ICHAUS IC-MSA

preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 1/29
FEATURES
APPLICATIONS
♦ PGA inputs for differential and single-ended sensor signals up
to 20 kHz
♦ Selectable adaptation to voltage or current signals
♦ Flexible signal assignment due to input multiplexers
♦ Sine/Cosine signal conditioning for offset, amplitude and
phase
♦ Separate index signal conditioning
♦ Short-circuit-proof and reverse polarity tolerant output drivers
(1 Vpp to 100 Ω)
♦ Stabilized output signal levels due to automatic gain control
♦ Signal and system monitoring with configurable alarm output
♦ Supply voltage monitoring with integrated switches for
reversed-polarity-safe systems
♦ Excessive temperature protection with sensor calibration
♦ I2 C multi-master interface
♦ Supply from 4.3 to 5 V, operation within -40 °C to +115 °C
♦ Verifyable chip release code
♦ Pin compatible with iC-MSB
♦ Programmable sensor interface
for optical and magnetic position
sensors
♦ Linear gauges and incremental
encoders
♦ Linear scales
PACKAGES
TSSOP20-TP
BLOCK DIAGRAM
VDDS
VDD
GNDS
REVERSE POLARITY
PROTECTION
GND
SCL
SDA
MONITORING
SERIAL I2C
INTERFACE
PGA INPUT
X1
X2
X3
X4
X5
X6
I/V
CONFIGURATION
REGISTER
SIGNAL PATH MUX
iC-MSA
CALIBRATION
x
CH0
I/V
x
I/V
x
CH2
I/V
x
I/V
x
CH1
I/V
Copyright © 2013 iC-Haus
x
Tw Toff
ERR
PwrOn
AUTOMATIC GAIN
CONTROL
-
ANALOG DRIVER
OUTPUT
PZ
NZ
PC
x
-
NC
+
x
-
+
PS
ADJ
x
NS
http://www.ichaus.com
iC-MSA SIN/COS SIGNAL
preliminary
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 2/29
DESCRIPTION
iC-MSA is a signal conditioner with line drivers for
sine/cosine sensors which are used to determine positions in linear and angular encoders, for example.
Programmable instrumentation amplifiers with selectable gain levels permit differential or referenced
input signals; at the same time the modes of operation differentiate between high and low input
impedance. This adaptation of the iC to voltage or
current signals enables MR sensor bridges or photosensors to be directly connected up to the device.
The integrated signal conditioning unit allows signal
amplitudes and offset voltages to be calibrated accurately and also any phase error between the sine and
cosine signals to be corrected. Separate zero signal
conditioning settings can be made for the gain and
offset; data is then output either as an analog or a
differential square-wave signal (low/high level analogous to the sine/cosine amplitude).
For the stabilization of the output levels a signal is
generated from the conditioned and calibrated input
signals which controls the gain of all channels. Temperature and aging effects can be compensated for
and the set signal amplitude is maintained with absolute accuracy. At the same time the control circuitry monitors both whether the sensor is functioning
correctly and whether it is properly connected; signal
loss due to wire breakage, short circuiting, dirt or aging, for example, is recognized when control thresholds are reached and indicated at alarm output ERR.
iC-MSA is protected against a reversed power supply
voltage; the integrated voltage switch for loads of up
to 20 mA extends this protection to cover the overall
system. The analog output drivers are directly cablecompatible and tolerant to false wiring; if supply voltage is connected up to these pins, the device is not
destroyed.
The device configuration and calibration parameters
are CRC protected and stored in an external EEPROM; they are loaded automatically via the I2C interface once the supply voltage has been connected
up.
preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 3/29
CONTENTS
PACKAGING INFORMATION
PIN CONFIGURATION TSSOP20-TP . . . .
4
4
ABSOLUTE MAXIMUM RATINGS
5
THERMAL DATA
5
ELECTRICAL CHARACTERISTICS
6
SIGNAL PATH MULTIPLEXING
20
SIGNAL CONDITIONING CH1, CH2
21
Gain Settings CH1, CH2 . . . . . . . . . . . .
21
Offset Calibration CH1, CH2 . . . . . . . . .
22
Phase Correction CH1 vs. CH2 . . . . . . . .
22
SIGNAL CONDITIONING CH0
PROGRAMMING
SERIAL CONFIGURATION INTERFACE
(EEPROM)
Example of CRC Calculation Routine . . . . .
EEPROM Selection . . . . . . . . . . . . . .
I2 C Slave Mode (ENSL = 1) . . . . . . . . . .
BIAS SOURCE AND TEMPERATURE
SENSOR CALIBRATION
OPERATING MODES
Calibration Op. Modes . . . . . . . . . . . . .
Special Device Test Functions . . . . . . . .
Signal Filter . . . . . . . . . . . . . . . . . . .
10
13
13
13
14
15
16
16
16
16
TEST MODE
17
INPUT CONFIGURATIONS
Current Signals . . . . . . . . . . . . . . . . .
Voltage Signals . . . . . . . . . . . . . . . . .
18
18
18
23
Gain Settings CH0 . . . . . . . . . . . . . . .
23
Offset Calibration CH0 . . . . . . . . . . . . .
23
AUTOMATIC SIGNAL GAIN CONTROL and
SIGNAL MONITORING
24
ERROR MONITORING AND ALARM OUTPUT
25
Alarm Output: I/O pin ERR . . . . . . . . . .
25
Excessive Temperature Warning . . . . . . .
25
Driver Shutdown . . . . . . . . . . . . . . . .
25
Error Protocol . . . . . . . . . . . . . . . . . .
25
REVERSE POLARITY PROTECTION
26
APPLICATION HINTS
27
PLC Operation . . . . . . . . . . . . . . . . .
27
Connecting MR sensor bridges for
safety-related applications . . . . . . . .
27
Motor feedback encoder with iC-MSA,
iC-MSB and single EEPROM . . . . . .
28
preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 4/29
PACKAGING INFORMATION
PIN CONFIGURATION TSSOP20-TP
PIN FUNCTIONS
No. Name Function
1
2
3
4
5
X1
X2
X3
X4
VDDS1)
6 GNDS1)
7
8
9
10
X5
X6
N.C.
SDA
11 SCL
12
13
14
15
16
17
18
19
20
NC
PC
NS
PS
GND
VDD
NZ
PZ
ERR
TP2)
Signal Input 1 (Index +)
Signal Input 2 (Index -)
Signal Input 3
Signal Input 4
Switched Supply Output and Internal
Analog Supply Voltage
(reverse-polarity-proof, load 20 mA
max.)
Switched Ground
(reverse-polarity-proof)
Signal Input 5
Signal Input 6
Not Connected
Serial Configuration Interface,
data line
Serial Configuration Interface,
clock line
Neg. Cosine Output
Pos. Cosine Output
Neg. Sine Output
Pos. Sine Output
Ground
+4.3 V to +5.5 V Supply Voltage
Neg. Index Output
Pos. Index Output
Error Signal (In/Out),
Test Mode Trigger Input
Thermal Pad (TSSOP20-TP)
1) It is advicable to connect a bypass capacitor of at least 100 nF close to the chip’s analog supply terminals.
2) To improve heat dissipation the thermal pad of the package (bottom side) should be joined to an extended copper area which must have GNDS potential.
preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 5/29
ABSOLUTE MAXIMUM RATINGS
These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Max.
G001 V()
Voltage at VDD, GND, PC, NC, PS, NS,
PZ, NZ
-6
6
V
G002 V()
Voltage at ERR
-6
8
V
G003 V()
Pin-To-Pin Voltage between VDD,
GND, PC, NC, PS, NS, PZ, NZ, ERR
6
V
G004 V()
Voltage at X1...X6, SCL, SDA
-0.3
VDDS +
0.3
V
G005 I(VDD)
Current in VDD
-100
100
mA
G006 I()
Current in VDDS, GNDS
-50
50
mA
G007 I()
Current in X1...X6, SCL, SDA, ERR,
PC, NC, PS, NS, PZ, NZ
-20
20
mA
G008 Vd()
ESD Susceptibility at all pins
HBM 100 pF discharged through 1.5 kΩ
G009 Ptot
Permissible Power Dissipation
TSSOP20-TP
G010 Tj
Junction Temperature
G011 Ts
Storage Temperature Range
2
kV
400
mW
-40
150
°C
-40
150
°C
THERMAL DATA
VDD = 4.3...5.5 V
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
T01
Ta
Operating Ambient Temperature Range TSSOP20-TP
T02
Rthja
Thermal Resistance Chip to Ambient
TSSOP20-TP surface mounted to PCB
according to JEDEC 51
All voltages are referenced to Pin GNDS unless otherwise stated.
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.
Typ.
-40
Max.
115
35
°C
K/W
iC-MSA SIN/COS SIGNAL
preliminary
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 6/29
ELECTRICAL CHARACTERISTICS
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Total Device
001 VDD
Permissible Supply Voltage
Load current I(VDDS) < -10 mA
Tj = 27 °C, no load
Typ.
4.3
4.5
25
Max.
5.5
5.5
V
V
50
mA
0
mA
11
V
002
I(VDD)
Supply Current in VDD
003
I(VDDS)
Permissible Load Current VDDS
004
Vcz()hi
Clamp Voltage hi at all pins
005
Vc()hi
Clamp Voltage hi at inputs
SCL, SDA
Vc()hi = V() − V(VDDS), I() = 1 mA
0.4
1.5
V
006
Vc()hi
Clamp Voltage hi at inputs
X1...X6
Vc()hi = V() − V(VDDS), I() = 4 mA
0.3
1.2
V
007
Vc()lo
Clamp Voltage lo at all pins
I() = -4 mA
-1.2
-0.3
V
008
Irev(VDD)
Reverse-Polarity Current VDD vs. V(VDD) = −5.5 V...−4.3 V
GND
-1
1
mA
0.75
V
-20
Signal Conditioning, Inputs X3...X6
101 Vin()sig
Permissible Input Voltage Range RIN12(3:0) = 0x01
0
VDDS
− 1.5
VDDS
102
Iin()sig
Permissible Input Current Range RIN12(0) = 0, BIAS12 = 0
RIN12(0) = 0, BIAS12 = 1
-300
10
-10
300
µA
µA
103
104
Iin()
Input Current
RIN12(3:0) = 0x01
-10
10
µA
Rin()
Input Resistance vs. VREFin
Tj = 27 °C;
RIN12(3:0) = 0x09
RIN12(3:0) = 0x00
RIN12(3:0) = 0x02
RIN12(3:0) = 0x04
RIN12(3:0) = 0x06
16
1.1
1.6
2.2
3.2
24
2.1
3.0
4.2
6.0
kΩ
kΩ
kΩ
kΩ
kΩ
1.35
2.25
RIN12(3:0) = 0x09
Temperature Coefficient Rin
20
1.6
2.3
3.2
4.6
105
106
TCRin()
VREFin12 Reference Voltage
RIN12(0) = 0, BIAS12 = 1
RIN12(0) = 0, BIAS12 = 0
107
G12
GC2 = 0x80;
RIN12(3:0) = 0x01, GR12 and AGCGF1 = min.
RIN12(3:0) = 0x01, GR12 and AGCGF1 = max.
0.8
116
RIN12(3:0) = 0x09, GR12 and AGCGF1 = min.
RIN12(3:0) = 0x09, GR12 and AGCGF1 = max.
0.2
29
Gain Factors
0.15
V
V
-0.5
0.5
LSB
-1
1
LSB
500
2000
mVpp
mVpp
∆Gdiff
Differential Gain Accuracy
calibration range 11 bit
109
110
∆Gabs
Absolute Gain Accuracy
calibration range 11 bit, guaranteed monotony
Vin()diff
Recommended Differential Input Vin()diff = V(CHPx) - V(CHNx),
RIN12(3) = 0
Voltage
RIN12(3) = 1
10
40
Vin()os
Input Offset Voltage
refered to side of input
0
VOScal
Offset Calibration Range
referenced to the selected source (VOS12);
ORx = 00
ORx = 01
ORx = 10
ORx = 11
111
112
%/K
1.65
2.75
108
1.5
2.5
V
20
µV
±100
±200
±600
±1200
%V()
%V()
%V()
%V()
113
∆VOSdiff
Differential Linearity Error of
Offset Correction
calibration range 11 bit
-0.5
0.5
LSB
114
∆VOSint
Integral Linearity Error of Offset
Correction
calibration range 11 bit
-1
1
LSB
115
PHIkorr
Phase Error Calibration Range
CH1 versus CH2
116
∆PHIdiff
Differential Linearity Error of
Phase Calibration
calibration range 10 bit
-0.5
0.5
LSB
117
∆PHIint
Integral Linearity Error of Phase
Calibration
calibration range 10 bit
-1
1
LSB
119
fin()max
Permissible Input Frequency
±10.4
20
°
kHz
iC-MSA SIN/COS SIGNAL
preliminary
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 7/29
ELECTRICAL CHARACTERISTICS
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.
Item
No.
120
Symbol
Parameter
Conditions
Unit
Min.
fhc()
Input Amplifier Cut-off Frequency
(-3dB)
Typ.
Max.
100
Signal Conditioning, Inputs X1, X2
201 Vin()sig
Permissible Input Voltage Range RIN0(3:0) = 0x01
kHz
0
VDDS
− 1.5
VDDS
202
Iin()sig
Permissible Input Current Range RIN0(0) = 0, BIAS0 = 0
RIN0(0) = 0, BIAS0 = 1
-300
10
-10
300
µA
µA
203
Iin()
Input Current
RIN0(3:0) = 0x01
-10
204
Vout(X2)
Output Voltage at X2
BIASEX = 10, I(X2) = 0, referenced to VREFin12
95
205
Vin(X2)
Permissible Input Voltage at
BIASEX = 11
0.5
206
Rin(X2)
Input Resistance at X2
BIASEX = 11, RIN0(3:0) = 0x01, RIN12(3:0) =
0x01
20
207
Rin()
Input Resistance vs. VREFin
Tj = 27 °C;
RIN0(3:0) = 0x09
RIN0(3:0) = 0x00
RIN0(3:0) = 0x02
RIN0(3:0) = 0x04
RIN0(3:0) = 0x06
16
1.1
1.6
2.2
3.2
1.35
2.25
RIN0(3:0) = 0x09
0.75
V
10
µA
105
%
VDDS
−2
V
28
35
kΩ
20
1.6
2.3
3.2
4.6
24
2.1
3.0
4.2
6.0
kΩ
kΩ
kΩ
kΩ
kΩ
100
208
209
TCRin()
Temperature Coefficient Rin
VREFin0
Reference Voltage
RIN0(0) = 0, BIAS0 = 1
RIN0(0) = 0, BIAS0 = 0
210
G0
Gain Factors
GC0 = 0x80;
RIN0(3:0) = 0x01, GR0 and AGCGF1 = min.
RIN0(3:0) = 0x01, GR0 and AGCGF1 = max.
0.8
116
RIN0(3:0) = 0x09, GR0 and AGCGF1 = min.
RIN0(3:0) = 0x09, GR0 and AGCGF1 = max.
0.2
29
0.15
V
V
-0.5
0.5
LSB
-1
1
LSB
500
2000
mVpp
mVpp
∆Gdiff
Differential Gain Accuracy
calibration range 5 bit
212
213
∆Gabs
Absolute Gain Accuracy
calibration range 5 bit, guaranteed monotony
Vin()diff
Recommended Differential Input Vin()diff = V(CHP0) - V(CHN0),
RIN0(3:0) = 0x01
Voltage
RIN0(3:0) = 0x09
10
40
Vin()os
Input Offset Voltage
referred to side of input
0
VOScal
Offset Calibration Range
referenced to the selected source (REFVOS);
OR0 = 00
OR0 = 01
OR0 = 10
OR0 = 11
1.5
2.5
%/K
1.65
2.75
211
214
215
V
75
µV
±100
±200
±600
±1200
%V()
%V()
%V()
%V()
216
∆VOSdiff
Differential Linearity Error of
Offset Correction
calibration range 6 bit
-0.5
0.5
LSB
217
∆VOSint
Integral Linearity Error of Offset
Correction
calibration range 6 bit
-1
1
LSB
4000
kHz
10
°
275
mV
Signal Filter
301 fg
Cut-off Frequency
302
phi
Phase Shift
Index Pulse Comparator Output PZ, NZ
fin 500 kHz for sine/cosine
401
Vpk()
Output Amplitude With Automatic EAZ = 1, AGCOFF = 0, ADJ = 0x32
Gain Control
402
SR()
Output Slew Rate
Line Driver Outputs PS, NS, PC, NC, PZ, NZ
501 Vpk()max Permissible Output Amplitude
502
Vpk()
225
EAZ = 1
250
1
VDD = 4.5 V, DC level = VDD / 2,
RL = 50 Ω vs. VDD / 2
Output Amplitude With Automatic AGCOFF = 0, ADJ (5:0) = 0x32
Gain Control
225
250
V/µs
300
mV
275
mV
iC-MSA SIN/COS SIGNAL
preliminary
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 8/29
ELECTRICAL CHARACTERISTICS
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
503
fg
Cut-off Frequency
504
Vos
Offset Voltage
CL = 250 pF
505
Isc()
Short-circuit Current
pin shorten to VDD or GND
10
506
Ilk()
Tristate Leakage Current
tristate or reversed supply
-1
Typ.
Max.
500
kHz
±200
30
µV
50
mA
1
µA
Automatic Signal Gain Controller
601
tset()
Automatic Gain Settling Time
square control active, AGCGF1: 0x40 → 0x80
602
Gt()min
Control Range Monitoring 1:
lower limit
CH1 gain/GR12, AGCGF1 = 0x10
1.2
603
Gt()max
Control Range Monitoring 2:
upper limit
CH1 gain/GR12, AGCGF1 = 0xF0
16.6
604
Vt()min
Signal Level Monitoring 1:
lower limit
referenced to Vscq()
40
%Vpp
605
Vt()max
Signal Level Monitoring 2:
upper limit
referenced to Vscq()
130
%Vpp
Permissible Test Current
test mode activated
2
ms
Test Current ERR
701
I(ERR)
0
1
mA
Bias Current Source and Reference Voltages
801
IBN()
Bias Current Source
MODE(3:0) = 0x01, I(NC) vs. VDDS
180
200
220
µA
802
VPAH
Reference Voltage VPAH
referenced to GND
45
50
55
%VDD
803
V05
Reference Voltage V05
450
500
550
804
V025
Reference Voltage V025
50
mV
%V05
Power-Down-Reset
901
VDDon
Turn-on Threshold
(power-on release)
increasing voltage at VDD vs. GND
3.7
4
4.3
V
902
VDDoff
Turn-off Threshold
(power-down reset)
decreasing voltage at VDD vs. GND
3.2
3.5
3.8
V
903
VDDhys
Threshold Hysteresis
VDDhys = VDDon − VDDoff
0.3
Internal Clock Frequency
MODE(3:0) = 0x0A, fclk(NS)
120
V
Clock Oscillator
A01
fclk()
160
200
kHz
Error Signal Input/Output, Pin ERR
B01
B02
Vs()lo
Saturation Voltage lo
vs. GND, I() = 4 mA
Isc()
Short-circuit Current lo
vs. GND; V(ERR) ≤ VDD
V(ERR) > VTMon
0.4
B03
Vt()hi
Input Threshold Voltage hi
vs. GND
B04
Vt()lo
Input Threshold Voltage lo
vs. GND
0.8
B05
Vt()hys
Input Hysteresis
Vt()hys = Vt()hi − Vt()lo
300
500
B06
Ipu()
Input Pull-up Current
V() = 0...VDD − 1 V, EPU = 1
-400
-300
B07
Rpu()
Input Pull-Up Resistor
EPU = 0
B08
Vpu()
Pull-up Voltage
Vpu() = VDD - V(), I() = -5 µA, EPU = 1
B09
VTMon
Test Mode Activation Threshold
increasing voltage at ERR
B10
VTMoff
Test Mode Disabling Threshold
decreasing voltage at ERR
B11
VTMhys
Test Mode Hysteresis
VTMhys = VTMon − VTMoff
B12
Ilk()
Leakage Current
tristate or reversed supply voltage
4
2
2
C03 C()
Backup Capacitor Analog Supply
VDDS vs. GNDS
V
-200
µA
kΩ
0.4
V
VDD +
1.5
V
VDD +
0.5
V
0.15
0.3
-1
-10
100
V
mV
500
Supply Switch and Reverse Polarity Protection VDDS, GNDS
C01 Vs()
Saturation Voltage
Vs(VDDS) = VDD − V(VDDS)
I(VDDS) = -10 mA...0 mA
VDDS vs. VDD
I(VDDS) = -20 mA...-10 mA
C02 Vs()
Saturation Voltage
Vs(GNDS) = V(GNDS) − GND
I(GNDS) = 0 mA...10 mA
GNDS vs. GND
I(GNDS) = 10 mA...20 mA
V
mA
mA
V
-50
µA
150
250
mV
mV
150
250
mV
mV
nF
iC-MSA SIN/COS SIGNAL
preliminary
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 9/29
ELECTRICAL CHARACTERISTICS
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
Max.
Serial Configuration Interface SCL, SDA
D01 Vs()lo
Saturation Voltage lo
D02 Isc()
Short-circuit Current lo
D03 Vt()hi
Input Threshold Voltage hi
D04 Vt()lo
Input Threshold Voltage lo
D05 Vt()hys
Input Hysteresis
Vt()hys = Vt()hi − Vt()lo
300
500
D06 Ipu()
Input Pull-up Current
V() = 0...VDDS − 1 V
-600
-300
D07 Vpu()
D08 fclk(SCL)
Input Pull-up Voltage
Vpu() = VDDS − V(), I() = -5 µA
Clock Frequency at SCL
ENFAST = 0
ENFAST = 1
D09 tbusy()cfg
Duration of Startup Configuration IBN not calibated, EEPROM access without
read failure, time to outputs operational;
ENFAST = 0
ENFAST = 1
D10 tbusy()err
D11 td()
D12 td()i2c
End Of I2C Communication;
Time Until I2C Slave Is Enabled
Start Of Master Activity On I2C
Protocol Error
I() = 4 mA
4
E02
TCs
Temp. Co. of Temperature Sensor Voltage
E03
VTth
Temperature Warning Activation
Threshold
E04
TCth
Temp. Co. Temperature Warning
Activation Threshold
E05
Thys
Temperature Warning Hysteresis
E06
∆T
Relative Shutdown Temperature
mV
80
mA
2
V
0.8
60
240
IBN not calibrated;
V(SDA) = 0 V
V(SCL) = 0 V or arbitration lost
no EEPROM
CRC ERROR
SCL without clock signal: V(SCL) = constant;
IBN not calibrated
IBN calibrated to 200 µA
25
64
Delay for I2C-Slave-Mode Enable no EEPROM, V(SDA) = 0 V
Temperature Monitoring
E01 VTs
Temperature Sensor Voltage
400
VTs() = VDDS − V(PS), Tj = 27 °C,
Calibration Mode 3, no load
600
V
mV
-60
V
80
320
100
400
kHz
kHz
40
25
55
35
ms
ms
4
indef.
45
95
12
135
285
ms
ms
ms
ms
80
80
240
120
µs
µs
4
6.2
ms
650
700
mV
-1.8
VTth() = VDDS − V(NS), Tj = 27 °C,
Calibration Mode 3, no load;
CFGTA(3:0) = 0x00
CFGTA(3:0) = 0x0F
260
470
310
550
mV/K
360
630
0.06
∆T = Toff − Twarn
µA
0.4
mV
mV
%/K
4
12
20
°C
4
12
20
°C
iC-MSA SIN/COS SIGNAL
preliminary
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 10/29
PROGRAMMING
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 11
Configuration Interface . . . . . . . . . . . . . . . . . . . Page 13
ENFAST:
I2 C Fast Mode Enable
ENSL:
I2 C Slave Mode Enable
DEVID:
Device ID of EEPROM providing the
chip configuration data (e.g. 0x50)
CHKSUM:
CRC of chip configuration data
(address range 0x40 to 0x5E)
CHPREL:
Chip Release
NTRI:
Tristate Function and
Op. Mode Change
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 15
CFGIBN:
Bias Calibration
CFGTA:
Temperature Sensor Calibration
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 16
MODE:
Operation Mode
ENF:
Signal Filtering
Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seite 17
TMODE:
Test Mode Functions
Input Configuration and
Signal Path Multiplexer . . . . . . . . . . . . . . . . . . . Page 18
INMODE:
Diff./Single-Ended Input Mode
RIN12:
I/V Mode and Input Resistance CH1,
CH2
BIAS12:
Reference Voltage CH1, CH2
RIN0:
I/V Mode and Input Resistance CH0
BIAS0:
Reference Voltage CH0
MUXIN:
Input-To-Channel Assignment:
X3...X6 to CH1, CH2
INVZ:
Index Signal Inversion
EAZ:
Index Comparator Enable
BIASEX:
Input Reference Selection
BYP
Input-to-output Feedthrough
Signal Conditioning CH1, CH2 (X3...X6) . . Page 21
GR12:
Gain Range CH1, CH2 (coarse)
VOS12:
Offset Reference Source CH1, CH2
OR1:
Offset Range CH1 (coarse)
OF1:
Offset Factor CH1 (fine)
OR2:
Offset Range CH2 (coarse)
OF2:
Offset Factor CH2 (fine)
PH12:
Phase Correction CH1 vs. CH2
GC2:
Gain Correction CH2 (fine)
Signal Conditioning CH0 (X1, X2) . . . . . . . . . Page 23
GC0:
Gain Correction CH0 (fine)
GR0:
Gain Range CH0 (coarse)
VOS0:
Offset Reference Source CH0
OR0:
Offset Range CH0 (coarse)
OF0:
Offset Factor CH0 (fine)
Signal Level Controller . . . . . . . . . . . . . . . . . . . . Page 24
AGCOFF:
Setup of AGC
ADJ:
AGC Setpoint
Error Monitoring and Alarm Output . . . . . . Page 25
EMTD:
Minimal Alarm Indication Time
EPH:
Alarm Input/Output Logic
EPU:
Alarm Output Pull-Up Enable
EMASKA:
Error Mask For Alarm Indication (pin
ERR)
EMASKE:
Error Mask For Protocol (EEPROM)
EMASKO:
Error Mask For Driver Shutdown
ERR1:
ERR2:
ERR3:
Error Protocol: First Error
Error Protocol: Last Error
Error Protocol: History
PDMODE:
Driver Activation After Cycling Power
AGCGF1:
AGC Gain Fine CH1 (read-only)
preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 11/29
OVERVIEW
Addr
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Configuration Interface
0x40
ENFAST
DEVID(6:0)
Calibration
0x41
CFGIBN(3:0)
CFGTA(3:0)
Operation Modes
0x42
NTRI
1
0
–
MODE(3:0)
Input Configuration and Signal Path Multiplexer
0x43
EAZ
0
0
0
INVZ
INMODE
0x44
0
0
0
1
0
0
MUXIN(1:0)
0
0
Signal Level Controller
0x45
AGCOFF
0
ADJ(5:0)
Signal Conditioning CH1, CH2
0x46
0
0
0
0
0
0x47
0
0
0
0
1
0
0
0x48
OR1(0)
0
1
0
0
0
0
0x49
0
0
OF1(6:0)
0x4A
OF2(1:0)
OR1(1)
OR2(1:0)
OF1(10:7)
0x4B
OF2(9:2)
0x4C
PH12(6:0)
0x4D
0x4E
GR12(2:0)
BIASEX(1:0)
ENF
BYP
BIAS12
OF2(10)
1
1
PH12(9:7)
VOS12(1:0)
RIN12(3:0)
0x4F
GC2(7:0)
Signal Conditioning CH0
0x50
GC0(7:0)
0x51
-
0x52
0x53
GR0(2:0)
OF0(5:0)
0
BIAS0
OR0(1:0)
VOS0(1:0)
RIN0(3:0)
Error Monitoring and Alarm Output
0x54
–
0x55
0x56
EMASKA(6:0)
TMODE(1:0)
–
EMASKE(3:0)
–
EPH
–
–
EPU
–
–
EMASKO(6:0)
0x57
0x58
EMTD(2:0)
PDMODE
–
ENSL
–
–
0x59
EEPROM: not defined / RAM: AGCGF1(10:3) (read-only)
0x5A
not defined
OEM Data
0x5B..
0x5E
OEM Data
Check Sum / Chip Release
0x5F
EEPROM: CHKSUM(7:0) / ROM: CHPREL(7:0)
EMASKE(6:4)
preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 12/29
OVERVIEW
Addr
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Error Register
0x60
–
ERR1(6:0)
0x61
ERR2(5:0)
0x62
0x63
Notes
ERR3(3:0)
–
–
–
–
–
–
Register entries specified 0 or 1 mean a mandatory programming.
Table 4: Register layout
–
–
–
–
ERR2(6)
ERR3(6:4)
iC-MSA SIN/COS SIGNAL
preliminary
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 13/29
SERIAL CONFIGURATION INTERFACE (EEPROM)
The serial configuration interface consists of the two
pins SCL and SDA and enables read and write access
to an EEPROM with I2 C interface. The readout speed
can be adjusted using register bit ENFAST.
ENFAST
Code
Adr 0x40, bit 7
Function
0
1
Regular clock rate, f(SCL) approx. 80 kHz
High clock rate, f(SCL) approx. 320 kHz
Notes
For in-circuit programming bus lines SCL and SDA
require pull-up resistors.
For line capacitances to 170 pF, adequate values
are:
4.7 kΩ with clock frequency 80 kHz
2 kΩ with clock frequency 320 kHz
The pull-up resistors may not be less than 1.5 kΩ.
To separate the signals a ground line between SCL
and SDA is recommended.
iC-MSA requires a supply voltage during EEPROM
programming (5 V to VDD).
Table 5: Config. Interface Clock Frequency
Once the supply has been switched on (power down
reset) the iC-MSA outputs are high impedance (tristate) until a valid configuration is read out from the
EEPROM using device ID 0x50.
Example of CRC Calculation Routine
unsigned char ucDataStream = 0 ;
i n t iCRCPoly = 0x11D ;
unsigned char ucCRC=0;
int i = 0;
ucCRC = 1 ; / / s t a r t v a l u e ! ! !
f o r ( iReg = 0 ; iReg <31; iReg ++)
{
ucDataStream = ucGetValue ( iReg ) ;
f o r ( i =0; i <=7; i ++) {
i f ( ( ucCRC & 0x80 ) ! = ( ucDataStream & 0x80 ) )
ucCRC = (ucCRC << 1 ) ^ iCRCPoly ;
else
ucCRC = (ucCRC << 1 ) ;
ucDataStream = ucDataStream << 1 ;
}
}
EEPROM Selection
The following minimal requirements must be fulfilled:
• Operation from 3.3 to 5 V, I2 C interface
• Minimal 1024 bit, 128x8
(address range used is 0x40 to 0x7F)
• Support of Page Write with Pages of at least 4
bytes. Otherwise error events can not be saved
to the EEPROM (EMASKE(9:0) = 0x000).
Bit errors in the 0x40 to 0x5E memory section are
pinpointed by the CRC deposited in register CHKSUM(7:0) (address 0x5F; the CRC polynomial used is
"1 0001 1101").
• Device ID 0x50 "101 0000", no occupation of
0x57 (A2...A0 = 0). Otherwise iC-MSA is not accessible in I2 C slave mode via 0x57 (ENSL = 0).
Should no valid configuration data being available (incorrect CRC value or EEPROM missing), the readin
process is repeated; the system aborts following a
fourth faulty attempt and iC-MSA switches to I2 C slave
mode.
Recommended devices:
Atmel AT24C01B, ST
M24C01W, ST M24C02 (2K), ROHM BR24L01A-W,
BR24L02-W
For devices loading valid configuration data from the
EEPROM, the register bit ENSL decides for enabling
the I2 C slave function.
ENSL
Code
Adr 0x17, bit 3
Function
0
1
Normal operation
I2 C Slave Mode Enable (Device ID 0x57)
Table 6: Config. Interface Mode
The device ID for the EEPROM can be entered in register DEVID(6:0) (address 0x40), from which iC-MSA
will take its configuration after exiting test mode (see
page 17). The DEVID(6:0) stored therein is then accepted.
preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 14/29
I2 C Slave Mode (ENSL = 1)
In this mode iC-MSA behaves like an I2 C slave with the
device ID 0x57 and the configuration interface permits
write and read accesses to iC-MSA’s internal registers.
For chip release verification purposes an identification
value is stored under ROM address 0x5F; a write access to this address is not permitted.
CHPREL
Adr 0x5F, bit 7:0 (ROM)
Code
Chip Release
0x10
iC-MSA
Table 7: Chip Release
NTRI
Code
Adr 0x42, bit 7
Function
0
1
Output drivers disabled
Setting the operating mode, output drivers active
Notes
NTRI is evaluated only during I2 C slave mode.
Table 8: Tristate Function And Op. Mode Change
Register
Address
Read access in I2 C slave mode (ENSL = 1)
Content
0x00-0x03
0x04-0x3F
0x40-0x58
0x59
Current error memory
Not available
Configuration: register addresses 0x40-0x58
AGCGF1(10:3)
0x5A
0x5B-0x5E
0x5F
0x60-0x63
0x64-0x77
0x78
Not available
OEM data: register addresses 0x5B-0x5E
Chip release (ROM)
Configuration: register addresses 0x60-0x63
Not available
Configuration: register address 0x58
0x79-0x7A
0x7B-0x7E
0x7F
Not available
OEM data: register addresses 0x5B-0x5E
Chip release (ROM)
Table 9: RAM Read Access
Register
Address
Write access in I2 C slave mode (ENSL = 1)
Access and conditions
0x40
0x41
0x58
0x59-0x5A
0x5B-0x5E
Changes possible, no restrictions
Changes possible (wrong entries for CFGIBN can
limit functions)
Bit 7 = 0 (NTRI): changes to bits (6:0) permitted
A change of operating mode follows only on writing
Bit 7 = 1 (NTRI); when doing so changes to bits
(6:0) are not permitted.
Changes possible, no restrictions
Bit 3 = 1 (ENSL):
changes to bits (7:4) and (2:0) permitted
Changes possible, no restrictions
Not available
Changes possible, no restrictions
others
No changes permitted
0x42
0x43-0x56
0x57
Table 10: RAM Write Access
preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 15/29
BIAS SOURCE AND TEMPERATURE SENSOR CALIBRATION
Bias Source Calibration
The calibration of the bias current source in operation
mode Calibration 1 (Tab. 13) is prerequisite for adherence to the given electrical characteristics and also instrumental in the determination of the chip timing (e.g.
SCL clock frequency). For setup purposes the IBN
value is measured using a 10 kΩ resistor by pin VDDS
connected to pin NC. The setpoint is 200 µA which is
equivalent to a measurement voltage of 2 V.
CFGIBN
Code k
Adr 0x41, bit 7:4
31
IBN ∼ 39−k
Code k
IBN ∼
0x0
0x1
0x2
0x3
79 %
81 %
84 %
86 %
0x8
0x9
0xA
0xB
100 %
103 %
107 %
111 %
0x4
0x5
0x6
0x7
88 %
91 %
94 %
97 %
0xC
0xD
0xE
0xF
115 %
119 %
124 %
129 %
31
39−k
Table 11: Bias Current Source Calibration
Temperature Sensor
The temperature monitor is calibrated in operating
mode Calibration Mode 3.
To set the required warning temperature T2 the temperature sensor voltage VTs at which the warning is
generated is first determined. To this end a voltage ramp from VDDS towards GNDS is applied to
pin PS until pin ERR triggers an error message (for
EMASKA = 0x20 and EMTD = 0x00).
Example: VTs(T1 ) is ca. 650 mV, measured from
VDDS versus PS, with T1 = 25 °C;
The necessary activation threshold voltage VTth(T1 ) is
then calculated. The required warning temperature T2 ,
temperature coefficients TCs and TCth (see Electrical
Characteristics, Section E) and measurement value
VTs(T1 ) are entered into this calculation:
VTth(T1 ) =
VTs(T1 ) + TCs · (T2 − T1 )
1 + TCth · (T2 − T1 )
Example: For T2 = T1 + 100 K, VTth(T1 ) must be programmed to 443 mV.
Activation threshold voltage VTth(T1 ) is provided for a
high impedance measurement (10 MΩ) at output pin
NS (measurement versus VDDS) and must be set by
programming CFGTA(3:0) to the calculated value.
Example: Altering VTth(T1 ) from 310 mV (measured
with CFGTA(3:0)= 0x0) to 443 mV is equivalent to
143 %, the closest value for CFGTA is 0x9;
CFGTA
Code k
Adr 0x41, bit 3:0
VTth ∼ 65+3k
65
Code k
VTth ∼
0x0
0x1
0x2
100 %
105 %
110 %
0x8
0x9
0xA
140 %
145 %
150 %
0x3
0x4
0x5
0x6
0x7
115 %
120 %
125 %
130 %
135 %
0xB
0xC
0xD
0xE
0xF
155 %
160 %
165 %
170 %
175 %
Notes
With CFGTA = 0xF Toff is 80 °C typ.,
with CFGTA = 0x0 Toff is 155 °C typ.
65+3k
65
Table 12: Calibration of Temperature Monitoring
preliminary
iC-MSA SIN/COS SIGNAL
CONDITIONER with AGC and 1Vpp DRIVER
Rev A1, Page 16/29
OPERATING MODES
In order to calibrate iC-MSA, compensate for the input
signals and test iC-MSA the mode of operation must
be changed. The output function changes according
MODE(3:0)
BYP
to the various operating modes; the line drivers and
protection against reverse polarity facility are only active in normal mode.
Addr. 0x42; bit 3:0
Addr. 0x4D; bit 5
Code
Operating Mode
Pin PS
Pin NS
Pin PC
Pin NC
Pin PZ
Pin NZ
Pin ERR
0x00
Normal operation
PS
NS
PC
NC
PZ
NZ
ERR
0x01
Calibration 1
TANA0(2)
VREFI0
VREFI12
IBN
PZI
NZI
ERR
0x02
Calibration 2
PCH1
NCH1
PCH2
NCH2
—
—
—
0x03
iC-Haus Test 1
VPAH
VPD
—
CGUCK
IPF
V05
IERR
0x04
iC-Haus Test 2
PS_out
NS_out
PC_out
NC_out
PZ_out
NZ_out
IERR
0x05
iC-Haus Test 3
PS_out
NS_out
PC_out
NC_out
PZ_out
NZ_out
ERR
0x06
iC-Haus Test 4, BYP = 0
iC-Haus Test 4, BYP = 1
TANA12(0)
X4
TANA12(1)
X6
TANA12(2)
X3
TANA12(3)
X5
TANA12(4)
X1
TANA12(5)
X2
IERR
0x07
Calibration 3
VTs
VTth
—
—
—
—
ERR
0x08
Saturation low
0x09
—
—
—
—
—
—
—
—
0x0A
iC-Haus Test 5
—
—
TP
CLK6
—
—
—
0x0B
—
—
—
—
—
—
—
—
0x0C
—
—
—
—
—
—
—
—
0x0D
—
—
—
—
—
—
—
—
0x0E
IDDQ-Test
0x0F
—
SCL, SDA and ERR low
All PU/PD resistors, oscillator and supply voltage deactivated
—
—
—
—
—
—
—
Table 13: Selection of Operating Modes
Calibration Op. Modes
In Calibration Mode 1 the user can measure the BIAS
current (IBN), input amplifier reference potential VREFI
and the analog signals from channel 0 following signal
conditioning (PCH0 and NCH0).
In Calibration Mode 2 the conditioned signals from
channels 1 and 2 are output (PCH1, NCH1, PCH2 and
NCH2).
In Calibration Mode 3 the internal temperature monitoring signals are provided.
Signal Filter
iC-MSA