10
10-2
10-3
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 1, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
-4
10
APT106N60B2C6
Typical Performance Curves
225
15V
200
6.5V
125
6.0V
100
75
5.5V
50
5V
25
ID, DRAIN CURRENT (A)
7.0V
150
100
80
60
40
VGS = 20V
0.80
ID, DRAIN CURRENT (A)
100
VGS = 10V
1.20
1
2
3
4
5
6
7
8
VGS, GATE-TO-SOURCE VOLTAGE (V)
FIGURE 3, Transfer Characteristics
= 10V @ 106A
1.60
0.40
80
60
40
20
0
0
0
100
150
200
250
ID, DRAIN CURRENT (A)
FIGURE 4, RDS(ON) vs Drain Current
25
50
1.20
.15
1.10
.05
.00
50
75
100
125
150
TC, CASE TEMPERATURE (C°)
FIGURE 5, Maximum Drain Current vs Case Temperature
3.00
RDS(ON), DRAIN-TO-SOURCE ON
RESISTANCE (NORMALIZED)
BVDSS, DRAIN-TO-SOURCE BREAKDOWN
VOLTAGE (NORMALIZED)
2.50
2.00
1.50
1.00
0.95
.90
0.50
0
-50
0
50
100
150
TJ, Junction Temperature (°C)
FIGURE 6, Breakdown Voltage vs Temperature
-50 -25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE (C°)
FIGURE 7, On-Resistance vs Temperature
1000
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.20
1.00
0.90
0.80
0.70
0.60
-50
0
50
100
150
TC, Case Temperature (°C)
FIGURE 8, Threshold Voltage vs Temperature
100
10
1ms
100µs
10ms
1
0.1
100ms
1
10
100
1000
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 9, Maximum Safe Operating Area
6-2010
ID, DRAIN CURRENT (A)
1.10
050-7208 Rev A
RDS(on), DRAIN-TO-SOURCE ON RESISTANCE
GS
0
120
NORMALIZED TO
V
TJ= -55°C
TJ= 125°C
0
0
5
10
15
20
25
30
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 2, Low Voltage Output Characteristics
2.00
TJ= 25°C
20
4.5V
0
.85
VDS> ID (ON) x RDS (ON)MAX.
250μSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
10V
120
175
IC, DRAIN CURRENT (A)
140
Typical Performance Curves
VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
20,000
Ciss
10,000
1000
Coss
100
Crss
10
0
100
200
300
400
500
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 10, Capacitance vs Drain-To-Source Voltage
0
D
VDS= 120V
10
VDS= 300V
8
VDS=480V
6
4
2
0
0
100
200
300
400
350
TJ= +150°C
td(on) and td(off) (ns)
IDR, REVERSE DRAIN CURRENT (A)
100
I = 106A
12
Qg, TOTAL GATE CHARGE (nC)
FIGURE 11, Gate Charges vs Gate-To-Source Voltage
400
200
TJ = =25°C
10
td(off)
300
250
V
DD
R
200
G
= 400V
= 4.3 Ω
T = 125°C
J
L = 100μH
150
100
50
1
0.5
0.7
0.9
1.1
1.3
1.5
VSD, SOURCE-TO-DRAIN VOLTAGE (V)
FIGURE 12, Source-Drain Diode Forward Voltage
DD
R
G
50
tf
50
00
tr
50
100
150
200
ID (A)
FIGURE 13, Delay Times vs Current
V
= 4.3Ω
T = 125°C
J
L = 100μH
00
0
8000
= 400V
SWITCHING ENERGY (μJ)
V
td(on)
0
0.3
50
tr, and tf (ns)
APT106N60B2C6
14
30,000
DD
= 400V
7000
R
6000
L = 100μH
G
= 4.3Ω
Eoff
T = 125°C
J
EON includes
Eon
diode reverse recovery.
5000
4000
3000
2000
1000
0
0
14000
50
100
150
200
ID (A)
FIGURE 14 , Rise and Fall Times vs Current
V
DD
SWITCHING ENERGY (uJ)
6-2010
050-7208 Rev A
= 400V
I = 106A
D
12000
T = 125°C
J
L = 100μH
10000
Eoff
EON includes
diode reverse recovery.
8000
6000
Eon
4000
2000
0
0
10
20
30
40
50
RG, GATE RESISTANCE (Ohms)
FIGURE 16, Switching Energy vs Gate Resistance
0
0
50
100
150
200
ID (A)
FIGURE 15, Switching Energy vs Current
Typical Performance Curves
APT106N60B2C6
Gate Voltage
10%
90%
Gate Voltage
TJ = 125°C
td(on)
tf
90% Collector Current
tr
5%
td(off)
10%
TJ = 125°C
Collector Voltage
10%
5%
Collector Voltage
0
Collector Current
Switching Energy
Switching Energy
Figure 18, Turn-off Switching Waveforms and Definitions
Figure 17, Turn-on Switching Waveforms and Definitions
APT60DQ60
APT30DF60
V DD
IC
V CE
G
D.U.T.
Figure
19,20,
Inductive
Switching
Test
Circuit
Figure
Inductive
Switching
Test
Circuit
T-MAX™ (B2) Package Outline
100% Sn Plated
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
Drain
20.80 (.819)
21.46 (.845)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Drain
5.45 (.215) BSC
2-Plcs.
These dimensions are equal to the TO-247 without the mounting hole.
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
050-7208 Rev A
2.21 (.087)
2.59 (.102)
6-2010
Source