iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 1/24 FEATURES APPLICATIONS ♦ Resolution of up to 8192 angle steps per sine/cosine period ♦ Binary and decimal resolution settings, e.g. 500, 512, 1000, 1024; programmable angle hysteresis ♦ Conversion time of just 250 ns including amplifier settling ♦ Count-safe vector follower principle, realtime system with 70 MHz sampling rate ♦ Direct sensor connection; selectable input gain ♦ Front-end signal conditioning features offset (8 bit), amplitude ratio (5 bit) and phase (6 bit) calibration ♦ 250 kHz input frequency ♦ Absolute angle output via fast SSI interface ♦ A QUAD B incremental outputs with selectable minimum transition distance (e.g. 0.25 µs for 1 MHz at A) ♦ Index signal processing adjustable in position and width ♦ Fault monitoring: frequency, amplitude, configuration (CRC) ♦ Setup via serial EEPROM ♦ ESD protection and TTL-/CMOS-compatible outputs ♦ Interpolator IC for position data acquisition from analog sine/cosine sensors ♦ Optical linear/rotary encoders ♦ MR sensor systems PACKAGES TSSOP20 BLOCK DIAGRAM Copyright © 2004, 2011 iC-Haus http://www.ichaus.com iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 2/24 DESCRIPTION iC-NQL is a monolithic A/D converter which, by applying a count-safe vector follower principle, converts sine/cosine sensor signals with a selectable resolution and hysteresis into angle position data. This absolute value is output via a synchronous-serial SSI interface and trails a master clock rate of up to 4 Mbit/s. At the same time any changes in output data are converted into incremental A QUAD B encoder signals. Here, the minimum transition distance can be adapted to suit the system on hand (cable length, external counter). A synchronised zero index is generated and output to Z if enabled by the PZERO and NZERO inputs. The front-end amplifiers are configured as instrumentation amplifiers, permitting sensor bridges to be di- rectly connected without the need for external resistors. Various programmable D/A converters are available for the conditioning of sine/cosine sensor signals with regard to offset, amplitude ratio and phase errors. Front-end gain can be set in stages graded to suit all common differential sensor signals from approximately 20 mVpp to 1.5 Vpp, and also singleended sensor signals from 40 mVpp to 3 Vpp respectively. The device reads its configuration data via the serial EEPROM interface when cycling power, respectively following an undervoltage reset. The read in cycle is repeated up to three times when data correctness is not confirmed by a CRC validation. A permanent CRC error as well as the configuration phase itself is displayed at the error message output NERR by a low level signal. iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 3/24 CONTENTS PACKAGES 4 Incremental output to A, B and Z . . . . . . . 14 ABSOLUTE MAXIMUM RATINGS 5 INCREMENTAL SIGNALS 15 THERMAL DATA 5 SIGNAL MONITORING and ERROR MESSAGES 17 ELECTRICAL CHARACTERISTICS ELECTRICAL CHARACTERISTICS: Diagrams 6 8 TEST FUNCTIONS 18 OPERATING REQUIREMENTS: SSI INTERFACE 8 SSI INTERFACE 19 EEPROM INTERFACE and STARTUP BEHAVIOUR Example of CRC Calculation Routine . . . . . 20 20 APPLICATION HINTS Principle Input Circuits . . . . . . . . . . . . . Basic Circuit . . . . . . . . . . . . . . . . . . 21 21 22 DESIGN REVIEW: Notes On Chip Functions 23 PARAMETERS and REGISTERS 10 SIGNAL CONDITIONING 11 CONVERTER FUNCTIONS 12 MAXIMUM POSSIBLE CONVERTER FREQUENCY Serial data output . . . . . . . . . . . . . . . 13 13 iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 4/24 PACKAGES TSSOP20 (according to JEDEC Standard) PIN CONFIGURATION TSSOP20 4.4 mm, lead pitch 0.65 mm PIN FUNCTIONS No. Name Function 1 2 3 4 5 6 PCOS NCOS VDDA GNDA VREF A Input Cosine + Input Cosine +5 V Supply Voltage (analog) Ground (analog) Reference Voltage Output Incremental Output A Analog signal COS+ (TMA mode) PWM signal for Offset Sine (Calib.) 7 B Incremental Output B Analog signal COS- (TMA mode) PWM signal for Offset Cosine (Calib.) 8 Z Output Index Z PWM signal for Phase/Ratio (Calib.) 9 GND Ground 10 VDD +5 V Supply Voltage (digital) 11 TEST Test Input 12 CLK SSI interface, clock line 13 DATA SSI interface, data output 14 SDA EEPROM interface, data line Analog signal SIN+ (TMA mode) 15 SCL EEPROM interface, clock line Analog signal SIN- (TMA mode) 16 NERR Error Input/Output, active low 17 PZERO Input Zero Signal + 18 NZERO Input Zero Signal 19 PSIN Input Sine + 20 NSIN Input Sine External connections linking VDDA to VDD and GND to GNDA are required. The test input may remain unwired or can be linked to VDD (please note the hints given by chapter Design Review regarding the signal of pin DATA). iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 5/24 ABSOLUTE MAXIMUM RATINGS These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur. Item No. Symbol Parameter Conditions Unit Min. Max. G001 VDDA Voltage at VDDA -0.3 6 V G002 VDD G003 Vpin() Voltage at VDD -0.3 6 V -0.3 6 V Voltage at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, CLK, DATA, A, B, Z G004 Imx(VDDA) Current in VDDA V() < VDDA + 0.3 V V() < VDD + 0.3 V -50 50 mA G005 Imx(GNDA) Current in GNDA -50 50 mA G006 Imx(VDD) Current in VDD -50 50 mA G007 Imx(GND) Current in GND -50 50 mA G008 Imx() Current in PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, CLK, DATA, A, B, Z -10 10 mA G009 Ilu() Pulse Current in all pins (Latch-up Strength) -100 100 mA according to Jedec Standard No. 78; Ta = 25 °C, pulse duration to 10 µs, VCC = VCCmax, VDD = VDDmax, Vlu() = (-0.5...+1.5) x Vpin()max G010 Vd() ESD Susceptibility at all pins 2 kV G011 Tj Junction Temperature HBM 100 pF discharged through 1.5 kΩ -40 150 °C G012 Ts Storage Temperature Range -40 150 °C THERMAL DATA Operating Conditions: VDDA = VDD = 5 V ±10 % Item No. T01 Symbol Parameter Conditions Unit Min. Ta Operating Ambient Temperature Range (extended temperature range of -40 to 125 °C available on request) All voltages are referenced to ground unless otherwise stated. All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative. -25 Typ. Max. 85 °C iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 6/24 ELECTRICAL CHARACTERISTICS Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated Item No. Symbol Parameter Conditions Unit Min. Typ. Max. Total Device Functionality and parameters beyond the operating conditions (with reference to independent voltage supplies, for instance) are to be verified within the individual application using FMEA methods. 001 VDDA, VDD Permissible Supply Voltage 002 I(VDDA) Supply Current in VDDA 003 I(VDD) Supply Current in VDD 004 Von Turn-on Threshold VDDA, VDD 3.2 005 006 Vhys Turn-on Threshold Hysteresis 200 Vc()hi Clamp Voltage hi at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF Vc()hi = V() - VDDA; I() = 1 mA, other pins open 0.3 1.6 V 007 Vc()lo Clamp Voltage lo at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, A, B, Z I() = -1 mA, other pins open -1.6 -0.3 V 008 Vc()hi Clamp Voltage hi at NERR, SCL, SDA, A, B, Z Vc()hi = V() - VDD; I() = 1 mA, other pins open 0.3 1.6 V -10 -15 10 15 mV mV Input Amplifiers PSIN, NSIN, PCOS, NCOS 101 Vos() Input Offset Voltage 4.5 5.5 V fin() = 200 kHz; A, B, Z open 15 mA fin() = 200 kHz; A, B, Z open 20 mA Vin() and G() in accordance with table GAIN; G ≥ 20 G < 20 4.4 V mV 102 TCos Input Offset Voltage Temperature Drift see 101 ±10 µV/K 103 Iin() Input Current V() = 0 V ... VDDA -50 50 nA 104 GA Gain Accuracy G() in accordance with table GAIN 95 102 % 105 106 GArel Gain SIN/COS Ratio Accuracy G() in accordance with table GAIN 97 103 fhc Cut-off Frequency G = 80 G = 2.667 150 630 kHz kHz 107 SR Slew Rate G = 80 G = 2.667 2.3 8.0 V/µs V/µs % Sin/D Conversion: Accuracy 201 AAabs Absolute Angle Accuracy without referred to 360° input signal, G = 2.667, calibration Vin = 1.5 Vpp, HYS = 0 -1.0 1.0 DEG 202 AAabs Absolute Angle Accuracy after calibration referred to 360° input signal, HYS = 0, internal signal amplitude of 2 ... 4 Vpp -0.5 +0.5 DEG 203 AArel Relative Angle Accuracy referred to output signal period of A/B, G = 2.667, Vin = 1.5 Vpp, SELRES = 1024, FCTR = 0x0004 ... 0x00FF, fin < finmax (see table 14) -10 10 % Reference Voltage I(VREF) = -1 mA ... +1 mA 48 52 % VDDA Oscillator Frequency presented at SCL with subdivision of 2048; VDDA = VDD = 5 V ±10 % VDDA = VDD = 5 V 52 60 90 83 MHz MHz ±0.35 Reference Voltage VREF 801 VREF Oscillator A01 fosc() A02 TCosc Oscillator Frequency Temperature Drift A03 VCosc Oscillator Frequency Power Supply Dependance VDDA = VDD = 5 V 72 -0.1 %/K +10.6 %/V iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 7/24 ELECTRICAL CHARACTERISTICS Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated Item No. Symbol Parameter Conditions Unit Min. Typ. Max. Zero Comparator B01 Vos() Input Offset Voltage V() = Vcm() -20 20 mV B02 Iin() Input Current V() = 0 V ... VDDA -50 50 nA B03 Vcm() Common-Mode Input Voltage Range 1.4 VDDA1.5 V 0 VDDA V V B04 Vdm() Differential Input Voltage Range Incremental Outputs A, B, Z SSI Interface Output DATA D01 Vs()hi Saturation Voltage hi Vs()hi = VDD - V(); I() = -4 mA 0.4 D02 Vs()lo Saturation Voltage lo I() = 4 mA 0.4 V D03 tr() Rise Time CL() = 50 pF 60 ns D04 tf() Fall Time CL() = 50 pF D05 RL() Permissible Load at A, B TMA = 1 (calibration mode) 60 1 ns MΩ SSI Interface: Input CLK E01 Vt()hi Threshold Voltage hi E02 Vt()lo Threshold Voltage lo 2 E03 Vt()hys Hysteresis E04 Ipu() Pull-up Current in CLK E05 fclk() Permissible Clock Frequency at CLK E06 tp(CLKDATA) Propagation Delay: CLK edge vs. all modes, RL(SLO) ≥ 1 kΩ DATA output E07 E08 tbusy() Processing Time ttos() Timeout V 0.8 V Vt()hys = Vt()hi - Vt()lo 300 mV V() = 0 ... VDD - 1 V -240 -120 10 -25 µA 4 MHz 50 ns 0 CFGTOS = 0x01 iC-NQL_X3 CFGTOS = 0x01, iC-NQL_3 16 20 µs µs EEPROM Interface, Control Logic: Inputs SDA, NERR F01 Vt()hi Threshold Voltage hi 2 F02 Vt()lo Threshold Voltage lo F03 Vt()hys Hysteresis F04 tbusy()cfg Duration of Startup Configuration error free EEPROM access Vt()hys = Vt()hi - Vt()lo V 0.8 V 300 mV 5 7 ms 100 kHz EEPROM Interface, Control Logic: Outputs SDA, SCL, NERR G01 f() Write/Read Clock at SCL G02 Vs()lo Saturation Voltage lo I() = 4 mA G03 Ipu() Pull-up Current V() = 0 ... VDD - 1 V G04 ft() Fall Time CL() = 50 pF G05 tmin()lo Error Signal Indication Time at NERR (lo signal) CLK = hi, no amplitude or frequeny error G06 Tpwm() Duty Cycle Of Error Indication at fosc() subdivided by 222 NERR G07 t()lo Duty Cycle Of Error Indication at signal duration low to high; AERR = 0 (amplitude error) NERR FERR = 0 (frequency error) G08 RL() Permissible Load at SDA, SCL 20 TMA = 1 (calibration mode) -600 -300 0.45 V -75 µA 60 10 1 ns ms 60.7 ms 75 50 % % MΩ iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 8/24 ELECTRICAL CHARACTERISTICS: Diagrams 0% 60% 40% 0% twhi()/T 110% 90% 50% 100% AArel ±10% AArel ±10% Figure 1: Definition of relative angle error. $ tMTD Figure 2: Definition of minimum transition distance. 0.15° 0.1° 0.05° 0 -0.05° -0.1° -0.15° 0° 90° 180° 270° Figure 3: Typical residual absolute angle error after calibration. 360° iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 9/24 OPERATING REQUIREMENTS: SSI INTERFACE Operating Conditions: VDD = 5 V ±10 %, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD Item No. Symbol Parameter Conditions CFGTOS = 0x01 Fig. Unit Min. Max. I001 TCLK Permissible Clock Period 4 250 2x ttos ns I002 tCLKhi Clock Signal Hi Level Duration 4 25 ttos ns I003 tCLKlo Clock Signal Lo Level Duration 4 25 ttos ns Figure 4: Timing diagram of SSI output. iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 10/24 PARAMETERS and REGISTERS ZPOS: CFGZ: CFGAB: Register Description . . . . . . . . . . . . . . . . . . . . . . . Page 10 Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . Page 11 GAIN: Gain Select SINOFFS: Offset Calibration Sine COSOFFS: Offset Calibration Cosine REFOFFS: Offset Calibration Reference RATIO: Amplitude Calibration PHASE: Phase Calibration Zero Signal Position Zero Signal Length Zero Signal Logic Signal Monitoring and Error Messages . . . . . . . . . . . . . . . . . . . . . . . Page 17 SELAMPL: Amplitude Monitoring, function AMPL: Amplitude Monitoring, thresholds AERR: Amplitude Error FERR: Frequency Error Converter Function . . . . . . . . . . . . . . . . . . . . . . . . Page 12 SELRES: Resolution HYS: Hysteresis FCTR: Max. Permissible Converter Frequency Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 18 TMODE: Test Mode TMA: Analog Test Mode Incremental Signals . . . . . . . . . . . . . . . . . . . . . . . Page 15 CFGABZ: Output A, B, Z ROT: Direction of Rotation ENRESDEL: Output Turn-On Delay SSI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 19 CFGTOS: Interface Timeout CFGSSI: SSI Output Options OVERVIEW Adr Bit 7 Bit 6 Bit 5 0x00 0 0 0 0x01 0x02 Bit 4 Bit 3 HYS(2:0) ENRESDEL 0x03 Bit 2 Bit 1 Bit 0 SELRES(4:0) ZPOS(4:0) 1 ROT CFGSSI(1:0) 0 CFGABZ(1:0) CFGAB(1:0) 0 0x04 CFGZ(1:0) 0 AERR FERR FCTR(7:0) 0x05 0 FCTR(14:8) 0x06 0 0 0x07 0 0 0x08 CFGTOS(1:0) 0 TMODE(2:0) 0 0 TMA 0 GAIN(3:0) 0 0 RATIO(3:0) 0x09 SINOFFS(7:0) 0x0A COSOFFS(7:0) 0x0B PHASE(5:0) REFOFFS RATIO(4) 0x0C 0 0 0 0 0 SELAMPL AMPL(1:0) 0x0D 0 0 0 0 0 0 0 0 0x0E 0 0 0 0 0 0 0 0 0x0F CRC_E2P(7:0) - check value read from the EEPROM for addresses 0x00 to 0x0E Note Registers not in use must be set to zero unless otherwise noted. Table 5: Register layout iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 11/24 SIGNAL CONDITIONING Input stages SIN and COS are configured as instrumentation amplifiers. The amplifier gain must be selected in accordance with the sensor signal level and GAIN programmed to register GAIN according to the following table. Half of the supply voltage is output to VREF as center voltage to help DC level adaptation. Adr 0x08, Bit 7:4 Code 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 Amplification 80.000 66.667 53.333 40.000 33.333 28.571 26.667 20.000 14.287 10.000 8.000 6.667 5.333 4.000 3.333 2.667 Differential up to 50 mVpp up to 60 mVpp up to 75 mVpp up to 0.1 Vpp up to 0.12 Vpp up to 0.14 Vpp up to 0.15 Vpp up to 0.2 Vpp up to 0.28 Vpp up to 0.4 Vpp up to 0.5 Vpp up to 0.6 Vpp up to 0.75 Vpp up to 1 Vpp up to 1.2 Vpp up to 1.5 Vpp Sine/Cosine Input Signal Levels Vin() Amplitude Average value (DC) Single-ended Differential Single-ended up to 100 mVpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 120 mVpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 0.15 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 0.2 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.24 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.28 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.3 V up to 0.3 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.4 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.3 V up to 0.56 Vpp 1.2 V ... VDDA - 1.3 V 1.4 V ... VDDA - 1.4 V up to 0.8 Vpp 1.2 V ... VDDA - 1.3 V 1.4 V ... VDDA - 1.5 V up to 1 Vpp 0.8 V ... VDDA - 1.4 V 1.0 V ... VDDA - 1.6 V up to 1.2 Vpp 0.8 V ... VDDA - 1.4 V 1.1 V ... VDDA - 1.7 V up to 1.5 Vpp 0.9 V ... VDDA - 1.5 V 1.3 V ... VDDA - 1.9 V up to 2 Vpp 1.2 V ... VDDA - 1.6 V 1.7 V ... VDDA - 2.1 V up to 2.4 Vpp 1.2 V ... VDDA - 1.7 V 1.8 V ... VDDA - 2.3 V up to 3 Vpp 1.3 V ... VDDA - 1.8 V 2.0 V ... VDDA - 2.6 V Table 6: Gain Select SINOFFS COSOFFS Code Adr 0x09, Bit 7:0 Adr 0x0A, Bit 7:0 Output Offset Input Offset 0x00 0x01 ... 0x7F 0V -7.8125 mV ... -0.9922 V 0V -7.8125* mV / GAIN ... -0.9922 V / GAIN 0x80 0x81 ... 0xFF 0V +7,8125 mV ... +0.9922 V 0V +7.8125 mV / GAIN ... +0.9922 V / GAIN Notes *) With REFOFFS = 0x00 und VDDA = 5 V. Table 7: Offset Calibration Sine/Cosine REFOFFS Code Adr 0x0B, Bit 1 Reference Voltage 0x00 Depending on VDDA (example of application: MR sensors) Not depending on VDDA (example of application: Sin/Cos encoders) 0x01 Table 8: Offset Calibration Reference RATIO Code Adr 0x0B, Bit 0, Adr 0x08, Bit 3:0 COS / SIN Code COS / SIN 0x00 0x01 ... 0x0F 1.0000 1.0067 ... 1.1 0x10 0x11 ... 0x1F 1.0000 0.9933 ... 0.9000 Table 9: Amplitude Calibration PHASE Code Adr 0x0B, Bit 7:2 Phase Shift Code Phase Shift 0x00 0x01 ... 0x12 90° 90.703125° ... 102.65625° 0x20 0x21 ... 0x32 90° 89.296875° ... 77.34375° ... 0x1F 102.65625° 102.65625° ... 0x3F 77.34375° 77.34375° Table 10: Phase Calibration iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 12/24 CONVERTER FUNCTIONS SELRES Code Adr 0x00, Bit 4:0 Binary Examples of Permissible Resolutions Input Frequencies finmax (FCTR 0x0004, 0x4304) SELRES Code Adr 0x00, Bit 4:0 Decimal Examples of Permissible Resolutions Input Frequencies finmax (FCTR 0x0004, 0x4304) 0x00 0x01 0x02 0x03 0x04 0x05 8192 4096 2048 158 Hz, 635 Hz 317 Hz, 1.27 kHz 634 Hz, 2.54 kHz 0x10 0x11 0x12 0x13 0x14 0x15 2000 1600 1000 800 500 400 650 Hz, 2.6 kHz 812 Hz, 3.3 kHz 1.3 kHz, 5.2 kHz 1.6 kHz, 6.5 kHz 2.6 kHz, 10.4 kHz 3.2 kHz, 13 kHz 0x06 0x07 0x08 0x09 0x0A 0x0B 1024 512 256 128 64 32 1.27 kHz, 5.1 kHz 2.54 kHz, 10.2 kHz 5.1 kHz, 20.3 kHz 10.2 kHz, 40.6 kHz 20.3 kHz, 81.3 kHz 40.6 kHz, 162.5 kHz 0x16 0x17 0x18 0x19 0x1A 0x1B 250 *1 125 *1,2 320 160 *2 80 *4 40 *8 5.2 kHz, 20.8 kHz 5.2 kHz, 20.8 kHz 4.1 kHz, 16.3 kHz 4.1 kHz, 16.3 kHz 4.1 kHz, 16.3 kHz 4.1 kHz, 16.3 kHz 0x0C 0x0D 0x0E 0x0F 16 8 - 81.3 kHz (max. 250 kHz @ 0x4202) 162 kHz (max. 250 kHz @ 0x4102) 0x1C 0x1D 0x1E 0x1F 200 100 *2 50 *1,4 25 *1,8 6.5 kHz, 26 kHz 6.5 kHz, 26 kHz 6.5 kHz, 26 kHz 6.5 kHz, 26 kHz Notes *1 Table 11: Binary Resolutions Not useful with incremental A quad B output. The internal converter resolution is higher by a factor of 2, 4 or 8. *2,4,8 Table 12: Decimal Resolutions HYS Code Adr 0x01, Bit 7:5 Hysteresis in Hysteresis in degree LSB 0x00 0° 0x01 0.0879° 0x02 0.1758° 0x03 0.3516° 0x04 0.7031° 0x05 0x06 1.4063° 5.625° 0x07 45° Notes *) The absolute angle error is equivalent to one half the angle hysteresis Absolute Angle Error* 1 LSB @ 12 bit 1/2 LSB @ 10 bit 1 LSB @ 10 bit 0.044° 1/2 LSB @ 8 bit 1 LSB @ 8 bit 0.352° only recommended for calibration 22.5° Table 13: Hysteresis 0.088° 0.176° 0.703° 2.813° iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 13/24 MAXIMUM POSSIBLE CONVERTER FREQUENCY The converter frequency automatically adjusts to the value necessary for the input frequency and resolution. This value ranges from zero to a maximum dependent on the oscillator frequency which can be set using register FCTR. feature can be enabled via the FCTR register. Should the input frequency exceed the frequency limit of the selected converter resolution, the LSB is kept stable and not resolved any further; the interpolation resolution halves. Serial data output For SSI output the maximum possible converter frequency can be adjusted to suit the maximum input frequency; an automatic converter resolution step-down If the next frequency limit is overshot, the LSB and the LSB+1 are kept stable and so on. When the input frequency again sinks below this frequency limit, the fine resolution automatically returns. Max. Possible Converter Frequency For Serial Data Output Resolution Protocol Max. Input Frequency Restrictions Requirements at high input frequency FCTR Min. Res. bin dec SSI finmax 0x0004 X X X fosc()min / 40 / Resolution – 0x4102 ≥8 X X X fosc()min / 24 / Resolution Rel. angle error 2x increased 0x4202 ≥ 16 X X X 2 x fosc()min / 24 / Res. Rel. angle error 4x increased 0x4304 ≥ 32 X X X 4 x fosc()min / 40 / Res. Rel. angle error 8x increased 0x4602 ≥ 64 X X 4 x fosc()min / 24 / Res. Resolution lowered by factor of 2 0x4A02 ≥ 128 X X 8 x fosc()min / 24 / Res. Res. lowered by factor of 2-4 0x4E02 ≥ 256 X X 16 x fosc()min / 24 / Res. Res. lowered by factor of 2-8 0x5202 ≥ 512 X X 32 x fosc()min / 24 / Res. Res. lowered by factor of 2-16 0x5602 ≥ 1024 X X 64 x fosc()min / 24 / Res. Res. lowered by factor of 2-32 0x5A02 ≥ 2048 X X 128 x fosc()min / 24 / Res. Res. lowered by factor of 2-64 0x5E02 ≥ 4096 X X 256 x fosc()min / 24 / Res. Res. lowered by factor of 2-128 0x6202 8192 X X 512 x fosc()min / 24 / Res. Res. lowered by factor of 2-256 Notes *) Calculated with fosc()min taken from Electrical Characteristics item A01. Table 14: Maximum converter frequency for serial data output. Examples* finmax [kHz] at resol. 8192 1024 200 0.16 1.27 6.5 0.26 2.1 10.8 0.53 4.2 21.6 0.64 5.1 26.0 1.1 8.5 2.1 16.9 4.2 33.8 8.5 67.7 16.9 135 33.8 250 67.7 135 - iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 14/24 Incremental output to A, B and Z There are two criteria which must be considered when setting the maximum possible converter frequency via the FCTR register: nals. A digital zero-delay glitch filter then takes care of a temporal edge-to-edge separation, guaranteeing spike-free output signals after an ESD impact to the sensor, for instance. 1. The maximum input frequency 2. System limitations, e.g. due to slow counters or cable transmission A serial data output is simultaneously possible at any time. However, for the transfer of angle data to the output register the incremental output is halted for one period of the clock signal applied to pin CLK. When facing system limitations it is useful to preselect a minimum transition distance for the output sig1. Max. Possible Converter Frequency Defined By The Maximum Input Frequency Output Frequency Resolution Maximum Input Frequency Restrictions fout @ finmax Requirem. at high input frequency FCTR A, B bin dec finmax 0x0004 325 kHz X X fosc()min / 40 / Resolution None 0x4102 542 kHz X X fosc()min / 24 / Resolution Relative angle error 2x increased 0x4202 1.08 MHz X X 2 x fosc()min / 24 Res. Relative angle error 4x increased 0x4304 1.3 MHz X X 4 x fosc()min / 40 / Res. Relative angle error 8x increased Notes *) Calculated with fosc()min taken from Electrical Characteristics item A01. Examples* finmax [kHz] at resol. 8192 1024 200 0.16 1.27 6.5 0.26 2.1 10.8 0.53 4.2 21.6 0.64 5.1 26.0 Table 15: Max. converter frequency for incremental A/B/Z output, defined by the max. input frequency 2. Max. Possible Converter Frequency Defined By The Minimum Transition Distance Output Frequency Resolution Minimum Transition Distance Restrictions Example* fout @ tMTD Requirem. at A, B at high input frequency tMTD [µsec] FCTR A, B bin dec tMTD 0x00FF 11 kHz X X 2048 / fosc()max None 22.8 0x00FE 11.03 kHz X X 2040 / fosc()max None 22.7 0x00FD 11.07 kHz X X 2032 / fosc()max None 22.6 ... ... ... ... ... ... ... 0x0006 402 kHz X X 56 / fosc()max None 0.62 0x0005 536 kHz X X 48 / fosc()max None 0.53 0x0004 562 kHz X X 40 / fosc()max None 0.44 0x4102 938 kHz X X 24 / fosc()max Relative angle error 2x increased 0.27 0x4202 1.87 MHz X X 12 / fosc()max Relative angle error 4x increased 0.13 0x4304 2.25 MHz X X 10 / fosc()max Relative angle error 8x increased 0.11 Notes *) Calculated with fosc()max taken from El.Char. item A01; the min. transition distance refers to output A vs. output B without reversing the sense of rotation. Table 16: Max. converter frequency for incremental A/B/Z output, defined by the min. transition distance iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 15/24 INCREMENTAL SIGNALS CFGABZ Code Adr 0x02, Bit 3:2 Mode Pin A Pin B Pin Z 0x00 Normal A B Z 0x01 Control signals for external period counters CA CB CZ 0x02 Calibration mode Offset+Phase The following settings are required additionally: SELRES = 0x0D ZPOS = 0x00 HYS = 0x07 ROT = 0x00 CFGAB = 0x00 AERR = 0x00 Figure 5: Offset SIN* Figure 6: Offs. COS* Figure 7: Phase* 0x03 Calibration mode Offset+Amplitude The following settings are required additionally: SELRES = 0x0D ZPOS = 0x00 HYS = 0x07 ROT = 0x00 CFGAB = 0x00 AERR = 0x00 Figure 8: Offset SIN* Figure 9: Offs. COS* Figure 10: Amplit.* Notes *) Trimmed accurately when duty cycle is 50 %; Recommended trimming order (after selecting GAIN): Offset, Phase, Amplitude Ratio, Offset; Table 17: Outputs A, B, Z ROT Code Adr 0x02, Bit 5 Direction 0x00 0x01 Not inverted Inverted Table 18: Direction of Rotation Code Adr 0x02, Bit 7 Output* Function 0x00 immediately An external counter displays the absolute angle following power on. 0x01 after 5 ms An external counter only displays changes vs. the initial power-on condition (moving halted to reapply power is precondition.) Notes *) Output delay after device configuration and internal reset. ENRESDEL Table 19: Output Turn-On Delay A, B, Z iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 16/24 ZPOS Code Adr 0x01, Bit 4:0 Position CFGZ Code Adr 0x02, Bit 1:0 Length 0x00 0x08 0x10 0x18 0° 90° 180° 270° 0x00 0x01 0x02.. 03 90° 180° Synchronization Notes The zero signal is only output if released by the input pins (for instance with PZERO = 5 V, NZERO = VREF). Table 20: Zero Signal Position Table 21: Zero Signal Length CFGAB Adr 0x03, Bit 5:4 Code Z = 1 for 0x00 0x01 B = 1, A = 1 B = 0, A = 1 0x02 0x03 B = 1, A = 0 B = 0, A = 0 Table 22: Zero Signal Logic SIN COS A B Z (CFGZ= 0) Z (CFGZ= 1) Z (CFGZ= 2) -180° -90° 0° 90° 180° Angle Figure 11: Incremental output signals for various length of the zero signal. Example for a resolution of 64 (SELRES = 0x0A), a zero signal position of 0° (ZPOS = 0x00, CFGAB = 0x00) and no reversal of the rotational sense (ROT = 0x00, COS leads SIN). iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 17/24 SIGNAL MONITORING and ERROR MESSAGES Vpp SELAMPL AMPL Adr 0x0C, Bit 2 Adr 0x0C, Bit 1:0 Max ( |Sin| , |Cos| ) Code Voltage threshold Vth Output amplitude* 0x00 0x01 0.60 x VDDA 0.64 x VDDA 1.4 Vpp 2.0 Vpp 0x02 0x03 0.68 x VDDA 0.72 x VDDA 2.6 Vpp 3.1 Vpp Vth Figure 12: Signal monitoring of minimum amplitude. Sin2 + Cos2 Code Vthmin ↔ Vthmax Output amplitude* 0x04 Design iC-NQL_X3: (0.48 ↔ 0.68) x VDDA 2.4 Vpp ↔ 3.4 Vpp 0x05 0x06 0x07 (0.56 ↔ 0.76) x VDDA (0.64 ↔ 0.84) x VDDA (0.72 ↔ 0.92) x VDDA 2.8 Vpp ↔ 3.8 Vpp 3.2 Vpp ↔ 4.2 Vpp 3.6 Vpp ↔ 4.6 Vpp 0x04 0x05 0x06 0x07 Design iC-NQL_3: (0.20 ↔ 0.9) x VDDA (0.30 ↔ 0.9) x VDDA (0.40 ↔ 0.9) x VDDA (0.50 ↔ 0.9) x VDDA 1.0 Vss 1.5 Vss 2.0 Vss 2.5 Vss Notes *) Entries are calculated with VDDA = 5 V. Vthmax ↔ 4.5 Vss ↔ 4.5 Vss ↔ 4.5 Vss ↔ 4.5 Vss Table 23: Signal Amplitude Monitoring AERR Code Adr 0x03, Bit 1 Amplitude error message 0x00 0x01 disabled enabled Table 24: Amplitude Error FERR Code Adr 0x03, Bit 0 Excessive frequency error message 0x00 0x01 disabled enabled Note Input frequency monitoring is operational for resolutions ≥ 16 Table 25: Frequency Error Configuration Error Messaging always released Table 26: Configuration Error Error Indication at NERR Failure Mode Pin signal NERR No error Amplitude error Frequency error Configuration HI LO/HI = 75 % LO/HI = 50 % LO Undervoltage System error LO NERR = low by external error signal Table 27: Error indication at NERR Vthmin Figure 13: Sin2 + Cos2 signal monitoring. To enable the diagnosis of faults, the various types of error are signaled at NERR using a PWM code as given in the key table. Two error bits are provided to enable communication via the SSI interface; these bits can decode four different types of error. If NERR is held at low by an external source, such as an error message from the system, for example, this can also be verified via the SSI interface. Error events are stored for the SSI data output and deleted afterwards. Errors at NERR are displayed for a minimum of ca. 10 ms, as far as no SSI readout causes a deletion. If an error in amplitude occurs the conversion process is terminated and the incremental output signals halted. An error in amplitude rules out the possibility of an error in frequency. Error Messages SSI Failure Mode Error bits E1, E0 (actice low) No error Amplitude error Frequency error 1, 1 0, 1 1, 0 Configuration System error 0, 0 0, 0 (NERR pulled low by external signal) Line Signal SLO iC-NQL_3: Data output is deactivated and SLO permanently high in case of: configuration phase, invalid configuration, undervoltage. Table 28: Error Messages SSI iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 18/24 TEST FUNCTIONS TMODE Code Adr 0x06, Bit 3:1 Signal at Z Description 0x00 0x01 0x02 0x03 0x04 0x05 Z A xor B ENCLK NLOCK CLK DIVC no test mode Output A EXOR B iC-Haus device test iC-Haus device test iC-Haus device test iC-Haus device test 0x06 0x07 PZERO - NZERO TP iC-Haus device test iC-Haus device test Condition CFGABZ = 0x00 TMA Code Adr 0x06, Bit 0 Pin A Pin B Pin SDA Pin SCL 0x00 0x01 A COS+ SDA SIN+ SCL SIN- Notes To permit the verification of GAIN and OFFSET settings, the input amplifier outputs are available at the pins. To operate the converter a signal of 4 Vpp is the ideal here and should not be exceeded. Pin loads above 1 MΩ are adviceable for accurate measurements. B COS- Table 30: Analog Test Mode Table 29: Test Mode Parameter GAIN ideally adjusts the signal levels to ca. 4 Vpp and should not be touched afterwards. 5V A: COS+ SDA: Sin+ Both scope display modes are feasible for OFFS (positive values) or RATIO adjustments; regarding the adjustment of PHASE the X/Y mode may be preferred. For OFFS adjustment towards negative values the test signals COS- (pin B) and SIN- (pin SCL) are relevant. 0V Y/T 1 V/Div vert. X/Y 1 V/Div vert. 1 V/Div hor. Figure 14: Calibrated signals with TMA mode. iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 19/24 SSI INTERFACE After each communication cycle the SSI interface returns to its idle state when the monoflop timeout ttos has elapsed. This temporal condition also determines up to which clock line pause duration the iC-NQL retains the current data output cycle - the master may thus not undershoot a minimum clock frequency of f(CLK)min. CFGTOS Code Adr 0x06, Bit 5:4 Timeout ttos Ref. clock counts Signal Names Name Description Design iC-NQL_X3: typ. 128 µs 256-259 11 kHz 0x01 0x02 0x03 typ. 16 µs typ. 4 µs typ. 1 µs 88 kHz 352 kHz 1.41 MHz 32-35 8-11 2-5 0x00 Design iC-NQL_3: typ. 20 µs 46-46 50 kHz 0x01 0x02 0x03 typ. 20 µs typ. 1.5 µs typ. 1.5 µs 50 kHz 660 kHz 660 MHz 46-47 3-4 3-4 Sensor data (S0 is LSB) Error messages Stop Low signal Table 32: Signal Names The angle conversion is halted for a half clock cycle as soon as the interface receives the first falling edge on CLK, what is the trigger signal to output updated position data. The halt duration must be taken into consideration when calculating the maximum input frequency. f(CLK) min* 0x00 S E CFGSSI Adr 0x03, Bit 7:6 Code Additional bits Ring register operation 0x00 0x01 E1, E0, zero bit none no no 0x02 0x03 not permissible none yes 32 fosc Notes A ref. clock count is equal to (see El. Char., A01). The permissible max. clock frequency is specified by E05. *) A low clock frequency can reduce the permissible maximum input frequency since conversion is paused after the first falling edge on CLK for a half clock cycle. Table 33: SSI Output Options Cycle CLK DATA Table 31: Monoflop Time (SSI Timeout) S12 MSB S0 LSB Stop S12 MSB S0 LSB Latch Stop Timeout Figure 15: SSI output format during ring register operation. The example displays the transmission of a 13-bit angle value; error messages are switched off herein (SELRES = 0x03, CFGSSI = 0x03) The iC-NQL position data output contains the angle value (S) with a bit length of 2 to 13 bits (depending on SELRES), and up to 3 add-on bits (error messages E1 and E0 plus a zero bit). Generally, the data output is in binary format starting with the MSB. SSI Output Formats Res Mode Error CRC 10 bit SSI X - T1 T2 T3 T4... T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 S9 S8 S7 S6 ... S0 E1 E0 Example 13 bit SSI - - 0 Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop 0 0 Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop S12 S11 S10 S9 ... S3 S2 S1 S0 S12 S11 S10 S9 ... S3 S2 S1 S0 0 0 0 0 0 0 0 0 0 0 0 *1 Example SSI-R - - 0 0 0 *2 Example 0 0 Stop S12 S11 S10 S9 0 Configuration CFGSSI = 0x00; *1) CFGSSI = 0x01; *2) CFGSSI = 0x03 Legend SSI = SSI protocol, SSI-R = SSI ring register operation Table 34: SSI Output Formats 0 0 0 0 0 0 0 S8 S7 S6 S5 S4 S3 S2 iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 20/24 EEPROM INTERFACE and STARTUP BEHAVIOUR Serial EEPROM components permitting operation from 3.3 V to 5 V can be connected (such as 24C02, for example). When the device is switched on the memory area of bytes 0 to 15 is mapped onto iC-NQL’s registers. After startup, iC-NQL does not recognize a defined configuration; the configuration RAM can contain any values. After the supply has been turned on (power on reset), iC-NQL reads the configuration data from the EEPROM and during this phase halts error pin NERR actively on a low signal (open drain output). unsigned char ucDataStream = 0 ; i n t iCRCPoly = 0x127 ; unsigned char ucCRC=0; int i = 0; After a successful CRC the data output to SLO is released and the error indication at pin NERR reset; an external pull-up resistor can supply a high signal. iC-NQL then switches to normal operation and determines the current angle position, providing that a sensor is connected up to it and there is no amplitude error (or this is deactivated). Should the CRC prove unsuccessful due to a data error (disrupted transmission, no EEPROM or the EEPROM is not programmed), the configuration phase is automatically repeated. After a third failed attempt, the procedure is aborted and error pin NERR remains active, displaying a permanent low. Example of CRC Calculation Routine ucCRC = 0 ; / / s t a r t v a l u e ! ! ! f o r ( iReg = 0 ; iReg <15; iReg ++) { ucDataStream = ucGetValue ( iReg ) ; f o r ( i =0; i <=7; i ++) { i f ( ( ucCRC & 0x80 ) ! = ( ucDataStream & 0x80 ) ) ucCRC = (ucCRC << 1 ) ^ iCRCPoly ; else ucCRC = (ucCRC << 1 ) ; ucDataStream = ucDataStream << 1 ; } } CRC_E2P Code Adr 0x0F, Bit 7:0 Description 0x00 ... 0xFF Check value formed by CRC polynomial 0x127 Table 35: Check value for EEPROM data iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 21/24 APPLICATION HINTS Principle Input Circuits Figure 16: Input circuit for voltage signals of 1 Vpp with no ground reference. When grounds are not separated the connection NSIN to VREF must be omitted. Figure 18: Input circuit for single-sided voltage or current source signals with ground reference (adaptation via resistors R3, R4). Figure 20: Input circuit for differential current sink sensor outputs, eg. using Opto Encoder iC-WG. Figure 17: Input circuit for current signals of 11 µA. This circuit does not permit offset calibration. Figure 19: Simplified input wiring for single-sided voltage signals with ground reference. Figure 21: Combined input circuit for 11 µA, 1 Vpp (with 120 Ω termination) or TTL encoder signals. RS3/4 and CS1 serve as protection against ESD and transients. iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 22/24 Basic Circuit Figure 22: Basic circuit for evaluation of magneto-resistor bridge sensors. iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 23/24 DESIGN REVIEW: Notes On Chip Functions iC-NQL X3 No. 1 Function, Parameter/Code Description and Application Hints ZPOS Illegal settings: 0x01...0x07, 0x09...0x0F, 0x11...0x17, 0x19...0x1F Illegal settings of ZPOS delay accurate converter operation following power on. Depending on the sin/cos input signals (phase angle) the A/B outputs can provide pulses causing an external counter to alternately count up and down. This may disturb the startup of a drive if the motion controller tolerates only single A/B edges during standstill checking. The converter operation is again accurate when the sin/cos input signals have changed, by a maximum of 45 angular degrees. 2 Pin DATA When cycling power pin DATA may show high or low level initially. With pin TEST = low (e.g. pin open) at least a single low pulse at pin CLK is required to trigger pin DATA to show a high level after the timeout has elapsed. When continuing the clock signal after completion of data output, additional zero bits are output. With pin TEST = high (e.g. pin wired to VDD) only the timeout needs to elapse to trigger pin DATA showing high level. When continuing the clock signal after completion of data output, additional one bits are output. 3 M2S obsolete Bits 5 to 7 of address 0x00 must be programmed to zero; period counting is not available. Table 36: Notes on chip functions iC-NQL_X3 iC-NQL 3 No. Function, Parameter/Code Description and Application Hints 1 Pin DATA When cycling power pin DATA shows high level initially and remains on a permanent high if CRC verification does not confirm the configuration data. 3 M2S obsolete Bits 5 to 7 of address 0x00 must be programmed to zero; period counting is not available. Table 37: Notes on chip functions iC-NQL_3 iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source. iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product. As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe). We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to. iC-NQL 13-bit Sin/D CONVERTER WITH SSI INTERFACE Rev D2, Page 24/24 ORDERING INFORMATION Type Package Order Designation iC-NQL TSSOP20 4.4 mm iC-NQL TSSOP20 For technical support, information about prices and terms of delivery please contact: iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (61 35) 92 92-0 Fax: +49 (61 35) 92 92-192 Web: http://www.ichaus.com E-Mail: [email protected] Appointed local distributors: http://www.ichaus.com/sales_partners