600V 40A 0.110Ω APT40N60B2CF APT40N60LCF APT40N60B2CFG* APT40N60LCFG* *G Denotes RoHS Compliant, Pb Free Terminal Finish. Super Junction FREDFET COOLMOS Power Semiconductors T-MaxTM • Ultra Low RDS(ON) • Intrinsic Fast-Recovery Body Diode • Low Miller Capacitance • Extreme Low Reverse Recovery Charge • Ultra Low Gate Charge, Qg • Ideal For ZVS Applications • Avalanche Energy Rated • Popular T-MAX™ or TO-264 Package TO-264 • Extreme dv/dt Rated D Unless stated otherwise, Microsemi discrete FREDFETs contain a single FREDFET die. This device is made with two G parallel FREDFET die. It is intended for switch-mode operation. It is not suitable for linear mode operation. MAXIMUM RATINGS Symbol VDSS ID S All Ratings: TC = 25°C unless otherwise specified. Parameter APT40N60B2CF(G)_LCF(G) UNIT Drain-Source Voltage 600 Volts Continuous Drain Current @ TC = 25°C 40 Continuous Drain Current @ TC = 100°C 26 1 Amps IDM Pulsed Drain Current VGS Gate-Source Voltage Continuous ±30 Volts Total Power Dissipation @ TC = 25°C 417 Watts Linear Derating Factor 3.33 W/°C PD TJ,TSTG TL dv/ dt IAR 80 Operating and Storage Junction Temperature Range -55 to 150 °C Lead Temperature: 0.063" from Case for 10 Sec. 260 Drain-Source Voltage slope (VDS = 480V, ID = 40A, TJ = 125°C) 80 V/ns 20 Amps Avalanche Current 7 7 EAR Repetitive Avalanche Energy EAS Single Pulse Avalanche Energy 1 4 mJ 690 STATIC ELECTRICAL CHARACTERISTICS RDS(on) IDSS IGSS VGS(th) MIN Drain-Source Breakdown Voltage (VGS = 0V, ID = 500µA) Drain-Source On-State Resistance 2 TYP MAX UNIT Volts 600 (VGS = 10V, ID = 20A) 0.110 Zero Gate Voltage Drain Current (VDS = 600V, VGS = 0V) 4.2 Ohms µA Zero Gate Voltage Drain Current (VDS = 600V, VGS = 0V, TC = 150°C) 3400 Gate-Source Leakage Current (VGS = ±20V, VDS = 0V) ±100 nA 5 Volts Gate Threshold Voltage (VDS = VGS, ID = 2mA) 3 4 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com "COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trademark of Infineon Technologies AG." 6-2006 BVDSS Characteristic / Test Conditions 050-7236 Rev B Symbol APT40N60B2CF(G)_LCF(G) DYNAMIC CHARACTERISTICS Symbol Characteristic Input Capacitance Coss VGS = 0V Output Capacitance VDS = 25V Crss Reverse Transfer Capacitance f = 1 MHz Qg 3 VGS = 10V Gate-Source Charge VDD = 300V Total Gate Charge Qgs Qgd Gate-Drain ("Miller ") Charge td(on) Turn-on Delay Time tr VGS = 15V ID = 40A @ 25°C RG = 1.8Ω 6.4 6 INDUCTIVE SWITCHING @ 25°C VDD = 400V, VGS = 15V Eon Turn-on Switching Energy 725 Eoff Turn-off Switching Energy ID = 40A, RG = 5Ω 365 6 INDUCTIVE SWITCHING @ 125°C VDD = 400V, VGS = 15V Eon Turn-on Switching Energy 1195 Eoff Turn-off Switching Energy ID = 40A, RG = 5Ω 440 UNIT pF 80 185 36 115 12 15 60 VDD = 380V Fall Time MAX 5040 1365 RESISTIVE SWITCHING Turn-off Delay Time tf TYP ID = 40A @ 25°C Rise Time td(off) MIN Test Conditions Ciss nC ns µJ SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS Symbol IS MIN TYP Pulsed Source Current VSD 1 Diode Forward Voltage Peak Diode Recovery /dt dv /dt (VGS = 0V, IS = -40A) 5 Reverse Recovery Time t rr Q rr (IS = -40A, di/dt = 100A/µs) Tj = 25°C 195 Tj = 125°C 290 Reverse Recovery Charge Tj = 25°C 1.8 (IS = -40A, /dt = 100A/µs) Tj = 125°C 3.5 Peak Recovery Current Tj = 25°C 17 22 di IRRM 80 (Body Diode) 2 di (IS = -40A, /dt = 100A/µs) MAX 40 Continuous Source Current (Body Diode) ISM dv Characteristic / Test Conditions Tj = 125°C UNIT Amps 2.4 Volts 40 V/ns ns µC Amps THERMAL CHARACTERISTICS Symbol Characteristic RθJC Junction to Case RθJA Junction to Ambient MIN TYP MAX 0.30 31 1 Repetitive Rating: Pulse width limited by maximum junction temperature 2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2% 3 See MIL-STD-750 Method 3471 0.7 0.5 0.15 Note: PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 6-2006 050-7236 Rev B 0.9 0.25 0.20 0.3 0.10 t1 t2 0.05 0 0.1 0.05 10-5 SINGLE PULSE 10-4 °C/W 4 Starting Tj = +25°C, L = 13.80mH, RG = 25Ω, Peak IL = 10A 5 dv/dt numbers reflect the limitations of the test circuit rather than the device itself. IS ≤ -ID40A di/dt ≤ 700A/µs VR ≤ 480V TJ ≤125°C 6 Eon includes diode reverse recovery. See figures 18, 20. 7 Repetitive avalanche causes additional power losses that can be calculated as PAV = EAR*f Microsemi reserves the right to change, without notice, the specifications and information contained herein. 0.35 0.30 UNIT t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION Typical Performance Curves 0.0988 0.158 0.00308 0.00145 0.00948 0.231 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. 80 60 TJ = -55°C 40 TJ = +25°C 20 0 TJ = +125°C 0 2 4 6 8 10 VGS, GATE-TO-SOURCE VOLTAGE (VOLTS) FIGURE 4, TRANSFER CHARACTERISTICS 35 30 25 20 15 10 5 0 25 3.0 7V 30 6.5V 20 10 6V 5.5V 0 5 10 15 20 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 3, LOW VOLTAGE OUTPUT CHARACTERISTICS 1.40 NORMALIZED TO VGS = 10V @ 20A 1.30 1.20 VGS=10V 1.10 1.00 VGS=20V 0.90 0.80 1.15 0 10 20 30 40 50 60 70 80 ID, DRAIN CURRENT (AMPERES) FIGURE 5, RDS(ON) vs DRAIN CURRENT 1.10 1.05 1.00 0.95 0.90 -50 0 50 100 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE 1.2 I = 20A D V 2.5 GS = 10V 2.0 1.5 1.0 0.5 0 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 8, ON-RESISTANCE vs. TEMPERATURE 1.1 1.0 0.9 0.8 0.7 0.6 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE 6-2006 RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE 40 050-7236 Rev B ID, DRAIN CURRENT (AMPERES) 40 7.5V 50 RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE 100 60 BVDSS, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) 250µSEC. PULSE TEST @ <0.5 % DUTY CYCLE 8V 70 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) ID, DRAIN CURRENT (AMPERES) VDS> ID(ON) x RDS(ON) MAX. VGS = 15 &10 V 80 0 FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL 120 90 ID, DRAIN CURRENT (AMPERES) 0.0289 Dissipated Power (Watts) ZEXT TC (°C) TJ (°C) 0.0136 APT40N60B2CF(G)_LCF(G) 100 APT40N60B2CF(G)_LCF(G) 30,000 C, CAPACITANCE (pF) ID, DRAIN CURRENT (AMPERES) 10,000 Graph removed Ciss 1,000 Coss 100 Crss 10 16 I = 40A D 12 VDS=120V VDS=300V 8 VDS=480V 4 0 300 250 200 150 100 50 Qg, TOTAL GATE CHARGE (nC) FIGURE 12, GATE CHARGE vs GATE-TO-SOURCE VOLTAGE 180 0 50 40 30 20 10 0 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 11, CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE IDR, REVERSE DRAIN CURRENT (AMPERES) VGS, GATE-TO-SOURCE VOLTAGE (VOLTS) VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 10, MAXIMUM SAFE OPERATING AREA V 120 V DD R 100 = 400V tr and tf (ns) td(on) and td(off) (ns) 10 R = 5Ω G T = 125°C J L = 100µH 80 60 = 400V = 5Ω 50 tf 40 tr 30 20 td(on) 10 0 40 30 ID (A) 20 10 50 60 0 70 FIGURE 14, DELAY TIMES vs CURRENT V DD R G J on includes diode reverse recovery. 1500 Eon 1000 500 50 40 30 ID (A) 60 70 2000 Eon 1500 Eoff 1000 V DD 70 60 50 40 30 ID (A) FIGURE 16, SWITCHING ENERGY vs CURRENT 10 20 = 400V I = 40A D T = 125°C J L = 100µH 500 Eoff 0 20 FIGURE 15, RISE AND FALL TIMES vs CURRENT = 400V L = 100µH E 10 = 5Ω T = 125°C 2000 0 2500 SWITCHING ENERGY (mJ) 2500 0 G T = 125°C J L = 100µH 60 20 SWITCHING ENERGY (mJ) TJ =+25°C 70 td(off) 40 6-2006 TJ =+150°C 1 1.5 1.3 1.1 0.9 0.7 0.5 0.3 VSD, SOURCE-TO-DRAIN VOLTAGE (VOLTS) FIGURE 13, SOURCE-DRAIN DIODE FORWARD VOLTAGE 80 140 050-7236 Rev B 100 DD 160 0 200 E on 0 includes diode reverse recovery. 50 40 30 20 10 RG, GATE RESISTANCE (Ohms) FIGURE 17, SWITCHING ENERGY VS. GATE RESISTANCE 0 Typical Performance Curves APT40N60B2CF(G)_LCF(G) 90% Gate Voltage 10% Gate Voltage TJ125°C td(on) td(off) tf tr TJ125°C Drain Voltage Drain Current 90% 90% 5% 5% 10% 10% Drain Voltage Switching Energy Switching Energy Drain Current 0 Figure 19, Turn-off Switching Waveforms and Definitions Figure 18, Turn-on Switching Waveforms and Definitions APT30DQ60 VDD ID VDS G D.U.T. Figure 20, Inductive Switching Test Circuit TO-264 (L) Package Outline (LCF) T-MAXTM (B2) Package Outline (B2CF) e1 SAC: Tin, Silver, Copper e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 4.60 (.181) 5.21 (.205) 1.80 (.071) 2.01 (.079) 15.49 (.610) 16.26 (.640) 19.51 (.768) 20.50 (.807) 3.10 (.122) 3.48 (.137) 5.38 (.212) 6.20 (.244) 5.79 (.228) 6.20 (.244) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 2.87 (.113) 3.12 (.123) 2.29 (.090) 2.69 (.106) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) 19.81 (.780) 21.39 (.842) Gate Drain Source 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. These dimensions are equal to the TO-247 without the mounting hole. Dimensions in Millimeters and (Inches) 0.48 (.019) 0.84 (.033) 2.59 (.102) 3.00 (.118) 0.76 (.030) 1.30 (.051) 2.79 (.110) 3.18 (.125) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 2.29 (.090) 2.69 (.106) Gate Drain Source 6-2006 4.50 (.177) Max. 25.48 (1.003) 26.49 (1.043) 050-7236 Rev B Drain Drain 20.80 (.819) 21.46 (.845)