iC-NQI preliminary 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 1/26 FEATURES APPLICATIONS ♦ Resolution of up to 8192 angle steps per sine/cosine period ♦ Binary and decimal resolution settings, e.g. 500, 512, 1000, 1024; programmable angle hysteresis ♦ Conversion time of just 250 ns including amplifier settling ♦ Count-safe vector follower principle, real-time system with a 70 MHz sampling rate ♦ Direct sensor connection; selectable input gain ♦ Front-end signal conditioning features offset (8 bits), amplitude ratio (5 bits) and phase (6 bits) calibration ♦ Input frequency of up to 250 kHz ♦ Incremental A QUAD B outputs with a selectable minimum transition distance (e.g. 0.25 µs for 1 MHz at A) ♦ Index signal processing adjustable in position and width ♦ Serial output of absolute angle data at clock rates of up to 10 MHz ♦ Error monitoring: frequency, amplitude, configuration (CRC) ♦ Multiturn counting up to 24 bits ♦ Device setup from serial EEPROM or 2-wire interface ♦ ESD protection and TTL-/CMOS-compatible outputs ♦ Interpolator IC for position data acquisition from analog sine/cosine sensors ♦ Optical linear/rotary encoders ♦ MR sensor systems PACKAGES TSSOP20 BLOCK DIAGRAM Copyright © 2011 iC-Haus http://www.ichaus.com iC-NQI preliminary 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 2/26 DESCRIPTION iC-NQI is a monolithic A/D converter which, by applying a count-safe vector follower principle, converts sine/cosine sensor signals with a selectable resolution and hysteresis into angle position data. The front-end amplifiers are configured as instrumentation amplifiers, permitting sensor bridges to be directly connected without the need for external resistors. Various programmable D/A converters are available for the conditioning of sine/cosine sensor signals with regard to offset, amplitude ratio and phase errors. Front-end gain can be set in stages graded to suit all common differential sensor signals from approximately 20 mVpp to 1.5 Vpp, and also single-end sensor signals from 40 mVpp to 3 Vpp respectively. Two serial interfaces have been included to permit configuration of the device: I2 C for the connection of an EEPROM and a 2-wire interface for configuration from a microcontroller. A low signal at pin NPRG is required to release the 2-wire interface for programming, whereas a high signal at pin NPRG preselects the serial output of measurement data. For measurement data output, the fast synchronousserial 2-wire interface can follow an SSI protocol at clock rates of up to 4 Mbit/s, or a BiSS unidirectional protocol featuring error messages and a CRC-protected transmission at clock rates of up to 10 Mbit/s. A configurable period counter can supplement the measurement data by a multiturn count of up to 24 bits. At the same time any changes in output data are converted into incremental A QUAD B encoder signals. Here, the minimum transition distance can be adapted to suit the system on hand (limitations due to counter input frequency, cable length, EMI). A synchronized index signal is generated and output to Z if enabled by the PZERO and NZERO inputs. If the EEPROM is detected following a power-down reset, the CRC-protected chip setup is read in automatically. preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 3/26 CONTENTS PACKAGES 4 ABSOLUTE MAXIMUM RATINGS 5 THERMAL DATA 5 ELECTRICAL CHARACTERISTICS CHARACTERISTICS: Diagrams . . . . . . . 6 8 OPERATING REQUIREMENTS: 2W Interface 9 SIGNAL MONITORING and ERROR MESSAGES 17 TEST FUNCTIONS 18 19 19 20 21 21 21 PARAMETER and REGISTER 10 SERIAL 2-WIRE INTERFACE Serial data output . . . . . . . . . . . . . Examples of data output with SSI protocol Bidirektional register communication . . . Register communication: read . . . . . . Register communication: write . . . . . . SIGNAL CONDITIONING 11 EEPROM INTERFACE 22 CONVERTER FUNCTIONS 12 MAXIMUM CONVERTER FREQUENCY Serial data output . . . . . . . . . . . . . . . Incremental output to A, B and Z . . . . . . . 13 13 14 APPLICATION HINTS Principle Input Circuits . . . . . . . . . . . . . Basic Circuits . . . . . . . . . . . . . . . . . . 23 23 24 EVALUATION BOARD 24 INCREMENTAL SIGNALS 15 DESIGN REVIEW: Notes On Chip Functions 25 . . . . . . . . . . preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 4/26 PACKAGES TSSOP20 (according to JEDEC Standard) PIN CONFIGURATION TSSOP20 4.4 mm, lead pitch 0.65 mm PIN FUNCTIONS No. Name Function 1 20 2 19 3 18 4 17 5 16 NSIN PCOS NCOS PSIN VDDA NZERO GNDA PZERO 7 B 8 NQI A Code... 6 ...yyww VREF NERR 15 SCL 14 SDA 13 Z DAT 9 12 10 11 GND VDD CLK NPRG 1 2 3 4 5 6 PCOS NCOS VDDA GNDA VREF A Input Cosine + Input Cosine +5 V Supply Voltage (analog) Ground (analog) Reference Voltage Output Incremental Output A Analog signal COS+ (TMA mode) PWM signal for Offset Sine (Calib.) 7 B Incremental Output B Analog signal COS- (TMA mode) PWM signal for Offset Cosine (Calib.) 8 Z Output Index Z PWM signal for Phase/Ratio (Calib.) 9 GND Ground 10 VDD +5 V Supply Voltage (digital) 11 NPRG Programming Enable Input (active low) 12 CLK 2W Interface, clock line 13 DAT 2W Interface, data output 14 SDA EEPROM interface, data line Analog signal SIN+ (TMA mode) 15 SCL EEPROM interface, clock line Analog signal SIN- (TMA mode) 16 NERR Error Input/Output, active low 17 PZERO Input Zero Signal + 18 NZERO Input Zero Signal 19 PSIN Input Sine + 20 NSIN Input Sine - External connections linking VDDA to VDD and GND to GNDA are required. preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 5/26 ABSOLUTE MAXIMUM RATINGS These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur. Item No. Symbol Parameter Conditions Unit Min. Max. G001 VDDA Voltage at VDDA -0.3 6 V G002 VDD G003 Vpin() Voltage at VDD -0.3 6 V -0.3 6 V Voltage at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, CLK, DAT, NPRG, A, B, Z G004 Imx(VDDA) Current in VDDA V() < VDDA + 0.3 V V() < VDD + 0.3 V -50 50 mA G005 Imx(GNDA) Current in GNDA -50 50 mA G006 Imx(VDD) Current in VDD -50 50 mA G007 Imx(GND) Current in GND -50 50 mA G008 Imx() Current in PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, CLK, DAT, NPRG, A, B, Z -10 10 mA G009 Ilu() Pulse Current in all pins (Latch-up Strength) according to Jedec Standard No. 78; Ta = 25 °C, pulse duration 10 ms, VDDA = VDDAmax , VDD = VDDmax , Vlu() = (-0.5...+1.5) x Vpin()max -100 100 mA G010 Vd() ESD Susceptibility at all pins HBM 100 pF discharged through 1.5 kΩ 2 kV G011 Tj Junction Temperature -40 150 °C G012 Ts Storage Temperature Range -40 150 °C THERMAL DATA Operating Conditions: VDDA = VDD = 5 V ±10 % Item No. T01 Symbol Parameter Conditions Unit Min. Ta Operating Ambient Temperature Range TSSOP20 ET -40/125 All voltages are referenced to ground unless otherwise stated. All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative. -25 -40 Typ. Max. 85 125 °C °C preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 6/26 ELECTRICAL CHARACTERISTICS Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated Item No. Symbol Parameter Conditions Unit Min. Typ. Max. Total Device 001 VDDA, VDD Permissible Supply Voltage 4.5 5.5 V 002 I(VDDA) Supply Current in VDDA 003 I(VDD) Supply Current in VDD fin() = 200 kHz; A, B, Z open 15 mA fin() = 200 kHz; A, B, Z open 20 004 Von Turn-on Threshold VDDA, VDD 3.2 mA 005 006 Vhys Turn-on Threshold Hysteresis 200 Vc()hi Clamp Voltage hi at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF 007 Vc()lo 008 Vc()hi Vc()hi = V() - VDDA; I() = 1 mA, other pins open 4.4 V mV 0.3 1.6 V Clamp Voltage lo at I() = -1 mA, other pins open PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, CLK, DAT, NPRG, A, B, Z -1.6 -0.3 V Clamp Voltage hi at NERR, SCL, SDA, CLK, DAT, NPRG, A, B, Z 0.3 1.6 V 0.6 VDDA − 1.1 V -10 -15 10 15 mV mV Vc()hi = V() - VDD; I() = 1 mA, other pins open Input Amplifiers PSIN, NSIN, PCOS, NCOS 101 Vin()sig Permissible Input Voltage Range 102 Vos() Input Offset Voltage Vin() and G() in accordance with table GAIN; G ≥ 20 G < 20 103 TCos Input Offset Voltage Temperature Drift see 102 ±10 µV/K 104 Iin() Input Current V() = 0 V ... VDDA -50 50 nA 105 GA Gain Accuracy G() in accordance with table GAIN 95 102 % 106 107 GArel Gain SIN/COS Ratio Accuracy G() in accordance with table GAIN 97 103 fhc Cut-off Frequency G = 80 G = 2.667 230 650 kHz kHz 108 SR Slew Rate G = 80 G = 2.667 4 9 V/µs V/µs % Sin/D Conversion: Accuracy 201 AAabs Absolute Angle Accuracy without referred to 360° input signal, G = 2.667, calibration Vin = 1.5 Vpp, HYS = 0 -1.0 1.0 DEG 202 AAabs Absolute Angle Accuracy after calibration referred to 360° input signal, HYS = 0, internal signal amplitude of 2 ... 4 Vpp -0.5 +0.5 DEG 203 AArel Relative Angle Accuracy referred to output signal period of A/B, G = 2.667, Vin = 1.5 Vpp, SELRES = 1024, FCTR = 0x0004 ... 0x00FF, fin < finmax (see table 14) -10 10 % Reference Voltage I(VREF) = -1 mA ... +1 mA 48 52 % VDDA Oscillator Frequency presented at SCL with subdivision of 2048; VDDA = VDD = 5 V ±10 % VDDA = VDD = 5 V 52 60 90 83 MHz MHz ±0.35 Reference Voltage VREF 801 VREF Oscillator A01 fosc() A02 TCosc Oscillator Frequency Temperature Drift A03 VCosc Oscillator Frequency Power Supply Dependance VDDA = VDD = 5 V 72 -0.1 %/K +10.6 %/V preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 7/26 ELECTRICAL CHARACTERISTICS Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated Item No. Symbol Parameter Conditions Unit Min. Typ. Max. Zero Comparator B01 Vos() Input Offset Voltage V() = Vcm() -20 20 mV B02 Iin() Input Current V() = 0 V ... VDDA -50 50 nA B03 Vcm() Common-Mode Input Voltage Range 1.4 VDDA1.5 V B04 Vdm() Differential Input Voltage Range 0 VDDA V V Incremental Outputs A, B, Z and 2W Interface Output DAT D01 Vs()hi Saturation Voltage hi Vs()hi = VDD - V(); I() = -4 mA 0.4 D02 Vs()lo Saturation Voltage lo I() = 4 mA 0.4 V D03 tr() Rise Time CL() = 50 pF 60 ns D04 tf() Fall Time CL() = 50 pF D05 RL() Permissible Load at A, B TMA = 1 (calibration mode) 60 1 ns MΩ 2W Interface: Clock Input CLK, Programming Enable NPRG E01 Vt()hi Threshold Voltage hi E02 Vt()lo Threshold Voltage lo 2 E03 Vt()hys Hysteresis E04 Ipu(CLK) Pull-up Current in CLK E05 E06 Ipd(NPRG) Pull-down Current in NPRG V() = 1 ... VDD fclk(CLK) Permissible Clock Frequency at CLK SSI protocol BiSS B/C or C unidir. protocols Register communication (NPRG = lo) E07 tp(CLKDAT) Propagation Delay: CLK edge vs. RL(DAT) ≥ 1 kΩ (see Fig. 4) DAT output 10 E08 tbusy() Processing Time 0 E09 tbusy()r Processing Time Register Communication (start bit delay) NPRG = lo; with read access to EEPROM E10 tidle() Interface Blocking Time NPRG = lo; powering up with no EEPROM V 0.8 V Vt()hys = Vt()hi - Vt()lo 300 mV V() = 0 ... VDD - 1 V -240 -120 -25 20 120 300 µA 4 10 0.25 MHz MHz MHz 50 ns 0 1 µA 0 2 ms 1.5 ms 2 V EEPROM Interface, Control Logic: Inputs SDA, NERR F01 Vt()hi Threshold Voltage hi F02 Vt()lo Threshold Voltage lo F03 Vt()hys Hysteresis F04 tbusy()cfg Duration of Startup Configuration error free EEPROM access Vt()hys = Vt()hi - Vt()lo 0.8 V 300 mV 5 7 ms EEPROM Interface, Control Logic: Outputs SDA, SCL, NERR G01 f() Write/Read Clock at SCL G02 Vs()lo Saturation Voltage lo I() = 4 mA 20 G03 Ipu() Pull-up Current V() = 0 ... VDD - 1 V G04 ft() Fall Time CL() = 50 pF G05 tmin()lo Error Signal Indication Time at NERR (lo signal) CLK = hi (keine Datenausgabe), amplitude or frequeny error G06 Tpwm() Error Signal PWM Cycle Duration fosc() subdivided 222 at NERR G07 RL() Permissible Load at SDA, SCL TMA = 1 (calibration mode) -600 -300 100 kHz 0.45 V -75 µA 60 10 60.7 1 ns ms ms MΩ preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 8/26 CHARACTERISTICS: Diagrams 0% 60% 40% 0% twhi()/T 110% 90% 50% 100% AArel ±10% AArel ±10% Figure 1: Definition of relative angle error. $ tMTD Figure 2: Definition of minimum transition distance. 0.15° 0.1° 0.05° 0 -0.05° -0.1° -0.15° 0° 90° 180° 270° Figure 3: Typical residual absolute angle error after calibration. 360° preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 9/26 OPERATING REQUIREMENTS: 2W Interface Operating Conditions: VDD = 5 V ±10 %, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD Item No. Symbol Parameter Conditions Fig. Unit Min. Max. Serial Data Output: SSI (Pin NPRG = hi, SELSSI = 1) I001 TCLK Permissible Clock Period 4 250 2x ttos ns I002 tCLKh Clock Signal Hi Level Duration CFGTOS = 0x01 4 25 ttos ns I003 tCLKl Clock Signal Lo Level Duration 4 25 ttos ns 5, 6 100 2x ttos ns Serial Data Output: BiSS B, BiSS C unidir. (Pin NPRG = hi, SELSSI = 0, BiSSMOD = 0 resp. 1) I004 TCLK Permissible Clock Period CFGTOS selected in accordance with table 31 I005 tCLKh Clock Signal Hi Level Duration 5, 6 25 ttos ns I006 tCLKl Clock Signal Lo Level Duration 5, 6 25 ttos ns 7 4 Bidirectional Register Communication (pin NPRG = lo) I007 TCLK Permissible Clock Period CFGTOR selected in accordance with table 31 I008 tCLKh Clock Signal Hi Level Duration I009 tCLKh Clock Signal Hi Level Duration I010 tCLKl Clock Signal Lo Level Duration 7 I011 tCLK0h "Logic 0" Hi Level Duration 7 10 30 % TCLK I012 tCLK1h "Logic 1" Hi Level Duration 7 70 90 % TCLK 7 read out of register data 7 Figure 4: Serial SSI data output (NPRG = hi). Figure 5: Serial BiSS B data output (NPRG = hi). Figure 6: Serial BiSS C unidir. data output (NPRG = hi). Figure 7: Bidirectional register communication (NPRG = lo). 30 µs ttor ns 70 % TCLK indefinite preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 10/26 PARAMETER and REGISTER Signal Monitoring and Error Messages . . . . . . . . . . . . . . . . . . . . . . . Page 17 SELAMPL: Amplitude Monitoring, function AMPL: Amplitude Monitoring, thresholds AERR: Amplitude Error FERR: Frequency Error Register Description . . . . . . . . . . . . . . . . . . . . . . . Page 10 Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . Page 11 GAIN: Gain Select SINOFFS: Offset Calibration Sine COSOFFS: Offset Calibration Cosine REFOFFS: Offset Calibration Reference RATIO: Amplitude Calibration PHASE: Phase Calibration Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 18 TMODE: Test Mode TMA: Analog Test Mode Converter Function . . . . . . . . . . . . . . . . . . . . . . . . Page 12 SELRES: Resolution HYS: Hysteresis FCTR: Max. Permissible Converter Frequency BiSS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 19 CFGTOS: Interface Timeout CFGTOR: Interface Timeout M2S: Period Counter Output BiSSMOD: Protocol Version Incremental Signals . . . . . . . . . . . . . . . . . . . . . . . Page 15 CFGABZ: Output A, B, Z ROT: Direction of Rotation CBZ: Period Counter Configuration ENRESDEL: Output Turn-On Delay ZPOS: Zero Signal Position CFGZ: Zero Signal Length CFGAB: Zero Signal Logic SELSSI: CFGSSI: RPL: SSI Compatibility SSI Output Register Protection Settings OVERVIEW Adr Bit 7 0x00 BiSSMOD 0x01 0x02 0x03 Bit 6 Bit 5 Bit 4 Bit 2 M2S(1:0) ENRESDEL Bit 1 Bit 0 SELRES(4:0) HYS(2:0) ZPOS(4:0) SELSSI ROT CFGSSI(1:0) CBZ CFGABZ(1:0) CFGAB(1:0) 0x04 CFGZ(1:0) RPL(1:0) AERR FERR FCTR(7:0) 0x05 0x06 Bit 3 FCTR(14:8) CFGTOR(1:0) 0x07 CFGTOS(1:0) TMODE(2:0) TMA Reserved address / internal use (programming to zero recommended) 0x08 GAIN(3:0) RATIO(3:0) 0x09 SINOFFS(7:0) 0x0A COSOFFS(7:0) 0x0B PHASE(5:0) 0x0C REFOFFS SELAMPL AMPL(1:0) 0x0D 0x0E 0x0F CRC(7:0) check sum over address 0-14 with CRC polynomial: "100100111" (read out of EEPROM) EEPROM 0x10 0x1F 0x00 - 0xF EEPROM register section for device configuration 0x20 0x77 0x10 - 0x67 Free EEPROM registers 0x78 0x7F 0x68 - 0x6F EEPROM: BiSS Identifier, ROM: Device ID iC-NQI V3: 4E 51 56 33 {ADR0} 00 69 43 As no access protections are selected all registers are accessible by read and write operations (see RPL). Table 5: Register layout RATIO(4) preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 11/26 SIGNAL CONDITIONING Input stages SIN and COS are configured as instrumentation amplifiers. The amplifier gain must be selected in accordance with the sensor signal level and GAIN programmed to register GAIN according to the following table. Half of the supply voltage is output to VREF as center voltage to help DC level adaptation. Adr 0x08, Bit 7:4 Code 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 Amplification 80.000 66.667 53.333 40.000 33.333 28.571 26.667 20.000 14.287 10.000 8.000 6.667 5.333 4.000 3.333 2.667 Differential up to 50 mVpp up to 60 mVpp up to 75 mVpp up to 0.1 Vpp up to 0.12 Vpp up to 0.14 Vpp up to 0.15 Vpp up to 0.2 Vpp up to 0.28 Vpp up to 0.4 Vpp up to 0.5 Vpp up to 0.6 Vpp up to 0.75 Vpp up to 1 Vpp up to 1.2 Vpp up to 1.5 Vpp Sine/Cosine input signal levels Vin() Amplitude Average value (DC) Single-ended Differential Single-ended up to 100 mVpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 120 mVpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 0.15 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 0.2 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.24 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.28 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.3 V up to 0.3 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.4 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.3 V up to 0.56 Vpp 1.2 V ... VDDA - 1.3 V 1.4 V ... VDDA - 1.4 V up to 0.8 Vpp 1.2 V ... VDDA - 1.3 V 1.4 V ... VDDA - 1.5 V up to 1 Vpp 0.8 V ... VDDA - 1.4 V 1.0 V ... VDDA - 1.6 V up to 1.2 Vpp 0.8 V ... VDDA - 1.4 V 1.1 V ... VDDA - 1.7 V up to 1.5 Vpp 0.9 V ... VDDA - 1.5 V 1.3 V ... VDDA - 1.9 V up to 2 Vpp 1.2 V ... VDDA - 1.6 V 1.7 V ... VDDA - 2.1 V up to 2.4 Vpp 1.2 V ... VDDA - 1.7 V 1.8 V ... VDDA - 2.3 V up to 3 Vpp 1.3 V ... VDDA - 1.8 V 2.0 V ... VDDA - 2.6 V Table 6: Gain select SINOFFS Adr 0x09, Bit 7:0 RATIO Adr 0x0B, Bit 0, Adr 0x08, Bit 3:0 COSOFFS Code Adr 0x0A, Bit 7:0 Output offset Code COS / SIN Code COS / SIN Input offset 0x00 0V 0V 0x00 0x01 1.0000 1.0067 0x10 0x11 1.0000 0.9933 0x01 ... 0x7F 0x80 0x81 ... -7.8125 mV ... -0.9922 V 0V +7,8125 mV ... -7.8125* mV / GAIN ... -0.9922 V / GAIN 0V +7.8125 mV / GAIN ... ... 0x0F ... 1.1 ... 0x1F ... 0.9000 0xFF +0.9922 V +0.9922 V / GAIN Notes *) With REFOFFS = 0x00 und VDDA = 5 V. Table 7: Offset calibration sine/cosine REFOFFS Code Adr 0x0B, Bit 1 Reference voltage 0x00 Depending on VDDA (example of application: MR sensors) Not depending on VDDA (example of application: Sin/Cos encoders) 0x01 Table 8: Offset calibration reference Table 9: Amplitude Calibration PHASE Code Adr 0x0B, Bit 7:2 Phase shift Code Phase shift 0x00 0x01 ... 0x12 ... 0x1F 90° 90.703125° ... 102.65625° 102.65625° 102.65625° 90° 89.296875° ... 77.34375° 77.34375° 77.34375° 0x20 0x21 ... 0x32 ... 0x3F Table 10: Phase calibration preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 12/26 CONVERTER FUNCTIONS SELRES Code Adr 0x00, Bit 4:0 Binary Examples of permissible resolutions input frequencies finmax (FCTR 0x0004, 0x4304) SELRES Code Adr 0x00, Bit 4:0 Decimal Examples of permissible resolutions input frequencies finmax (FCTR 0x0004, 0x4304) 0x00 0x01 0x02 0x03 0x04 0x05 8192 4096 2048 158 Hz, 635 Hz 317 Hz, 1.27 kHz 634 Hz, 2.54 kHz 0x10 0x11 0x12 0x13 0x14 0x15 2000 1600 1000 800 500 400 650 Hz, 2.6 kHz 812 Hz, 3.3 kHz 1.3 kHz, 5.2 kHz 1.6 kHz, 6.5 kHz 2.6 kHz, 10.4 kHz 3.2 kHz, 13 kHz 0x06 0x07 0x08 0x09 0x0A 0x0B 1024 512 256 128 64 32 1.27 kHz, 5.1 kHz 2.54 kHz, 10.2 kHz 5.1 kHz, 20.3 kHz 10.2 kHz, 40.6 kHz 20.3 kHz, 81.3 kHz 40.6 kHz, 162.5 kHz 0x16 0x17 0x18 0x19 0x1A 0x1B 250 *1 125 *1,2 320 160 *2 80 *4 40 *8 5.2 kHz, 20.8 kHz 5.2 kHz, 20.8 kHz 4.1 kHz, 16.3 kHz 4.1 kHz, 16.3 kHz 4.1 kHz, 16.3 kHz 4.1 kHz, 16.3 kHz 0x0C 0x0D 0x0E 0x0F 16 8 - 81.3 kHz (max. 250 kHz @ 0x4202) 162 kHz (max. 250 kHz @ 0x4102) 0x1C 0x1D 0x1E 0x1F 200 100 *2 50 *1,4 25 *1,8 6.5 kHz, 26 kHz 6.5 kHz, 26 kHz 6.5 kHz, 26 kHz 6.5 kHz, 26 kHz Notes *1 Table 11: Binary resolutions Not useful with increment A quad B output. The internal converter resolution is higher by factor 2, 4 or 8. *2,4,8 Table 12: Decimal resolutions HYS Code Adr 0x01, Bit 7:5 Hysteresis in Hysteresis in degree LSB 0x00 0° 0x01 0.0879° 0x02 0.1758° 0x03 0.3516° 0x04 0.7031° 0x05 0x06 1.4063° 5.625° 0x07 45° Notes *) The absolute error is equivalent to one half the angle hysteresis Absolute error* 1 LSB @ 12 bit 1/2 LSB @ 10 bit 1 LSB @ 10 bit 0.044° 1/2 LSB @ 8 bit 1 LSB @ 8 bit 0.352° only recommended for calibration 22.5° Table 13: Hysteresis 0.088° 0.176° 0.703° 2.813° preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 13/26 MAXIMUM CONVERTER FREQUENCY The converter frequency automatically adjusts to the value necessary for the input frequency and resolution. This value ranges from zero to a maximum dependent on the oscillator frequency which can be set using register FCTR. down feature can be enabled via the FCTR register. Should the input frequency exceed the frequency limit of the selected converter resolution, the LSB is kept stable and not resolved any further; the interpolation resolution halves. Serial data output For serial data output the possible maximum converter frequency can be adjusted to suit the maximum input frequency; an automatic converter resolution step- If the next frequency limit is overshot, the LSB and the LSB+1 are kept stable and so on. When the input frequency again sinks below this frequency limit, the fine resolution automatically returns. Maximum Converter Frequency For Serial Data Output Resolution Protocol Max. Input Frequency Restrictions Requirements at high input frequencies FCTR Min. Res. bin dec BiSS SSI finmax 0x0004 X X X X fosc()min / 40 / Resolution – 0x4102 ≥8 X X X X fosc()min / 24 / Resolution Rel. angle error 2x increased 0x4202 ≥ 16 X X X X 2 x fosc()min / 24 / Res. Rel. angle error 4x increased 0x4303 ≥ 32 X X X X 4 x fosc()min / 32 / Res. Rel. angle error 8x increased 0x4602 ≥ 32 X X X 4 x fosc()min / 24 / Res. Resolution lowered by factor of 2 0x4A02 ≥ 64 X X X 8 x fosc()min / 24 / Res. Res. lowered by factor of 2-4 0x4E02 ≥ 128 X X X 16 x fosc()min / 24 / Res. Res. lowered by factor of 2-8 0x5202 ≥ 256 X X X 32 x fosc()min / 24 / Res. Res. lowered by factor of 2-16 0x5602 ≥ 512 X X X 64 x fosc()min / 24 / Res. Res. lowered by factor of 2-32 0x5A02 ≥ 1024 X X X 128 x fosc()min / 24 / Res. Res. lowered by factor of 2-64 0x5E02 ≥ 2048 X X X 256 x fosc()min / 24 / Res. Res. lowered by factor of 2-128 0x6202 4096 X X X 512 x fosc()min / 24 / Res. Res. lowered by factor of 2-256 Notes *) Calculated with fosc()min taken from Electrical Characteristics item A01. Table 14: Possible maximum converter frequency for serial data output. Examples* finmax [kHz] at resol. 8192 1024 200 0.16 1.27 6.5 0.26 2.1 10.8 0.53 4.2 21.6 0.78 6.2 32.0 1.1 8.5 2.1 16.9 4.2 33.8 8.5 67.7 16.9 135 33.8 250 67.7 135 - iC-NQI preliminary 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 14/26 Incremental output to A, B and Z There are two criteria which must be considered when setting the maximum possible converter frequency via the FCTR register: 1. The maximum input frequency 2. System limitations, e.g. due to slow counters or cable transmission When facing system limitations it is useful to preselect a minimum transition distance for the output signals. A digital zero-delay glitch filter then takes care of a temporal edge-to-edge separation, guaranteeing spike-free output signals after an ESD impact to the sensor, for instance. A serial data output is simultaneously possible at any time. However, for the transfer of angle data to the output register the incremental output is halted for one period of the clock signal applied to pin CLK. 1. Maximum Converter Frequency Defined By The Maximum Input Frequency Output Frequency Resolution Maximum Input Frequency Restrictions fout @ finmax Requirem. at high input frequencies FCTR A, B bin dec finmax 0x0004 325 kHz X X fosc()min / 40 / Resolution None 0x4102 542 kHz X X fosc()min / 24 / Resolution Relative angle error 2x increased 0x4202 1.08 MHz X X 2 x fosc()min / 24 / Res. Relative angle error 4x increased 0x4303 1.6 MHz X X 4 x fosc()min / 32 / Res. Relative angle error 8x increased Notes *) Calculated with fosc()min taken from Electrical Characteristics item A01. Examples* finmax [kHz] at resol. 8192 1024 200 0.16 1.27 6.5 0.26 2.1 10.8 0.53 4.2 21.6 0.78 6.2 32.0 Table 15: Possible maximum converter frequency for incremental A/B/Z output, defined by the maximum input frequency 2. Maximum Converter Frequency Defined By The Minimum Transition Distance Output Frequency Resolution Minimum Transition Distance Restrictions Example* fout @ tMTD Requirem. at A, B at high input frequencies tMTD [µsec] FCTR A, B bin dec tMTD 0x00FF 10 kHz X X 2048 / fosc()max None 22.8 0x00FE 10.05 kHz X X 2040 / fosc()max None 22.7 0x00FD 10.09 kHz X X 2032 / fosc()max None 22.6 ... ... ... ... ... ... ... 0x0006 366 kHz X X 56 / fosc()max None 0.62 0x0005 427 kHz X X 48 / fosc()max None 0.53 0x0004 512 kHz X X 40 / fosc()max None 0.44 0x4102 854 kHz X X 24 / fosc()max Relative angle error 2x increased 0.27 0x4202 1.7 MHz X X 12 / fosc()max Relative angle error 4x increased 0.13 0x4303 2.8 MHz X X 8 / fosc()max Relative angle error 8x increased 0.09 Notes *) Calculated with fosc()max taken from El.Char. item A01; the min. transition distance refers to output A vs. output B without reversing the sense of rotation. Table 16: Possible maximum converter frequency for incremental A/B/Z output, defined by the minimum transition distance preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 15/26 INCREMENTAL SIGNALS CFGABZ Code Adr 0x02, Bit 3:2 Mode A B Z 0x00 Normal A B Z 0x01 Control signals for external period counters CA CB CZ 0x02 Calibration mode Offset+Phase The following settings are required additionally: SELRES = 0x0D ZPOS = 0x00 HYS = 0x07 ROT = 0x00 CFGAB = 0x00 AERR = 0x00 0x03 Calibration mode Offset+Amplitude The following settings are required additionally: SELRES = 0x0D ZPOS = 0x00 HYS = 0x07 ROT = 0x00 CFGAB = 0x00 AERR = 0x00 Notes Figure 8: Offset SIN* Figure 9: Offs. COS* Figure 10: Phase* Figure 11: Offset SIN* Figure 12: Offs. COS* Figure 13: Amplit.* *) Trimmed accurately when duty cycle is 50 %; Recommended trimming order (after selecting GAIN): Offset, Phase, Amplitude Ratio, Offset; Table 17: Outputs A, B, Z ROT Code Adr 0x02, Bit 5 Code direction 0x00 0x01 Ascending order, B then A Descending order, A then B SIN Table 18: Code direction COS cw: F->0 CBZ Code Adr 0x02, Bit 4 Clear by zero 0x00 0x01 Disabled Enabled FFFFFF P(23:0) 000000 ccw: 0->F A B Z Table 19: Reset enable for period counter -180° Code Adr 0x02, Bit 7 Output* Function 0x00 immediately An external counter displays the absolute angle following power on. 0x01 after 5 ms An external counter only displays changes vs. the initial power-on condition (moving halted to reapply power is precondition.) Notes *) Output delay after device configuration and internal reset. ENRESDEL Table 20: Output turn-on delay A, B, Z -90° 0° 45° 90° 180° Figure 14: Clear by zero function of the period counter when enabled by CBZ = 1. Example for resolution 64 (SELRES = 0x0A), zero signal at 45° (ZPOS = 0x04, CFGAB = 0x00) and the direction of rotation not inverted (ROT = 0x00, COS leads SIN). preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 16/26 ZPOS Code Adr 0x01, Bit 4:0 Position CFGZ Code Adr 0x02, Bit 1:0 Length 0x00 0x08 0x10 0x18 0° 90° 180° 270° 0x00 0x01 0x02.. 03 90° 180° Synchronization 0x01 ... 0x1F 11.25° (1 x 11.25°) ... 348.75° (31 x 11.25°) CFGAB Adr 0x03, Bit 5:4 Notes The zero signal is only output if released by the input pins (for instance with PZERO = 5 V, NZERO = VREF). Code Z = 1 for 0x00 0x01 B = 1, A = 1 B = 0, A = 1 Table 21: Zero signal position 0x02 0x03 B = 1, A = 0 B = 0, A = 0 Table 22: Zero signal length Table 23: Zero signal logic SIN COS A B Z (CFGZ= 0) Z (CFGZ= 1) Z (CFGZ= 2) -180° -90° 0° 45° 90° 180° Winkel Figure 15: Incremental output signals for various length of the zero signal. Example for resolution 64 (SELRES = 0x0A), a zero signal position of 45° (ZPOS = 0x04, CFGAB = 0x00) and no reversal of the rotational sense (ROT = 0x00, COS leads SIN). preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 17/26 SIGNAL MONITORING and ERROR MESSAGES Vss SELAMPL Adr 0x0C, Bit 2 AMPL Adr 0x0C, Bit 1:0 Max ( |Sin| , |Cos| ) for SELAMPL = 0 Vth Code Voltage threshold Vth Output amplitude* 0x00 0x01 0.60 x VDDA 0.64 x VDDA 1.4 Vpp 2.0 Vpp 0x02 0x03 0.68 x VDDA 0.72 x VDDA 2.6 Vpp 3.1 Vpp Figure 16: Signal monitoring of minimum amplitude. Sin2 + Cos2 for SELAMPL = 1 Code Vthmin ↔ Vthmax Output amplitude* 0x04 0x05 0.48 ↔ 0.68 x VDDA 0.56 ↔ 0.76 x VDDA 2.4 Vpp ↔ 3.4 Vpp 2.8 Vpp ↔ 3.8 Vpp 0x06 0x07 0.64 ↔ 0.84 x VDDA 0.72 ↔ 0.92 x VDDA 3.2 Vpp ↔ 4.2 Vpp 3.6 Vpp ↔ 4.6 Vpp Notes *) Entries are calculated with VDDA = 5 V. Table 24: Signal amplitude monitoring AERR Code Adr 0x03, Bit 1 Amplitude error message 0x00 0x01 disabled enabled FERR Code Adr 0x03, Bit 0 Excessive frequency error message 0x00 0x01 disabled enabled Note Input frequency monitoring is operational for resolutions ≥ 16 Table 26: Frequency error Configuration error Messaging always released Table 27: Configuration error No error Amplitude error Frequency error Configuration Undervoltage System error Vthmin Figure 17: Sin2 + Cos2 signal monitoring. Each phase in the configuration process is signaled by NERR = low; the signal is only reset following a successful CRC (cyclic redundancy check). Table 25: Amplitude error Error keys Failure mode Vthmax Pin NERR Error bits E1, E0 with BiSS and SSI HI LO/HI = 75 % (AERR = 0: HI) LO/HI = 50 % (FERR = 0: HI) LO LO NERR = low caused by an external error signal 11 01 (11) 10 (11) 00 00 00 Table 28: Error keys If the data transfer from the EEPROM is faulty and the CRC unsuccessful, then the configuration phase is automatically repeated. The process aborts following a third unsuccessful attempt and the error message output remains set to low. To enable the successful diagnosis of faults other types of error are signaled at NERR using a PWM code as given in the key on the left. Two error bits are provided for error messaging via the serial 2-wire interface; these bits can decode four different types of error. If NERR is held at low by an external source, such as an error message from the system, for example, this can also be verified via the serial 2-wire interface. Error events are stored for the serial data output and deleted afterwards. Errors at NERR are displayed for a minimum of ca. 10 ms, as far as no serial data readout causes a deletion. If an error in amplitude occurs the conversion process is terminated and the incremental output signals halted. An error in amplitude rules out the possibility of an error in frequency. preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 18/26 TEST FUNCTIONS TMODE Code Adr 0x06, Bit 3:1 Signal at Z Description 0x00 0x01 0x02 0x03 0x04 0x05 Z A xor B ENCLK NLOCK CLK DIVC no test mode Output A EXOR B iC-Haus device test iC-Haus device test iC-Haus device test iC-Haus device test 0x06 0x07 PZERO - NZERO TP iC-Haus device test iC-Haus device test Condition CFGABZ = 0x00 TMA Code Adr 0x06, Bit 0 Pin A Pin B Pin SDA Pin SCL 0x00 0x01 A COS+ SDA SIN+ SCL SIN- Notes To permit the verification of GAIN and OFFSET settings, the input amplifier outputs are available at the pins. To operate the converter a signal of 4 Vpp is the ideal here and should not be exceeded. Pin loads above 1 MΩ are adviceable for accurate measurements. EEPROM access is not possible during mode TMA. B COS- Table 30: Analog test mode Table 29: Test mode Parameter GAIN ideally adjusts the signal levels to ca. 4 Vpp and should not be touched afterwards. 5V A: COS+ SDA: Sin+ Both scope display modes are feasible for OFFS (positive values) or RATIO adjustments; regarding the adjustment of PHASE the X/Y mode may be preferred. For OFFS adjustment towards negative values the test signals COS- (pin B) and SIN- (pin SCL) are relevant. 0V Y/T 1 V/Div vert. X/Y 1 V/Div vert. 1 V/Div hor. Figure 18: Calibrated signals during analog test mode. preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 19/26 SERIAL 2-WIRE INTERFACE Depending on the programming enable at pin NPRG the serial 2-wire interface supports either a fast cyclic data output of the angle position and period counter data (for NPRG = 1), or bidirectional register communication for device programming, with write and read access to RAM and EEPROM registers (for NPRG = 0). Two timeouts are used that prescribe a default minimum clock frequency of f(CLK)min for the master: sensor mode timeout Ttos and register mode timeout Ttor. For data to be transferred to the interface conversion is halted for one CLK pulse from Latch. This time must be taken into consideration with low clock frequencies when calculating the maximum permissible input frequency. As long as the configuration error is active, the longest respective timeouts are set regardless of CFGTOS or CFGTOR. CFGTOS Code Adr 0x06, Bit 5:4 Timeout ttos Ref. clock data output counts f(CLK) min* 0x00 0x01 0x02 0x03 typ. typ. typ. typ. 11 kHz 88 kHz 352 kHz 1.41 MHz CFGTOR Code Adr 0x06, Bit 7:6 Timeout ttor Ref. clock programming counts f(CLK) min* 0x00 0x01 0x02 typ. 1 ms typ. 256 µs typ. 32 µs 2049-2060 513-514 67-68 1.4 kHz 5.5 kHz 42 kHz 0x03 not permitted – – Notes 32 A ref. clock count is equal to fosc (see El. Char. A01). The permissible max. clock frequency is specified by item E06. 128 µs 16 µs 4 µs 1 µs 256-259 32-35 8-11 2-5 Serial data output The position data provided by iC-NQI can contain the following data values: period counter (P), angle data (S), two error bits (E1, E0), and 5 or 6 CRC bits. Signal names Name Description P(23:0) S(12:0) E1 E0 (0) CRC(5:0) Period counter (0, 8, 12 or 24 bit) Angle data (3 to 13 bit) Error bit (amplitude error) Error bit (frequency error) Zero bit(s) CRC bits, inverted output, 5 or 6 bits Polynomial x5 + x2 + x0 (0x25, resp. 100101) Polynomial x6 + x1 + x0 (0x43, resp. 1000011) with period counter output of 12 or 24 bit Table 32: Signal names Figure 19: Output with SSI protocol (error bits optional) Figure 20: Output with BiSS B protocol Table 31: 2-wire interface timeout Figure 21: Output with BiSS C unidirectional protocol preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 20/26 Four parameters are relevant when setting the output protocol and data content; SELSSI and BiSSMOD select the protocol version, and M2S and CFGSSI define the optional data content. SELSSI Code Adr 0x02, Bit 6 Description 0x00 0x01 Data output BiSS compatible Data output with SSI protocol (in binary format, MSB first) CFGSSI Code Adr 0x03, Bit 7:6 Additional bits Ring register operation 0x00 0x01 0x02 0x03 E1, E0, zero bit none E1, E0, zero bit none no no yes yes Table 36: Output options for SSI protocol Cycle CLK Table 33: Protocol version DAT S12 P0 LSB MSB P7 MSB S0 LSB Stop P7 MSB P0 S12 LSB MSB S0 LSB BiSSMOD Code Adr 0x00, Bit 7 Description 0x00 0x01 Data output BiSS B or SSI Data output BiSS C unidirectional Stop Timeout Latch Figure 22: Ring operation with SSI protocol. Table 34: Protocol version M2S Code Adr 0x00, Bit 6:5 Data length CRC poly. Zero bit 0x00 0x01 0x02 0x03 P(7:0) P(11:0) P(23:0) yes yes yes no 0x25 0x25 0x43 0x43 Table 35: Period counter output Examples of data output with SSI protocol SSI Output Formats 13-bit SSI Res Mode Error CRC 10 bit SSI X - T1 T2 T3 T4... T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 S9 S8 S7 S6 ... S0 E1 E0 Example 13 bit SSI - - S12 S11 S10 S9 ... S3 S2 S1 0 Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop 0 0 S0 Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop 0 0 0 0 0 0 0 0 0 0 0 *1 Example SSI-R - - 0 S12 S11 S10 S9 ... S3 S2 S1 S0 0 0 0 0 Stop S12 S11 S10 S9 0 0 0 0 0 0 0 S8 S7 S6 S5 S4 S3 S2 *2 Example 0 25-bit SSI 13 bit SSI X - S12 S11 S10 S9 ... S3 S2 S1 S0 E1 E0 Example 8 + 13 SSI bit*3 X - P7 P6 P5 P4 ... P0, S10 S9 S12, S11 S8 S7 S6 0 Stop Stop Stop Stop Stop Stop Stop Stop Stop 0 0 0 0 0 0 0 0 0 0 S5 S4 S3 S2 S1 S0 E1 E0 0 Stop 0 0 Example Configuration NPRG = 0, SELSSI = 1, M2S = 0x00, CFGSSI = 0x00, unless otherwise noted. *1 CFGSSI = 0x01; *2 CFGSSI = 0x03; *3 M2S = 0x01 Caption SSI = SSI protocol SSI-R = SSI ring operation Table 37: SSI output formats preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 21/26 Bidirektional register communication The bidirectional programming mode for write and read access to RAM and EEPROM registers is active for pin NPRG = 0. Data is transmitted coded as a PWM which makes a simple transfer of clock pulse and data to the master clock line possible. A duty cycle of 75 % represents a logic one, a duty cycle of 25 % a logic zero. The addressing sequence consists of a start bit (’1’), the device address (slave ID ’000’), the register address (7 bits), a write/read bit WNR (’1’ for write, ’0’ for read), a 4-bit CRC, and a stop bit (’0’). The generator polynomial for the 4-bit CRC is 0x13 (or ’10011’); the CRC bits are transmitted in inversion. Register communication: read The master carries out the addressing sequence with the WNR bit at ’0’ and subsequently supplies at least 14 clock pulses. iC-NQI responds with a start bit (’1’), the addressed register byte (Data(7...0)), a 4-bit CRC (NCRC(3...0)), and a stop bit (’0’). The generator polynomial for the 4-bit CRC is also 0x13 (or ’10011’) and the CRC bits are again transmitted in inversion. When reading out the internal registers iC-NQI does not require any processing time and responds immediately with the addressed register data. When reading the external EEPROM registers, output of the start bit is delayed until data is available from the EEPROM. During this wait period the master must continue the clock output. Figure 23: Register communication: read Register communication: write To write data to a register the master carries out the addressing sequence with the WNR bit set to ’1’. After the second start bit the master transmits the data to be written which iC-NQI returns bit by bit one clock pulse later for verification. The 8 bits of write data are anticipated by a 4-bit CRC (as before) and also returned by iC-NQI, this time not coded as a PWM, however. Data is transferred to EEPROM registers in the background and can be verified by a read access once transmission has finished. Write access to address 0 triggers an internal reset. This enables the period counter to be set to zero and the configuration error deleted; the EEPROM is not read out again. If access to the addressed register is protected, neither the start bit nor data are returned (the master ends the clock output after ca. 20 ms). Figure 24: Register communication: write As long as the configuration error is active, iC-NQI uses the longest respective timeouts regardless of CFGTOS or CFGTOR and ignores possible protective settings from RPL. When programming for the first time, the following addressing sequence is thus recommended: first addresses 1 to 12 and then address 0. RPL RPL Adr 0x03, Bit 3:2 Configuration Addr 0-31 0x00 Read / Write 0x01 Read 0x02 - 0x03 - User Addr 32-119 BiSS Identifier Addr 120-127 Read / Write Read / Write Read / Write Read / Write Read Read Read Read Table 38: Register protection settings iC-NQI preliminary 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 22/26 EEPROM INTERFACE Serial EEPROM components permitting operation from 3.3 V to 5 V can be connected (such as 24C02, for example). When the device is switched on the memory area of bytes 0 to 15 is mapped onto iC-NQI’s registers. For register communication with the EEPROM an address offset of 16 bytes must be taken into account; addresses 16-127 are destined for the EEPROM bytes of addresses 0-111. If no EEPROM is connected, iC-NQI does not respond to addresses 16-119; reading addresses 120127 transmits the device ID. iC-NQI preliminary 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 23/26 APPLICATION HINTS Principle Input Circuits Figure 26: Input circuit for current signals of 11 µA. Figure 25: Input circuit for voltage signals of 1 Vpp with no ground reference. When grounds are not separated the connection NSIN to VREF must be omitted. Figure 27: Input circuit for single-side voltage or current source signals with ground reference (adaptation via resistors R3, R4). Figure 29: Input circuit for differential current sink sensor outputs, eg. using Opto Encoder iC-WG. Figure 28: Simplified input wiring for single-side voltage signals with ground reference. Figure 30: Combined input circuit for 11 µA, 1 Vpp (with 120 Ω termination) or TTL encoder signals. RS3/4 and CS1 serve as protection against ESD and transients. iC-NQI preliminary 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 24/26 Basic Circuits Figure 31: Circuit for evaluation of magneto-resistor bridge sensors with inremental output. Figure 32: Circuit for evaluation of magneto-resistor bridge sensors with serial data output. preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 25/26 EVALUATION BOARD The iC-NQI device is equipped with an evaluation board for test purposes; descriptions are available separately. DESIGN REVIEW: Notes On Chip Functions iC-NQI V3 No. 1 Function, Parameter/Code Description and Application Hints SELRES Illegal setting: 0x0E for resolution 4 A minimal resolution of 8 is required for the frequency monitoring function and period counting as well. Thus, a binary resolution of 4 is not permitted when using the period counter and the serial interface for data output with the BiSS or SSI protocol. A resolution of 4 may be used for solely incremental applications with A/B/Z output, what then requires the deactivation of the frequency monitoring function (by FERR set to 0x00). Table 39: Notes on chip functions regarding iC-NQI chip release V3 iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source. iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product. As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe). We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to. preliminary iC-NQI 13-bit Sin/D CONVERTER WITH CALIBRATION Rev A2, Page 26/26 ORDERING INFORMATION Type Package Order Designation iC-NQI TSSOP20 4.4 mm iC-NQI TSSOP20 iC-NQI TSSOP20 ET -40/125 Evaluation Board iC-NQI EVAL NQ7D For technical support, information about prices and terms of delivery please contact: iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (61 35) 92 92-0 Fax: +49 (61 35) 92 92-192 Web: http://www.ichaus.com E-Mail: [email protected] Appointed local distributors: http://www.ichaus.com/sales_partners