preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 1/29 FEATURES APPLICATIONS ♦ PGA inputs for differential and single-ended sensor signals up to 20 kHz ♦ Selectable adaptation to voltage or current signals ♦ Flexible signal assignment due to input multiplexers ♦ Sine/Cosine signal conditioning for offset, amplitude and phase ♦ Separate index signal conditioning ♦ Short-circuit-proof and reverse polarity tolerant output drivers (1 Vpp to 100 Ω) ♦ Stabilized output signal levels due to automatic gain control ♦ Signal and system monitoring with configurable alarm output ♦ Supply voltage monitoring with integrated switches for reversed-polarity-safe systems ♦ Excessive temperature protection with sensor calibration ♦ I2 C multi-master interface ♦ Supply from 4.3 to 5 V, operation within -40 °C to +115 °C ♦ Verifyable chip release code ♦ Pin compatible with iC-MSB ♦ Programmable sensor interface for optical and magnetic position sensors ♦ Linear gauges and incremental encoders ♦ Linear scales PACKAGES TSSOP20-TP BLOCK DIAGRAM VDDS VDD GNDS REVERSE POLARITY PROTECTION GND SCL SDA MONITORING SERIAL I2C INTERFACE PGA INPUT X1 X2 X3 X4 X5 X6 I/V CONFIGURATION REGISTER SIGNAL PATH MUX iC-MSA CALIBRATION x CH0 I/V x I/V x CH2 I/V x I/V x CH1 I/V Copyright © 2013 iC-Haus x Tw Toff ERR PwrOn AUTOMATIC GAIN CONTROL - ANALOG DRIVER OUTPUT PZ NZ PC x - NC + x - + PS ADJ x NS http://www.ichaus.com iC-MSA SIN/COS SIGNAL preliminary CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 2/29 DESCRIPTION iC-MSA is a signal conditioner with line drivers for sine/cosine sensors which are used to determine positions in linear and angular encoders, for example. Programmable instrumentation amplifiers with selectable gain levels permit differential or referenced input signals; at the same time the modes of operation differentiate between high and low input impedance. This adaptation of the iC to voltage or current signals enables MR sensor bridges or photosensors to be directly connected up to the device. The integrated signal conditioning unit allows signal amplitudes and offset voltages to be calibrated accurately and also any phase error between the sine and cosine signals to be corrected. Separate zero signal conditioning settings can be made for the gain and offset; data is then output either as an analog or a differential square-wave signal (low/high level analogous to the sine/cosine amplitude). For the stabilization of the output levels a signal is generated from the conditioned and calibrated input signals which controls the gain of all channels. Temperature and aging effects can be compensated for and the set signal amplitude is maintained with absolute accuracy. At the same time the control circuitry monitors both whether the sensor is functioning correctly and whether it is properly connected; signal loss due to wire breakage, short circuiting, dirt or aging, for example, is recognized when control thresholds are reached and indicated at alarm output ERR. iC-MSA is protected against a reversed power supply voltage; the integrated voltage switch for loads of up to 20 mA extends this protection to cover the overall system. The analog output drivers are directly cablecompatible and tolerant to false wiring; if supply voltage is connected up to these pins, the device is not destroyed. The device configuration and calibration parameters are CRC protected and stored in an external EEPROM; they are loaded automatically via the I2C interface once the supply voltage has been connected up. preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 3/29 CONTENTS PACKAGING INFORMATION PIN CONFIGURATION TSSOP20-TP . . . . 4 4 ABSOLUTE MAXIMUM RATINGS 5 THERMAL DATA 5 ELECTRICAL CHARACTERISTICS 6 SIGNAL PATH MULTIPLEXING 20 SIGNAL CONDITIONING CH1, CH2 21 Gain Settings CH1, CH2 . . . . . . . . . . . . 21 Offset Calibration CH1, CH2 . . . . . . . . . 22 Phase Correction CH1 vs. CH2 . . . . . . . . 22 SIGNAL CONDITIONING CH0 PROGRAMMING SERIAL CONFIGURATION INTERFACE (EEPROM) Example of CRC Calculation Routine . . . . . EEPROM Selection . . . . . . . . . . . . . . I2 C Slave Mode (ENSL = 1) . . . . . . . . . . BIAS SOURCE AND TEMPERATURE SENSOR CALIBRATION OPERATING MODES Calibration Op. Modes . . . . . . . . . . . . . Special Device Test Functions . . . . . . . . Signal Filter . . . . . . . . . . . . . . . . . . . 10 13 13 13 14 15 16 16 16 16 TEST MODE 17 INPUT CONFIGURATIONS Current Signals . . . . . . . . . . . . . . . . . Voltage Signals . . . . . . . . . . . . . . . . . 18 18 18 23 Gain Settings CH0 . . . . . . . . . . . . . . . 23 Offset Calibration CH0 . . . . . . . . . . . . . 23 AUTOMATIC SIGNAL GAIN CONTROL and SIGNAL MONITORING 24 ERROR MONITORING AND ALARM OUTPUT 25 Alarm Output: I/O pin ERR . . . . . . . . . . 25 Excessive Temperature Warning . . . . . . . 25 Driver Shutdown . . . . . . . . . . . . . . . . 25 Error Protocol . . . . . . . . . . . . . . . . . . 25 REVERSE POLARITY PROTECTION 26 APPLICATION HINTS 27 PLC Operation . . . . . . . . . . . . . . . . . 27 Connecting MR sensor bridges for safety-related applications . . . . . . . . 27 Motor feedback encoder with iC-MSA, iC-MSB and single EEPROM . . . . . . 28 preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 4/29 PACKAGING INFORMATION PIN CONFIGURATION TSSOP20-TP PIN FUNCTIONS No. Name Function 1 2 3 4 5 X1 X2 X3 X4 VDDS1) 6 GNDS1) 7 8 9 10 X5 X6 N.C. SDA 11 SCL 12 13 14 15 16 17 18 19 20 NC PC NS PS GND VDD NZ PZ ERR TP2) Signal Input 1 (Index +) Signal Input 2 (Index -) Signal Input 3 Signal Input 4 Switched Supply Output and Internal Analog Supply Voltage (reverse-polarity-proof, load 20 mA max.) Switched Ground (reverse-polarity-proof) Signal Input 5 Signal Input 6 Not Connected Serial Configuration Interface, data line Serial Configuration Interface, clock line Neg. Cosine Output Pos. Cosine Output Neg. Sine Output Pos. Sine Output Ground +4.3 V to +5.5 V Supply Voltage Neg. Index Output Pos. Index Output Error Signal (In/Out), Test Mode Trigger Input Thermal Pad (TSSOP20-TP) 1) It is advicable to connect a bypass capacitor of at least 100 nF close to the chip’s analog supply terminals. 2) To improve heat dissipation the thermal pad of the package (bottom side) should be joined to an extended copper area which must have GNDS potential. preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 5/29 ABSOLUTE MAXIMUM RATINGS These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur. Item No. Symbol Parameter Conditions Unit Min. Max. G001 V() Voltage at VDD, GND, PC, NC, PS, NS, PZ, NZ -6 6 V G002 V() Voltage at ERR -6 8 V G003 V() Pin-To-Pin Voltage between VDD, GND, PC, NC, PS, NS, PZ, NZ, ERR 6 V G004 V() Voltage at X1...X6, SCL, SDA -0.3 VDDS + 0.3 V G005 I(VDD) Current in VDD -100 100 mA G006 I() Current in VDDS, GNDS -50 50 mA G007 I() Current in X1...X6, SCL, SDA, ERR, PC, NC, PS, NS, PZ, NZ -20 20 mA G008 Vd() ESD Susceptibility at all pins HBM 100 pF discharged through 1.5 kΩ G009 Ptot Permissible Power Dissipation TSSOP20-TP G010 Tj Junction Temperature G011 Ts Storage Temperature Range 2 kV 400 mW -40 150 °C -40 150 °C THERMAL DATA VDD = 4.3...5.5 V Item No. Symbol Parameter Conditions Unit Min. T01 Ta Operating Ambient Temperature Range TSSOP20-TP T02 Rthja Thermal Resistance Chip to Ambient TSSOP20-TP surface mounted to PCB according to JEDEC 51 All voltages are referenced to Pin GNDS unless otherwise stated. All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative. Typ. -40 Max. 115 35 °C K/W iC-MSA SIN/COS SIGNAL preliminary CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 6/29 ELECTRICAL CHARACTERISTICS Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated. Item No. Symbol Parameter Conditions Unit Min. Total Device 001 VDD Permissible Supply Voltage Load current I(VDDS) < -10 mA Tj = 27 °C, no load Typ. 4.3 4.5 25 Max. 5.5 5.5 V V 50 mA 0 mA 11 V 002 I(VDD) Supply Current in VDD 003 I(VDDS) Permissible Load Current VDDS 004 Vcz()hi Clamp Voltage hi at all pins 005 Vc()hi Clamp Voltage hi at inputs SCL, SDA Vc()hi = V() − V(VDDS), I() = 1 mA 0.4 1.5 V 006 Vc()hi Clamp Voltage hi at inputs X1...X6 Vc()hi = V() − V(VDDS), I() = 4 mA 0.3 1.2 V 007 Vc()lo Clamp Voltage lo at all pins I() = -4 mA -1.2 -0.3 V 008 Irev(VDD) Reverse-Polarity Current VDD vs. V(VDD) = −5.5 V...−4.3 V GND -1 1 mA 0.75 V -20 Signal Conditioning, Inputs X3...X6 101 Vin()sig Permissible Input Voltage Range RIN12(3:0) = 0x01 0 VDDS − 1.5 VDDS 102 Iin()sig Permissible Input Current Range RIN12(0) = 0, BIAS12 = 0 RIN12(0) = 0, BIAS12 = 1 -300 10 -10 300 µA µA 103 104 Iin() Input Current RIN12(3:0) = 0x01 -10 10 µA Rin() Input Resistance vs. VREFin Tj = 27 °C; RIN12(3:0) = 0x09 RIN12(3:0) = 0x00 RIN12(3:0) = 0x02 RIN12(3:0) = 0x04 RIN12(3:0) = 0x06 16 1.1 1.6 2.2 3.2 24 2.1 3.0 4.2 6.0 kΩ kΩ kΩ kΩ kΩ 1.35 2.25 RIN12(3:0) = 0x09 Temperature Coefficient Rin 20 1.6 2.3 3.2 4.6 105 106 TCRin() VREFin12 Reference Voltage RIN12(0) = 0, BIAS12 = 1 RIN12(0) = 0, BIAS12 = 0 107 G12 GC2 = 0x80; RIN12(3:0) = 0x01, GR12 and AGCGF1 = min. RIN12(3:0) = 0x01, GR12 and AGCGF1 = max. 0.8 116 RIN12(3:0) = 0x09, GR12 and AGCGF1 = min. RIN12(3:0) = 0x09, GR12 and AGCGF1 = max. 0.2 29 Gain Factors 0.15 V V -0.5 0.5 LSB -1 1 LSB 500 2000 mVpp mVpp ∆Gdiff Differential Gain Accuracy calibration range 11 bit 109 110 ∆Gabs Absolute Gain Accuracy calibration range 11 bit, guaranteed monotony Vin()diff Recommended Differential Input Vin()diff = V(CHPx) - V(CHNx), RIN12(3) = 0 Voltage RIN12(3) = 1 10 40 Vin()os Input Offset Voltage refered to side of input 0 VOScal Offset Calibration Range referenced to the selected source (VOS12); ORx = 00 ORx = 01 ORx = 10 ORx = 11 111 112 %/K 1.65 2.75 108 1.5 2.5 V 20 µV ±100 ±200 ±600 ±1200 %V() %V() %V() %V() 113 ∆VOSdiff Differential Linearity Error of Offset Correction calibration range 11 bit -0.5 0.5 LSB 114 ∆VOSint Integral Linearity Error of Offset Correction calibration range 11 bit -1 1 LSB 115 PHIkorr Phase Error Calibration Range CH1 versus CH2 116 ∆PHIdiff Differential Linearity Error of Phase Calibration calibration range 10 bit -0.5 0.5 LSB 117 ∆PHIint Integral Linearity Error of Phase Calibration calibration range 10 bit -1 1 LSB 119 fin()max Permissible Input Frequency ±10.4 20 ° kHz iC-MSA SIN/COS SIGNAL preliminary CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 7/29 ELECTRICAL CHARACTERISTICS Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated. Item No. 120 Symbol Parameter Conditions Unit Min. fhc() Input Amplifier Cut-off Frequency (-3dB) Typ. Max. 100 Signal Conditioning, Inputs X1, X2 201 Vin()sig Permissible Input Voltage Range RIN0(3:0) = 0x01 kHz 0 VDDS − 1.5 VDDS 202 Iin()sig Permissible Input Current Range RIN0(0) = 0, BIAS0 = 0 RIN0(0) = 0, BIAS0 = 1 -300 10 -10 300 µA µA 203 Iin() Input Current RIN0(3:0) = 0x01 -10 204 Vout(X2) Output Voltage at X2 BIASEX = 10, I(X2) = 0, referenced to VREFin12 95 205 Vin(X2) Permissible Input Voltage at BIASEX = 11 0.5 206 Rin(X2) Input Resistance at X2 BIASEX = 11, RIN0(3:0) = 0x01, RIN12(3:0) = 0x01 20 207 Rin() Input Resistance vs. VREFin Tj = 27 °C; RIN0(3:0) = 0x09 RIN0(3:0) = 0x00 RIN0(3:0) = 0x02 RIN0(3:0) = 0x04 RIN0(3:0) = 0x06 16 1.1 1.6 2.2 3.2 1.35 2.25 RIN0(3:0) = 0x09 0.75 V 10 µA 105 % VDDS −2 V 28 35 kΩ 20 1.6 2.3 3.2 4.6 24 2.1 3.0 4.2 6.0 kΩ kΩ kΩ kΩ kΩ 100 208 209 TCRin() Temperature Coefficient Rin VREFin0 Reference Voltage RIN0(0) = 0, BIAS0 = 1 RIN0(0) = 0, BIAS0 = 0 210 G0 Gain Factors GC0 = 0x80; RIN0(3:0) = 0x01, GR0 and AGCGF1 = min. RIN0(3:0) = 0x01, GR0 and AGCGF1 = max. 0.8 116 RIN0(3:0) = 0x09, GR0 and AGCGF1 = min. RIN0(3:0) = 0x09, GR0 and AGCGF1 = max. 0.2 29 0.15 V V -0.5 0.5 LSB -1 1 LSB 500 2000 mVpp mVpp ∆Gdiff Differential Gain Accuracy calibration range 5 bit 212 213 ∆Gabs Absolute Gain Accuracy calibration range 5 bit, guaranteed monotony Vin()diff Recommended Differential Input Vin()diff = V(CHP0) - V(CHN0), RIN0(3:0) = 0x01 Voltage RIN0(3:0) = 0x09 10 40 Vin()os Input Offset Voltage referred to side of input 0 VOScal Offset Calibration Range referenced to the selected source (REFVOS); OR0 = 00 OR0 = 01 OR0 = 10 OR0 = 11 1.5 2.5 %/K 1.65 2.75 211 214 215 V 75 µV ±100 ±200 ±600 ±1200 %V() %V() %V() %V() 216 ∆VOSdiff Differential Linearity Error of Offset Correction calibration range 6 bit -0.5 0.5 LSB 217 ∆VOSint Integral Linearity Error of Offset Correction calibration range 6 bit -1 1 LSB 4000 kHz 10 ° 275 mV Signal Filter 301 fg Cut-off Frequency 302 phi Phase Shift Index Pulse Comparator Output PZ, NZ fin 500 kHz for sine/cosine 401 Vpk() Output Amplitude With Automatic EAZ = 1, AGCOFF = 0, ADJ = 0x32 Gain Control 402 SR() Output Slew Rate Line Driver Outputs PS, NS, PC, NC, PZ, NZ 501 Vpk()max Permissible Output Amplitude 502 Vpk() 225 EAZ = 1 250 1 VDD = 4.5 V, DC level = VDD / 2, RL = 50 Ω vs. VDD / 2 Output Amplitude With Automatic AGCOFF = 0, ADJ (5:0) = 0x32 Gain Control 225 250 V/µs 300 mV 275 mV iC-MSA SIN/COS SIGNAL preliminary CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 8/29 ELECTRICAL CHARACTERISTICS Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated. Item No. Symbol Parameter Conditions Unit Min. 503 fg Cut-off Frequency 504 Vos Offset Voltage CL = 250 pF 505 Isc() Short-circuit Current pin shorten to VDD or GND 10 506 Ilk() Tristate Leakage Current tristate or reversed supply -1 Typ. Max. 500 kHz ±200 30 µV 50 mA 1 µA Automatic Signal Gain Controller 601 tset() Automatic Gain Settling Time square control active, AGCGF1: 0x40 → 0x80 602 Gt()min Control Range Monitoring 1: lower limit CH1 gain/GR12, AGCGF1 = 0x10 1.2 603 Gt()max Control Range Monitoring 2: upper limit CH1 gain/GR12, AGCGF1 = 0xF0 16.6 604 Vt()min Signal Level Monitoring 1: lower limit referenced to Vscq() 40 %Vpp 605 Vt()max Signal Level Monitoring 2: upper limit referenced to Vscq() 130 %Vpp Permissible Test Current test mode activated 2 ms Test Current ERR 701 I(ERR) 0 1 mA Bias Current Source and Reference Voltages 801 IBN() Bias Current Source MODE(3:0) = 0x01, I(NC) vs. VDDS 180 200 220 µA 802 VPAH Reference Voltage VPAH referenced to GND 45 50 55 %VDD 803 V05 Reference Voltage V05 450 500 550 804 V025 Reference Voltage V025 50 mV %V05 Power-Down-Reset 901 VDDon Turn-on Threshold (power-on release) increasing voltage at VDD vs. GND 3.7 4 4.3 V 902 VDDoff Turn-off Threshold (power-down reset) decreasing voltage at VDD vs. GND 3.2 3.5 3.8 V 903 VDDhys Threshold Hysteresis VDDhys = VDDon − VDDoff 0.3 Internal Clock Frequency MODE(3:0) = 0x0A, fclk(NS) 120 V Clock Oscillator A01 fclk() 160 200 kHz Error Signal Input/Output, Pin ERR B01 B02 Vs()lo Saturation Voltage lo vs. GND, I() = 4 mA Isc() Short-circuit Current lo vs. GND; V(ERR) ≤ VDD V(ERR) > VTMon 0.4 B03 Vt()hi Input Threshold Voltage hi vs. GND B04 Vt()lo Input Threshold Voltage lo vs. GND 0.8 B05 Vt()hys Input Hysteresis Vt()hys = Vt()hi − Vt()lo 300 500 B06 Ipu() Input Pull-up Current V() = 0...VDD − 1 V, EPU = 1 -400 -300 B07 Rpu() Input Pull-Up Resistor EPU = 0 B08 Vpu() Pull-up Voltage Vpu() = VDD - V(), I() = -5 µA, EPU = 1 B09 VTMon Test Mode Activation Threshold increasing voltage at ERR B10 VTMoff Test Mode Disabling Threshold decreasing voltage at ERR B11 VTMhys Test Mode Hysteresis VTMhys = VTMon − VTMoff B12 Ilk() Leakage Current tristate or reversed supply voltage 4 2 2 C03 C() Backup Capacitor Analog Supply VDDS vs. GNDS V -200 µA kΩ 0.4 V VDD + 1.5 V VDD + 0.5 V 0.15 0.3 -1 -10 100 V mV 500 Supply Switch and Reverse Polarity Protection VDDS, GNDS C01 Vs() Saturation Voltage Vs(VDDS) = VDD − V(VDDS) I(VDDS) = -10 mA...0 mA VDDS vs. VDD I(VDDS) = -20 mA...-10 mA C02 Vs() Saturation Voltage Vs(GNDS) = V(GNDS) − GND I(GNDS) = 0 mA...10 mA GNDS vs. GND I(GNDS) = 10 mA...20 mA V mA mA V -50 µA 150 250 mV mV 150 250 mV mV nF iC-MSA SIN/COS SIGNAL preliminary CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 9/29 ELECTRICAL CHARACTERISTICS Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated. Item No. Symbol Parameter Conditions Unit Min. Typ. Max. Serial Configuration Interface SCL, SDA D01 Vs()lo Saturation Voltage lo D02 Isc() Short-circuit Current lo D03 Vt()hi Input Threshold Voltage hi D04 Vt()lo Input Threshold Voltage lo D05 Vt()hys Input Hysteresis Vt()hys = Vt()hi − Vt()lo 300 500 D06 Ipu() Input Pull-up Current V() = 0...VDDS − 1 V -600 -300 D07 Vpu() D08 fclk(SCL) Input Pull-up Voltage Vpu() = VDDS − V(), I() = -5 µA Clock Frequency at SCL ENFAST = 0 ENFAST = 1 D09 tbusy()cfg Duration of Startup Configuration IBN not calibated, EEPROM access without read failure, time to outputs operational; ENFAST = 0 ENFAST = 1 D10 tbusy()err D11 td() D12 td()i2c End Of I2C Communication; Time Until I2C Slave Is Enabled Start Of Master Activity On I2C Protocol Error I() = 4 mA 4 E02 TCs Temp. Co. of Temperature Sensor Voltage E03 VTth Temperature Warning Activation Threshold E04 TCth Temp. Co. Temperature Warning Activation Threshold E05 Thys Temperature Warning Hysteresis E06 ∆T Relative Shutdown Temperature mV 80 mA 2 V 0.8 60 240 IBN not calibrated; V(SDA) = 0 V V(SCL) = 0 V or arbitration lost no EEPROM CRC ERROR SCL without clock signal: V(SCL) = constant; IBN not calibrated IBN calibrated to 200 µA 25 64 Delay for I2C-Slave-Mode Enable no EEPROM, V(SDA) = 0 V Temperature Monitoring E01 VTs Temperature Sensor Voltage 400 VTs() = VDDS − V(PS), Tj = 27 °C, Calibration Mode 3, no load 600 V mV -60 V 80 320 100 400 kHz kHz 40 25 55 35 ms ms 4 indef. 45 95 12 135 285 ms ms ms ms 80 80 240 120 µs µs 4 6.2 ms 650 700 mV -1.8 VTth() = VDDS − V(NS), Tj = 27 °C, Calibration Mode 3, no load; CFGTA(3:0) = 0x00 CFGTA(3:0) = 0x0F 260 470 310 550 mV/K 360 630 0.06 ∆T = Toff − Twarn µA 0.4 mV mV %/K 4 12 20 °C 4 12 20 °C iC-MSA SIN/COS SIGNAL preliminary CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 10/29 PROGRAMMING Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 11 Configuration Interface . . . . . . . . . . . . . . . . . . . Page 13 ENFAST: I2 C Fast Mode Enable ENSL: I2 C Slave Mode Enable DEVID: Device ID of EEPROM providing the chip configuration data (e.g. 0x50) CHKSUM: CRC of chip configuration data (address range 0x40 to 0x5E) CHPREL: Chip Release NTRI: Tristate Function and Op. Mode Change Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 15 CFGIBN: Bias Calibration CFGTA: Temperature Sensor Calibration Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 16 MODE: Operation Mode ENF: Signal Filtering Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seite 17 TMODE: Test Mode Functions Input Configuration and Signal Path Multiplexer . . . . . . . . . . . . . . . . . . . Page 18 INMODE: Diff./Single-Ended Input Mode RIN12: I/V Mode and Input Resistance CH1, CH2 BIAS12: Reference Voltage CH1, CH2 RIN0: I/V Mode and Input Resistance CH0 BIAS0: Reference Voltage CH0 MUXIN: Input-To-Channel Assignment: X3...X6 to CH1, CH2 INVZ: Index Signal Inversion EAZ: Index Comparator Enable BIASEX: Input Reference Selection BYP Input-to-output Feedthrough Signal Conditioning CH1, CH2 (X3...X6) . . Page 21 GR12: Gain Range CH1, CH2 (coarse) VOS12: Offset Reference Source CH1, CH2 OR1: Offset Range CH1 (coarse) OF1: Offset Factor CH1 (fine) OR2: Offset Range CH2 (coarse) OF2: Offset Factor CH2 (fine) PH12: Phase Correction CH1 vs. CH2 GC2: Gain Correction CH2 (fine) Signal Conditioning CH0 (X1, X2) . . . . . . . . . Page 23 GC0: Gain Correction CH0 (fine) GR0: Gain Range CH0 (coarse) VOS0: Offset Reference Source CH0 OR0: Offset Range CH0 (coarse) OF0: Offset Factor CH0 (fine) Signal Level Controller . . . . . . . . . . . . . . . . . . . . Page 24 AGCOFF: Setup of AGC ADJ: AGC Setpoint Error Monitoring and Alarm Output . . . . . . Page 25 EMTD: Minimal Alarm Indication Time EPH: Alarm Input/Output Logic EPU: Alarm Output Pull-Up Enable EMASKA: Error Mask For Alarm Indication (pin ERR) EMASKE: Error Mask For Protocol (EEPROM) EMASKO: Error Mask For Driver Shutdown ERR1: ERR2: ERR3: Error Protocol: First Error Error Protocol: Last Error Error Protocol: History PDMODE: Driver Activation After Cycling Power AGCGF1: AGC Gain Fine CH1 (read-only) preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 11/29 OVERVIEW Addr Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Configuration Interface 0x40 ENFAST DEVID(6:0) Calibration 0x41 CFGIBN(3:0) CFGTA(3:0) Operation Modes 0x42 NTRI 1 0 – MODE(3:0) Input Configuration and Signal Path Multiplexer 0x43 EAZ 0 0 0 INVZ INMODE 0x44 0 0 0 1 0 0 MUXIN(1:0) 0 0 Signal Level Controller 0x45 AGCOFF 0 ADJ(5:0) Signal Conditioning CH1, CH2 0x46 0 0 0 0 0 0x47 0 0 0 0 1 0 0 0x48 OR1(0) 0 1 0 0 0 0 0x49 0 0 OF1(6:0) 0x4A OF2(1:0) OR1(1) OR2(1:0) OF1(10:7) 0x4B OF2(9:2) 0x4C PH12(6:0) 0x4D 0x4E GR12(2:0) BIASEX(1:0) ENF BYP BIAS12 OF2(10) 1 1 PH12(9:7) VOS12(1:0) RIN12(3:0) 0x4F GC2(7:0) Signal Conditioning CH0 0x50 GC0(7:0) 0x51 - 0x52 0x53 GR0(2:0) OF0(5:0) 0 BIAS0 OR0(1:0) VOS0(1:0) RIN0(3:0) Error Monitoring and Alarm Output 0x54 – 0x55 0x56 EMASKA(6:0) TMODE(1:0) – EMASKE(3:0) – EPH – – EPU – – EMASKO(6:0) 0x57 0x58 EMTD(2:0) PDMODE – ENSL – – 0x59 EEPROM: not defined / RAM: AGCGF1(10:3) (read-only) 0x5A not defined OEM Data 0x5B.. 0x5E OEM Data Check Sum / Chip Release 0x5F EEPROM: CHKSUM(7:0) / ROM: CHPREL(7:0) EMASKE(6:4) preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 12/29 OVERVIEW Addr Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Error Register 0x60 – ERR1(6:0) 0x61 ERR2(5:0) 0x62 0x63 Notes ERR3(3:0) – – – – – – Register entries specified 0 or 1 mean a mandatory programming. Table 4: Register layout – – – – ERR2(6) ERR3(6:4) iC-MSA SIN/COS SIGNAL preliminary CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 13/29 SERIAL CONFIGURATION INTERFACE (EEPROM) The serial configuration interface consists of the two pins SCL and SDA and enables read and write access to an EEPROM with I2 C interface. The readout speed can be adjusted using register bit ENFAST. ENFAST Code Adr 0x40, bit 7 Function 0 1 Regular clock rate, f(SCL) approx. 80 kHz High clock rate, f(SCL) approx. 320 kHz Notes For in-circuit programming bus lines SCL and SDA require pull-up resistors. For line capacitances to 170 pF, adequate values are: 4.7 kΩ with clock frequency 80 kHz 2 kΩ with clock frequency 320 kHz The pull-up resistors may not be less than 1.5 kΩ. To separate the signals a ground line between SCL and SDA is recommended. iC-MSA requires a supply voltage during EEPROM programming (5 V to VDD). Table 5: Config. Interface Clock Frequency Once the supply has been switched on (power down reset) the iC-MSA outputs are high impedance (tristate) until a valid configuration is read out from the EEPROM using device ID 0x50. Example of CRC Calculation Routine unsigned char ucDataStream = 0 ; i n t iCRCPoly = 0x11D ; unsigned char ucCRC=0; int i = 0; ucCRC = 1 ; / / s t a r t v a l u e ! ! ! f o r ( iReg = 0 ; iReg <31; iReg ++) { ucDataStream = ucGetValue ( iReg ) ; f o r ( i =0; i <=7; i ++) { i f ( ( ucCRC & 0x80 ) ! = ( ucDataStream & 0x80 ) ) ucCRC = (ucCRC << 1 ) ^ iCRCPoly ; else ucCRC = (ucCRC << 1 ) ; ucDataStream = ucDataStream << 1 ; } } EEPROM Selection The following minimal requirements must be fulfilled: • Operation from 3.3 to 5 V, I2 C interface • Minimal 1024 bit, 128x8 (address range used is 0x40 to 0x7F) • Support of Page Write with Pages of at least 4 bytes. Otherwise error events can not be saved to the EEPROM (EMASKE(9:0) = 0x000). Bit errors in the 0x40 to 0x5E memory section are pinpointed by the CRC deposited in register CHKSUM(7:0) (address 0x5F; the CRC polynomial used is "1 0001 1101"). • Device ID 0x50 "101 0000", no occupation of 0x57 (A2...A0 = 0). Otherwise iC-MSA is not accessible in I2 C slave mode via 0x57 (ENSL = 0). Should no valid configuration data being available (incorrect CRC value or EEPROM missing), the readin process is repeated; the system aborts following a fourth faulty attempt and iC-MSA switches to I2 C slave mode. Recommended devices: Atmel AT24C01B, ST M24C01W, ST M24C02 (2K), ROHM BR24L01A-W, BR24L02-W For devices loading valid configuration data from the EEPROM, the register bit ENSL decides for enabling the I2 C slave function. ENSL Code Adr 0x17, bit 3 Function 0 1 Normal operation I2 C Slave Mode Enable (Device ID 0x57) Table 6: Config. Interface Mode The device ID for the EEPROM can be entered in register DEVID(6:0) (address 0x40), from which iC-MSA will take its configuration after exiting test mode (see page 17). The DEVID(6:0) stored therein is then accepted. preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 14/29 I2 C Slave Mode (ENSL = 1) In this mode iC-MSA behaves like an I2 C slave with the device ID 0x57 and the configuration interface permits write and read accesses to iC-MSA’s internal registers. For chip release verification purposes an identification value is stored under ROM address 0x5F; a write access to this address is not permitted. CHPREL Adr 0x5F, bit 7:0 (ROM) Code Chip Release 0x10 iC-MSA Table 7: Chip Release NTRI Code Adr 0x42, bit 7 Function 0 1 Output drivers disabled Setting the operating mode, output drivers active Notes NTRI is evaluated only during I2 C slave mode. Table 8: Tristate Function And Op. Mode Change Register Address Read access in I2 C slave mode (ENSL = 1) Content 0x00-0x03 0x04-0x3F 0x40-0x58 0x59 Current error memory Not available Configuration: register addresses 0x40-0x58 AGCGF1(10:3) 0x5A 0x5B-0x5E 0x5F 0x60-0x63 0x64-0x77 0x78 Not available OEM data: register addresses 0x5B-0x5E Chip release (ROM) Configuration: register addresses 0x60-0x63 Not available Configuration: register address 0x58 0x79-0x7A 0x7B-0x7E 0x7F Not available OEM data: register addresses 0x5B-0x5E Chip release (ROM) Table 9: RAM Read Access Register Address Write access in I2 C slave mode (ENSL = 1) Access and conditions 0x40 0x41 0x58 0x59-0x5A 0x5B-0x5E Changes possible, no restrictions Changes possible (wrong entries for CFGIBN can limit functions) Bit 7 = 0 (NTRI): changes to bits (6:0) permitted A change of operating mode follows only on writing Bit 7 = 1 (NTRI); when doing so changes to bits (6:0) are not permitted. Changes possible, no restrictions Bit 3 = 1 (ENSL): changes to bits (7:4) and (2:0) permitted Changes possible, no restrictions Not available Changes possible, no restrictions others No changes permitted 0x42 0x43-0x56 0x57 Table 10: RAM Write Access preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 15/29 BIAS SOURCE AND TEMPERATURE SENSOR CALIBRATION Bias Source Calibration The calibration of the bias current source in operation mode Calibration 1 (Tab. 13) is prerequisite for adherence to the given electrical characteristics and also instrumental in the determination of the chip timing (e.g. SCL clock frequency). For setup purposes the IBN value is measured using a 10 kΩ resistor by pin VDDS connected to pin NC. The setpoint is 200 µA which is equivalent to a measurement voltage of 2 V. CFGIBN Code k Adr 0x41, bit 7:4 31 IBN ∼ 39−k Code k IBN ∼ 0x0 0x1 0x2 0x3 79 % 81 % 84 % 86 % 0x8 0x9 0xA 0xB 100 % 103 % 107 % 111 % 0x4 0x5 0x6 0x7 88 % 91 % 94 % 97 % 0xC 0xD 0xE 0xF 115 % 119 % 124 % 129 % 31 39−k Table 11: Bias Current Source Calibration Temperature Sensor The temperature monitor is calibrated in operating mode Calibration Mode 3. To set the required warning temperature T2 the temperature sensor voltage VTs at which the warning is generated is first determined. To this end a voltage ramp from VDDS towards GNDS is applied to pin PS until pin ERR triggers an error message (for EMASKA = 0x20 and EMTD = 0x00). Example: VTs(T1 ) is ca. 650 mV, measured from VDDS versus PS, with T1 = 25 °C; The necessary activation threshold voltage VTth(T1 ) is then calculated. The required warning temperature T2 , temperature coefficients TCs and TCth (see Electrical Characteristics, Section E) and measurement value VTs(T1 ) are entered into this calculation: VTth(T1 ) = VTs(T1 ) + TCs · (T2 − T1 ) 1 + TCth · (T2 − T1 ) Example: For T2 = T1 + 100 K, VTth(T1 ) must be programmed to 443 mV. Activation threshold voltage VTth(T1 ) is provided for a high impedance measurement (10 MΩ) at output pin NS (measurement versus VDDS) and must be set by programming CFGTA(3:0) to the calculated value. Example: Altering VTth(T1 ) from 310 mV (measured with CFGTA(3:0)= 0x0) to 443 mV is equivalent to 143 %, the closest value for CFGTA is 0x9; CFGTA Code k Adr 0x41, bit 3:0 VTth ∼ 65+3k 65 Code k VTth ∼ 0x0 0x1 0x2 100 % 105 % 110 % 0x8 0x9 0xA 140 % 145 % 150 % 0x3 0x4 0x5 0x6 0x7 115 % 120 % 125 % 130 % 135 % 0xB 0xC 0xD 0xE 0xF 155 % 160 % 165 % 170 % 175 % Notes With CFGTA = 0xF Toff is 80 °C typ., with CFGTA = 0x0 Toff is 155 °C typ. 65+3k 65 Table 12: Calibration of Temperature Monitoring preliminary iC-MSA SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER Rev A1, Page 16/29 OPERATING MODES In order to calibrate iC-MSA, compensate for the input signals and test iC-MSA the mode of operation must be changed. The output function changes according MODE(3:0) BYP to the various operating modes; the line drivers and protection against reverse polarity facility are only active in normal mode. Addr. 0x42; bit 3:0 Addr. 0x4D; bit 5 Code Operating Mode Pin PS Pin NS Pin PC Pin NC Pin PZ Pin NZ Pin ERR 0x00 Normal operation PS NS PC NC PZ NZ ERR 0x01 Calibration 1 TANA0(2) VREFI0 VREFI12 IBN PZI NZI ERR 0x02 Calibration 2 PCH1 NCH1 PCH2 NCH2 — — — 0x03 iC-Haus Test 1 VPAH VPD — CGUCK IPF V05 IERR 0x04 iC-Haus Test 2 PS_out NS_out PC_out NC_out PZ_out NZ_out IERR 0x05 iC-Haus Test 3 PS_out NS_out PC_out NC_out PZ_out NZ_out ERR 0x06 iC-Haus Test 4, BYP = 0 iC-Haus Test 4, BYP = 1 TANA12(0) X4 TANA12(1) X6 TANA12(2) X3 TANA12(3) X5 TANA12(4) X1 TANA12(5) X2 IERR 0x07 Calibration 3 VTs VTth — — — — ERR 0x08 Saturation low 0x09 — — — — — — — — 0x0A iC-Haus Test 5 — — TP CLK6 — — — 0x0B — — — — — — — — 0x0C — — — — — — — — 0x0D — — — — — — — — 0x0E IDDQ-Test 0x0F — SCL, SDA and ERR low All PU/PD resistors, oscillator and supply voltage deactivated — — — — — — — Table 13: Selection of Operating Modes Calibration Op. Modes In Calibration Mode 1 the user can measure the BIAS current (IBN), input amplifier reference potential VREFI and the analog signals from channel 0 following signal conditioning (PCH0 and NCH0). In Calibration Mode 2 the conditioned signals from channels 1 and 2 are output (PCH1, NCH1, PCH2 and NCH2). In Calibration Mode 3 the internal temperature monitoring signals are provided. Signal Filter iC-MSA