iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 1/25 FEATURES APPLICATIONS ♦ Resolution of up to 8192 angle steps per sine/cosine period ♦ Binary and decimal resolution settings, e.g. 500, 512, 1000, 1024; programmable angle hysteresis ♦ Conversion time of just 250 ns including amplifier settling ♦ Count-safe vector follower principle, realtime system with 70 MHz sampling rate ♦ Direct sensor connection; selectable input gain ♦ Front-end signal conditioning features offset (8 bit), amplitude ratio (5 bit) and phase (6 bit) calibration ♦ 250 kHz input frequency ♦ Parameterization and absolute angle output via bidirectional high-speed synchronous-serial BiSS Interface (B protocol) ♦ A QUAD B incremental outputs with selectable minimum transition distance (e.g. 0.25 µs for 1 MHz at A) ♦ Index signal processing adjustable in position and width ♦ Fault monitoring: frequency, amplitude, configuration (CRC) ♦ Multiturn counting to 8 bit or 24 bit ♦ Fully re-programmable by BiSS interface with access to serial EEPROM to store setup ♦ ESD protection and TTL-/CMOS-compatible outputs ♦ Interpolator IC for position data acquisition from analog sine/cosine sensors ♦ Optical linear/rotary encoders ♦ MR sensor systems PACKAGES TSSOP20 BLOCK DIAGRAM Copyright © 2002, 2009 iC-Haus http://www.ichaus.com iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 2/25 DESCRIPTION iC-NQ is a monolithic A/D converter which, by applying a count-safe vector follower principle, converts sine/cosine sensor signals with a selectable resolution and hysteresis into angle position data. This absolute value is output via a high-speed synchronousserial BiSS interface and trails a master clock rate of up to 10 Mbit/s, or, alternatively, can be set so that it is compatible with SSI. A period counter supplements the position data with a multiturn count and can be configured for BiSS single-cycle data output. At the same time any changes in output data are converted into incremental A QUAD B encoder signals. Here, the minimum transition distance can be adapted to suit the system on hand (cable length, external counter). A synchronised zero index is generated and output to Z if enabled by the PZERO and NZERO inputs. The front-end amplifiers are configured as instrumentation amplifiers, permitting sensor bridges to be di- rectly connected without the need for external resistors. Various programmable D/A converters are available for the conditioning of sine/cosine sensor signals with regard to offset, amplitude ratio and phase errors. Front-end gain can be set in stages graded to suit all common differential sensor signals from approximately 20 mVpp to 1.5 Vpp, and also singleended sensor signals from 40 mVpp to 3 Vpp respectively. Two serial interfaces have been included to permit configuration of the device, connection of an EEPROM or synchronous-serial data transfer (BiSS). Both interfaces are bidirectional and enable the complete configuration of the device including the transfer of setup and system data to the EEPROM for permanent storage. If the memory is detected following a power-down reset, the chip setup is read in and automatically repeated if a CRC error occurs. iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 3/25 CONTENTS PACKAGES 4 INCREMENTAL SIGNALS 15 ABSOLUTE MAXIMUM RATINGS 5 SIGNAL MONITORING and ERROR MESSAGES 17 TEST FUNCTIONS 18 THERMAL DATA 5 ELECTRICAL CHARACTERISTICS 6 CHARACTERISTICS: Diagrams . . . . . . . OPERATING REQUIREMENTS: BiSS and SSI Interface 8 8 PARAMETER and REGISTER 10 SIGNAL CONDITIONING 11 CONVERTER FUNCTIONS 12 MAXIMUM POSSIBLE CONVERTER FREQUENCY 13 Serial data output . . . . . . . . . . . . . . . 13 Incremental output to A, B and Z . . . . . . . 14 BiSS INTERFACE Protocol and Data Format . . . . . Sensor Data Communication . . . Register Data Communication . . Sensor Data Output in SSI Format Examples of SSI formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 20 20 21 21 EEPROM INTERFACE 21 APPLICATION HINTS Principle Input Circuits . . . . . . . . . . . . . Basic circuit . . . . . . . . . . . . . . . . . . . 22 22 23 EVALUATION BOARD 23 DESIGN REVIEW: Notes On Chip Functions 24 iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 4/25 PACKAGES TSSOP20 (according to JEDEC Standard) PIN CONFIGURATION TSSOP20 4.4 mm, lead pitch 0.65 mm PIN FUNCTIONS No. Name Function 1 2 3 4 5 6 PCOS NCOS VDDA GNDA VREF A Input Cosine + Input Cosine +5 V Supply Voltage (analog) Ground (analog) Reference Voltage Output Incremental Output A Analog signal COS+ (TMA mode) PWM signal for Offset Sine (Calib.) 7 B Incremental Output B Analog signal COS- (TMA mode) PWM signal for Offset Cosine (Calib.) 8 Z Output Index Z PWM signal for Phase/Ratio (Calib.) 9 GND Ground 10 VDD +5 V Supply Voltage (digital) 11 SLI BiSS interface, data input 12 MA BiSS interface, clock line 13 SLO BiSS interface, data output 14 SDA EEPROM interface, data line Analog signal SIN+ (TMA mode) 15 SCL EEPROM interface, clock line Analog signal SIN- (TMA mode) 16 NERR Error Input/Output, active low 17 PZERO Input Zero Signal + 18 NZERO Input Zero Signal 19 PSIN Input Sine + 20 NSIN Input Sine External connections linking VDDA to VDD and GND to GNDA are required. *) If only a single iC-NQ device and no BiSS chain circuitry is used, pin SLI can remain unwired or can be linked to ground (GND). iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 5/25 ABSOLUTE MAXIMUM RATINGS These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur. Item No. Symbol Parameter Conditions Unit Min. Max. G001 VDDA Analog Supply Voltage -0.3 6 V G002 VDD G003 Vpin() Digital Supply Voltage -0.3 6 V -0.3 6 V Voltage at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, MA, SLI, SLO, A, B, Z G004 Imx(VDDA) Current in VDDA V() < VDDA + 0.3 V V() < VDD + 0.3 V -50 50 mA G005 Imx(GNDA) Current in GNDA -50 50 mA G006 Imx(VDD) Current in VDD -50 50 mA G007 Imx(GND) Current in GND -50 50 mA G008 Imx() Current in PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, MA, SLI, SLO, A, B, Z -10 10 mA G009 Ilu() Pulse Current in all pins (Latch-up Strength) according to Jedec Standard No. 78; Ta = 25 °C, pulse duration 10 ms, VDDA = VDDAmax , VDD = VDDmax , Vlu() = (-0.5...+1.5) x Vpin()max -100 100 mA G010 Vd() ESD Susceptibility at all pins HBM 100 pF discharged through 1.5 kΩ 2 kV G011 Tj Junction Temperature -40 150 °C G012 Ts Storage Temperature Range -40 150 °C THERMAL DATA Operating Conditions: VDDA = VDD = 5 V ±10 % Item No. T01 Symbol Parameter Conditions Unit Min. Ta Operating Ambient Temperature Range TSSOP20 ET -40/125 All voltages are referenced to ground unless otherwise stated. All currents into the device pins are positive; all currents out of the device pins are negative. -25 -40 Typ. Max. 85 125 °C °C iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 6/25 ELECTRICAL CHARACTERISTICS Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated Item No. Symbol Parameter Conditions Unit Min. Typ. Max. Total Device 001 VDDA, VDD Permissible Supply Voltage 4.5 5.5 V 002 I(VDDA) Supply Current in VDDA 003 I(VDD) Supply Current in VDD fin() = 200 kHz; A, B, Z open 15 mA fin() = 200 kHz; A, B, Z open 20 004 Von Turn-on Threshold VDDA, VDD 3.2 mA 005 006 Vhys Turn-on Threshold Hysteresis 200 Vc()hi Clamp Voltage hi at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF 007 Vc()lo 008 Vc()hi V mV 0.3 1.6 V Clamp Voltage lo at I() = -1 mA, other pins open PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, MA, SLI, SLO, A, B, Z -1.6 -0.3 V Clamp Voltage hi at NERR, SCL, SDA, MA, SLI, SLO, A, B, Z 0.3 1.6 V -10 -15 10 15 mV mV Input Amplifiers PSIN, NSIN, PCOS, NCOS 101 Vos() Input Offset Voltage Vc()hi = V() - VDDA; I() = 1 mA, other pins open 4.4 Vc()hi = V() - VDD; I() = 1 mA, other pins open Vin() and G() in accordance with table Gain Select; G ≥ 20 G < 20 102 TCos Input Offset Voltage Temperature Drift see 101 ±10 µV/K 103 Iin() Input Current V() = 0 V ... VDDA -50 50 nA 104 GA Gain Accuracy G() in accordance with table Gain Select 95 102 % 105 106 GArel Gain SIN/COS Ratio Accuracy G() in accordance with table Gain Select 97 103 fhc Cut-off Frequency G = 80 G = 2.667 230 650 kHz kHz 107 SR Slew Rate G = 80 G = 2.667 4 9 V/µs V/µs % Sin/D Conversion: Accuracy 201 AAabs Absolute Angle Accuracy without referred to 360° input signal, G = 2.667, calibration Vin = 1.5 Vpp, HYS = 0 -1.0 1.0 DEG 202 AAabs Absolute Angle Accuracy after calibration referred to 360° input signal, HYS = 0, internal signal amplitude of 2 ... 4 Vpp -0.5 +0.5 DEG 203 AArel Relative Angle Accuracy referred to output signal period of A/B, G = 2.667, Vin = 1.5 Vpp, SELRES = 1024, FCTR = 0x0004 ... 0x00FF, fin < finmax (see table 14) -10 10 % Reference Voltage I(VREF) = -1 mA ... +1 mA 48 52 % VDDA Oscillator Frequency presented at SCL with subdivision of 2048; VDDA = VDD = 5 V ±10 % VDDA = VDD = 5 V 52 60 90 83 MHz MHz ±0.35 Reference Voltage VREF 801 VREF Oscillator A01 fosc() A02 TCosc Oscillator Frequency Temperature Drift A03 VCosc Oscillator Frequency Power Supply Dependance VDDA = VDD = 5 V 72 -0.1 %/K +10.6 %/V iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 7/25 ELECTRICAL CHARACTERISTICS Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated Item No. Symbol Parameter Conditions Unit Min. Typ. Max. Zero Comparator B01 Vos() Input Offset Voltage V() = Vcm() -20 20 mV B02 Iin() Input Current V() = 0 V ... VDDA -50 50 nA B03 Vcm() Common-Mode Input Voltage Range 1.4 VDDA1.5 V B04 Vdm() Differential Input Voltage Range 0 VDDA V V Incremental Outputs A, B, Z and BiSS Interface Output SLO D01 Vs()hi Saturation Voltage hi Vs()hi = VDD - V(); I() = -4 mA 0.4 D02 Vs()lo Saturation Voltage lo I() = 4 mA 0.4 V D03 tr() Rise Time CL() = 50 pF 60 ns D04 tf() Fall Time CL() = 50 pF D05 RL() Permissible Load at A, B TMA = 1 (calibration mode) 60 1 ns MΩ BiSS Interface: Inputs MA, SLI E01 Vt()hi Threshold Voltage hi E02 Vt()lo Threshold Voltage lo E03 Vt()hys Hysteresis E04 Ipu(MA) E05 E06 Ipd(SLI) E07 2 V 0.8 V Vt()hys = Vt()hi - Vt()lo 300 mV Pull-up Current in MA V() = 0 ... VDD - 1 V -240 -120 -25 Pull-down Current in SLI V() = 1 ... VDD 20 120 300 µA fclk(MA) Permissible Clock Frequency at MA SSI protocol BiSS B protocol: sensor mode BiSS B protocol: register mode 4 10 0.25 MHz MHz MHz tp(MASLO) Propagation Delay: MA edge vs. all modes, RL(SLO) ≥ 1 kΩ SLO output 10 50 ns 0 E08 tbusy()s Processing Time Sensor Mode delay of start bit E09 tbusy()r Processing Time Register Mode delay of start bit with read access to EEPROM E10 tidle() Interface Blocking Time powering up with no EEPROM µA 0 0 2 ms 1 1.5 ms 2 V EEPROM Interface, Control Logic: Inputs SDA, NERR F01 Vt()hi Threshold Voltage hi F02 Vt()lo Threshold Voltage lo F03 Vt()hys Hysteresis F04 tbusy()cfg Duration of Startup Configuration error free EEPROM access Vt()hys = Vt()hi - Vt()lo 0.8 V 300 mV 5 7 ms EEPROM Interface, Control Logic: Outputs SDA, SCL, NERR G01 f() Write/Read Clock at SCL G02 Vs()lo Saturation Voltage lo I() = 4 mA 20 G03 Ipu() Pull-up Current V() = 0 ... VDD - 1 V G04 ft() Fall Time CL() = 50 pF G05 tmin()lo Error Signal Indication Time at NERR (lo signal) MA = hi, no BiSS access, amplitude or frequeny error G06 Tpwm() Error Signal PWM Cycle Duration fosc() subdivided 222 at NERR G07 RL() Permissible Load at SDA, SCL TMA = 1 (calibration mode) -600 -300 100 kHz 0.45 V -75 µA 60 10 60.7 1 ns ms ms MΩ iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 8/25 CHARACTERISTICS: Diagrams 0% 60% 40% 0% twhi()/T 110% 90% 50% 100% AArel ±10% AArel ±10% Figure 1: Definition of relative angle error. $ tMTD Figure 2: Definition of minimum transition distance. 0.15° 0.1° 0.05° 0 -0.05° -0.1° -0.15° 0° 90° 180° 270° Figure 3: Typical residual absolute angle error after calibration. 360° iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 9/25 OPERATING REQUIREMENTS: BiSS and SSI Interface Operating Conditions: VDD = 5 V ±10 %, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD Item No. Symbol Parameter Conditions Fig. Unit Min. Max. SSI Output (SELSSI = 1) I001 TMAS Permissible Clock Period 4 250 2x ttos ns I002 tMASh Clock Signal Hi Level Duration CFGTOS = 0x01 4 25 ttos ns I003 tMASl Clock Signal Lo Level Duration 4 25 ttos ns 5 100 BiSS Sensor Mode I004 TMAS Permissible Clock Period CFGTOR selected in accordance with table on page 15 ns I005 tMASh Clock Signal Hi Level Duration 5 25 I006 tMASl Clock Signal Lo Level Duration 5 25 ns 6 4 µs 0 ttos ns BiSS Register Mode I007 TMAR Permissible Clock Period CFGTOR selected in accordance with table on page 15 I008 tidle I009 tMARh Permissible Clock Halt (idle) 6 Clock Signal Hi Level Duration 6 I010 tMARh Clock Signal Hi Level Duration I011 tMARl Clock Signal Lo Level Duration 6 I012 tMA0h "Logic 0" Hi Level Duration 6 10 I013 tMA1h "Logic 1" Hi Level Duration 6 70 read out of register data Figure 4: Timing diagram of SSI output. Figure 5: Timing diagram of BiSS sensor mode. Figure 6: Timing diagram of BiSS register mode. 6 30 indefinite ttor ns 70 % TMAR ttor ns 30 % TMAR 90 % TMAR iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 10/25 PARAMETER and REGISTER Signal Monitoring and Error Messages . . . . . . . . . . . . . . . . . . . . . . . Page 17 SELAMPL: Amplitude Monitoring, function AMPL: Amplitude Monitoring, thresholds AERR: Amplitude Error FERR: Frequency Error Register Description . . . . . . . . . . . . . . . . . . . . . . . Page 10 Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . Page 11 GAIN: Gain Select SINOFFS: Offset Calibration Sine COSOFFS: Offset Calibration Cosine REFOFFS: Offset Calibration Reference RATIO: Amplitude Calibration PHASE: Phase Calibration Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 18 TMODE: Test Mode TMA: Analog Test Mode Converter Function . . . . . . . . . . . . . . . . . . . . . . . . Page 12 SELRES: Resolution HYS: Hysteresis FCTR: Max. Permissible Converter Frequency BiSS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 19 CFGTOS: Interface Timeout CFGTOR: Interface Timeout M2S: Period Counter Output BiSSMOD: Protocol Version Incremental Signals . . . . . . . . . . . . . . . . . . . . . . . Page 15 CFGABZ: Output A, B, Z ROT: Direction of Rotation CBZ: Period Counter Configuration ENRESDEL: Output Turn-On Delay ZPOS: Zero Signal Position CFGZ: Zero Signal Length CFGAB: Zero Signal Logic SELSSI: CFGSSI: RPL: SSI Compatibility SSI Output Register Access Safety Level OVERVIEW Adr Bit 7 0x00 BiSSMOD 0x01 0x02 0x03 Bit 6 Bit 5 Bit 4 Bit 2 HYS(2:0) ENRESDEL SELSSI Bit 1 Bit 0 SELRES(4:0) ZPOS(4:0) ROT CFGSSI(1:0) CBZ CFGABZ(1:0) CFGAB(1:0) 0x04 CFGZ(1:0) RPL(1:0) AERR FERR FCTR(7:0) 0x05 0x06 Bit 3 M2S(1:0) FCTR(14:8) CFGTOR(1:0) CFGTOS(1:0) 0x07* TMODE(2:0) TMA Reserved address / internal use 0x08 GAIN(3:0) RATIO(3:0) 0x09 SINOFFS(7:0) 0x0A COSOFFS(7:0) 0x0B PHASE(5:0) 0x0C REFOFFS SELAMPL 0x0D 0x0E 0x0F CRC(7:0) check sum over address 0-14 with CRC polynomial: "100100111" (read out of EEPROM) EEPROM 0x10 0x1F 0x00 - 0xF Reserved EEPROM register section storing iC-NQ device setup 0x20 0x77 0x10 - 0x67 Free EEPROM registers 0x78 0x7F 0x68 - 0x6F EEPROM: BiSS Identifier, ROM: Device ID iC-NQ X3: 4E 51 58 33 {ADR0} 00 69 43** As no access protections are selected all registers are accessible by read and write operations (see RPL). *) Programming to value 0x00 is recommended. **) iC-NQ V2: 4E 51 56 32 {Adr 0x00} 00 69 43 Table 5: Register layout RATIO(4) AMPL(1:0) iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 11/25 SIGNAL CONDITIONING Input stages SIN and COS are configured as instrumentation amplifiers. The amplifier gain must be selected in accordance with the sensor signal level and GAIN programmed to register GAIN according to the following table. Half of the supply voltage is output to VREF as center voltage to help DC level adaptation. Adr 0x08, Bit 7:4 Code 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 Amplification 80.000 66.667 53.333 40.000 33.333 28.571 26.667 20.000 14.287 10.000 8.000 6.667 5.333 4.000 3.333 2.667 Differential up to 50 mVpp up to 60 mVpp up to 75 mVpp up to 0.1 Vpp up to 0.12 Vpp up to 0.14 Vpp up to 0.15 Vpp up to 0.2 Vpp up to 0.28 Vpp up to 0.4 Vpp up to 0.5 Vpp up to 0.6 Vpp up to 0.75 Vpp up to 1 Vpp up to 1.2 Vpp up to 1.5 Vpp Sine/Cosine Input Signal Levels Vin() Amplitude Average value (DC) Single-ended Differential Single-ended up to 100 mVpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 120 mVpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 0.15 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.2 V up to 0.2 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.24 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.28 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.3 V up to 0.3 Vpp 1.2 V ... VDDA - 1.2 V 1.3 V ... VDDA - 1.3 V up to 0.4 Vpp 0.7 V ... VDDA - 1.2 V 0.8 V ... VDDA - 1.3 V up to 0.56 Vpp 1.2 V ... VDDA - 1.3 V 1.4 V ... VDDA - 1.4 V up to 0.8 Vpp 1.2 V ... VDDA - 1.3 V 1.4 V ... VDDA - 1.5 V up to 1 Vpp 0.8 V ... VDDA - 1.4 V 1.0 V ... VDDA - 1.6 V up to 1.2 Vpp 0.8 V ... VDDA - 1.4 V 1.1 V ... VDDA - 1.7 V up to 1.5 Vpp 0.9 V ... VDDA - 1.5 V 1.3 V ... VDDA - 1.9 V up to 2 Vpp 1.2 V ... VDDA - 1.6 V 1.7 V ... VDDA - 2.1 V up to 2.4 Vpp 1.2 V ... VDDA - 1.7 V 1.8 V ... VDDA - 2.3 V up to 3 Vpp 1.3 V ... VDDA - 1.8 V 2.0 V ... VDDA - 2.6 V Table 6: Gain Select SINOFFS Adr 0x09, Bit 7:0 RATIO Adr 0x0B, Bit 0, Adr 0x08, Bit 3:0 COSOFFS Adr 0x0A, Bit 7:0 Code COS / SIN Code COS / SIN Code Output Offset Input Offset 0x00 0V 0V 0x00 0x01 1.0000 1.0067 0x10 0x11 1.0000 0.9933 0x01 -7.8125 mV -7.8125* mV / GAIN ... ... ... ... ... ... ... 0x0F 1.1 0x1F 0.9000 0x7F 0x80 -0.9922 V 0V -0.9922 V / GAIN 0V 0x81 +7,8125 mV +7.8125 mV / GAIN ... 0xFF ... +0.9922 V ... +0.9922 V / GAIN Notes *) With REFOFFS = 0x00 und VDDA = 5 V. Table 7: Offset Calibration Sine/Cosine Table 9: Amplitude Calibration PHASE Adr 0x0B, Bit 7:2 Code Phase Shift Code Phase Shift 0x00 0x01 90° 90.703125° 0x20 0x21 90° 89.296875° ... ... ... ... 102.65625° 102.65625° 0x32 ... 77.34375° 77.34375° 102.65625° 0x3F 77.34375° REFOFFS Adr 0x0B, Bit 1 0x12 ... Code Reference Voltage 0x1F 0x00 Depending on VDDA (example of application: MR sensors) Not depending on VDDA (example of application: Sin/Cos encoders) 0x01 Table 8: Offset Calibration Reference Table 10: Phase Calibration iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 12/25 CONVERTER FUNCTIONS SELRES Adr 0x00, Bit 4:0 Code Decimal Resolutions Examples of Permissible Input Frequencies finmax (FCTR 0x0004, 0x4304) - 0x10 2000 650 Hz, 2.6 kHz - 0x11 1600 812 Hz, 3.3 kHz 0x02 0x03 8192 158 Hz, 635 Hz 0x12 0x13 1000 800 1.3 kHz, 5.2 kHz 1.6 kHz, 6.5 kHz 0x04 4096 317 Hz, 1.27 kHz 0x14 500 2.6 kHz, 10.4 kHz 0x05 0x06 2048 1024 634 Hz, 2.54 kHz 1.27 kHz, 5.1 kHz 0x15 0x16 400 250 *1 3.2 kHz, 13 kHz 5.2 kHz, 20.8 kHz 0x07 512 2.54 kHz, 10.2 kHz 0x17 125 *1,2 5.2 kHz, 20.8 kHz 0x08 0x09 256 128 5.1 kHz, 20.3 kHz 10.2 kHz, 40.6 kHz 0x18 0x19 320 160 *2 4.1 kHz, 16.3 kHz 4.1 kHz, 16.3 kHz 0x0A 64 20.3 kHz, 81.3 kHz 0x1A 80 *4 4.1 kHz, 16.3 kHz 0x0B 0x0C 32 16 40.6 kHz, 162.5 kHz 81.3 kHz (max. 250 kHz @ 0x4202) 0x1B 0x1C 40 *8 200 4.1 kHz, 16.3 kHz 6.5 kHz, 26 kHz 0x0D 8 162 kHz (max. 250 kHz @ 0x4102) 0x1D 100 *2 6.5 kHz, 26 kHz 0x0E 0x0F - 0x1E 0x1F 50 *1,4 25 *1,8 6.5 kHz, 26 kHz 6.5 kHz, 26 kHz Notes *1 SELRES Adr 0x00, Bit 4:0 Code Binary Resolutions 0x00 0x01 Examples of Permissible Input Frequencies finmax (FCTR 0x0004, 0x4304) Table 11: Binary Resolutions Not useful with increment A quad B output. *2,4,8 The internal converter resolution is higher by factor 2, 4 or 8. Table 12: Decimal Resolutions HYS Adr 0x01, Bit 7:5 Code Hysteresis in degree 0x00 0° 0x01 0.0879° 0x02 0.1758° 0x03 Hysteresis in LSB Absolute error* 1 LSB @ 12 bit 1/2 LSB @ 10 bit 0.044° 0.3516° 1 LSB @ 10 bit 0.176° 0x04 0.7031° 1/2 LSB @ 8 bit 0.352° 0x05 0x06 1.4063° 5.625° 1 LSB @ 8 bit 0.703° 2.813° 0x07 45° only recommended for calibration 22.5° Notes *) The absolute error is equivalent to one half the angle hysteresis Table 13: Hysteresis 0.088° iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 13/25 MAXIMUM POSSIBLE CONVERTER FREQUENCY The converter frequency automatically adjusts to the value necessary for the input frequency and resolution. This value ranges from zero to a maximum dependent on the oscillator frequency which can be set using register FCTR. tion step-down feature can be enabled via the FCTR register. Should the input frequency exceed the frequency limit of the selected converter resolution, the LSB is kept stable and not resolved any further; the interpolation resolution halves. Serial data output For BiSS or SSI output the maximum possible converter frequency can be adjusted to suit the maximum input frequency; an automatic converter resolu- If the next frequency limit is overshot, the LSB and the LSB+1 are kept stable and so on. When the input frequency again sinks below this frequency limit, the fine resolution automatically returns. Max. Possible Converter Frequency For Serial Data Output Resolution Protocol Max. Input Frequency Restrictions Requirements at high input frequencies FCTR Min. Res. bin dec BiSS SSI finmax 0x0004 X X X X f(OSC)min / 40 / Resolution – 0x4102 ≥8 X X X X f(OSC)min / 24 / Resolution Rel. angle error 2x increased 0x4202 ≥ 16 X X X X 2 x f(OSC)min / 24 / Res. Rel. angle error 4x increased 0x4304 ≥ 32 X X X X 4 x f(OSC)min / 40 / Res. Rel. angle error 8x increased 0x4602 ≥ 64 X X X 4 x f(OSC)min / 24 / Res. Resolution lowered by factor of 2 0x4A02 ≥ 128 X X X 8 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-4 0x4E02 ≥ 256 X X X 16 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-8 0x5202 ≥ 512 X X X 32 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-16 0x5602 ≥ 1024 X X X 64 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-32 0x5A02 ≥ 2048 X X X 128 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-64 0x5E02 ≥ 4096 X X X 256 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-128 0x6202 8192 X X X 512 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-256 Notes *) Calculated with fosc()min taken from Electrical Characteristics item A01. Table 14: Maximum converter frequency for serial data output. Examples* finmax [kHz] at resol. 8192 1024 200 0.16 1.27 6.5 0.26 2.1 10.8 0.53 4.2 21.6 0.64 5.1 26.0 1.1 8.5 2.1 16.9 4.2 33.8 8.5 67.7 16.9 135 33.8 250 67.7 135 - iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 14/25 Incremental output to A, B and Z There are two criteria which must be considered when setting the maximum possible converter frequency via the FCTR register: nals. A digital zero-delay glitch filter then takes care of a temporal edge-to-edge separation, guaranteeing spike-free output signals after an ESD impact to the sensor, for instance. 1. The maximum input frequency 2. System limitations, e.g. due to slow counters or cable transmission A serial data output is simultaneously possible at any time, using the BiSS or SSI protocol. However, for the transfer of angle data to the output register the incremental output is halted for one period of the clock signal applied to pin MA. When facing system limitations it is useful to preselect a minimum transition distance for the output sig1. Max. Possible Converter Frequency Defined By The Maximum Input Frequency Output Frequency Resolution Maximum Input Frequency Restrictions fout @ finmax Requirem. at high input frequencies FCTR A, B bin dec finmax 0x0004 325 kHz X X f(OCS)min / 40 / Resolution None 0x4102 542 kHz X X f(OSC)min / 24 / Resolution Relative angle error 2x increased 0x4202 1.08 MHz X X 2 x f(OSC)min / 24 Res. Relative angle error 4x increased 0x4304 1.3 MHz X X 4 x f(OSC)min / 40 / Res. Relative angle error 8x increased Notes *) Calculated with fosc()min taken from Electrical Characteristics item A01. Examples* finmax [kHz] at resol. 8192 1024 200 0.16 1.27 6.5 0.26 2.1 10.8 0.53 4.2 21.6 0.64 5.1 26.0 Table 15: Max. converter frequency for incremental A/B/Z output, defined by the max. input frequency 2. Max. Possible Converter Frequency Defined By The Minimum Transition Distance Output Frequency Resolution Minimum Transition Distance Restrictions Example* fout @ tMTD Requirem. at A, B at high input frequencies tMTD [µsec] FCTR A, B bin dec tMTD 0x00FF 10 kHz X X 2048 / f(OSC)max None 22.8 0x00FE 10.05 kHz X X 2040 / f(OSC)max None 22.7 0x00FD 10.09 kHz X X 2032 / f(OSC)max None 22.6 ... ... ... ... ... ... ... 0x0006 366 kHz X X 56 / f(OSC)max None 0.62 0x0005 427 kHz X X 48 / f(OSC)max None 0.53 0x0004 512 kHz X X 40 / f(OSC)max None 0.44 0x4102 854 kHz X X 24 / f(OSC)max Relative angle error 2x increased 0.27 0x4202 1.7 MHz X X 12 / f(OSC)max Relative angle error 4x increased 0.13 0x4304 2.1 MHz X X 10 / f(OSC)max Relative angle error 8x increased 0.11 Notes *) Calculated with fosc()max taken from El.Char. item A01; the min. transition distance refers to output A vs. output B without reversing the sense of rotation. Table 16: Max. converter frequency for incremental A/B/Z output, defined by the min. transition distance iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 15/25 INCREMENTAL SIGNALS CFGABZ Adr 0x02, Bit 3:2 Code Mode A B Z 0x00 Normal A B Z 0x01 Control signals for external period counters CA CB CZ 0x02 Calibration mode OFFS SIN The following settings are required additionally: SELRES = 0x0D ZPOS = 0x00 HYS = 0x07 ROT = 0x00 AERR = 0x00 1.1 0.9 1.1 0.9 Figure 7: Offset Figure 8: Offset SIN* 0x03 PHASE OFFS COS +...V -...V Figure 9: Phase* COS* Calibration mode OFFS SIN The following settings are required additionally: SELRES = 0x0D ZPOS = 0x00 HYS = 0x07 ROT = 0x00 AERR = 0x00 1.1 0.9 1.1 0.9 Figure 10: Offset Figure 11: Offset SIN* Notes RATIO OFFS COS +...V -...V Figure 12: Amplitude* COS* *) Trimmed accurately when duty cycle is 50 %; Recommended trimming order (after selecting GAIN): Offset, Phase, Amplitude Ratio, Offset; Table 17: Outputs A, B, Z Code ROT Adr 0x02, Bit 5 Direction 0x00 Not inverted 0x01 Inverted SIN Table 18: Direction of Rotation COS cw: F->0 CBZ Adr 0x02, Bit 4 Code Clear by zero 0x00 Disabled 0x01 Enabled FFFFFF P(23:0) 000000 ccw: 0->F A B Z Table 19: Reset Enable for Period Counter ENRESDEL Adr 0x02, Bit 7 Code Output* Function 0x00 immediately An external counter displays the absolute angle following power on. 0x01 after 5 ms An external counter only displays changes vs. the initial power-on condition (moving halted to reapply power is precondition.) Notes *) Output delay after device configuration and internal reset. Table 20: Output Turn-On Delay A, B, Z -180° -90° 0° 45° 90° 180° Figure 13: Clear by zero function of the period counter when enabled by CBZ = 1. Example for chip release iC-NQ V2 at resolution 64 (SELRES = 0x0A), zero signal at 45° (ZPOS = 0x04, CFGAB = 0x00) and the direction of rotation not inverted (ROT = 0x00, COS leads SIN). iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 16/25 Adr 0x01, Bit 4:0 CFGZ Adr 0x02, Bit 1:0 Chip versions iC-NQ X2, iC-NQ X3: Code Length Code Position 0x00 90° 0x00 0x08 0° 90° 0x01 0x02.. 03 180° Synchronization 0x10 180° 0x18 270° ZPOS Table 22: Zero Signal Length Chip version iC-NQ V2: CFGAB Code Position Code Adr 0x03, Bit 5:4 Z = 1 for 0x01 11.25° (1 x 11.25°) 0x00 B = 1, A = 1 ... ... 0x1F 348.75° (31 x 11.25°) 0x01 0x02 B = 0, A = 1 B = 1, A = 0 Notes The zero signal is only output if released by the input pins (for instance with PZERO = 5 V, NZERO = VREF). 0x03 B = 0, A = 0 Table 23: Zero Signal Logic Table 21: Zero Signal Position SIN COS A B Z (CFGZ= 0) Z (CFGZ= 1) Z (CFGZ= 2) -180° -90° 0° 45° 90° 180° Winkel Figure 14: Incremental output signals for various length of the zero signal. Example for chip release iC-NQ V2 with resolution 64 (SELRES = 0x0A), a zero signal position of 45° (ZPOS = 0x04, CFGAB = 0x00) and no reversal of the rotational sense (ROT = 0x00, COS leads SIN). iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 17/25 SIGNAL MONITORING and ERROR MESSAGES Vss SELAMPL AMPL Adr 0x0C, Bit 2 Adr 0x0C, Bit 1:0 Code Max ( |Sin| , |Cos| ) Voltage threshold Vth Output amplitude* 0x00 0x01 0.60 x VDDA 0.64 x VDDA 1.4 Vpp (0.28 x VDDA) 2.0 Vpp (0.40 x VDDA) 0x02 0.68 x VDDA 2.6 Vpp (0.51 x VDDA) 0x03 0.72 x VDDA 3.1 Vpp (0.62 x VDDA) Code Sin2 + Cos2 Vthmin ↔ Vthmax Output amplitude* 0x04 0.48 ↔ 0.68 x VDDA 2.4 Vpp ↔ 3.4 Vpp Vthmax 0x05 0x06 0.56 ↔ 0.76 x VDDA 0.64 ↔ 0.84 x VDDA 2.8 Vpp ↔ 3.8 Vpp 3.2 Vpp ↔ 4.2 Vpp Vthmin 0x07 0.72 ↔ 0.92 x VDDA 3.6 Vpp ↔ 4.6 Vpp Notes *) Entries are calculated with VDDA = 5 V. Vth Figure 15: Signal monitoring of minimum amplitude. Table 24: Signal Amplitude Monitoring AERR Code Adr 0x03, Bit 1 Amplitude error message 0x00 disabled 0x01 enabled Each phase in the configuration process is signaled by NERR = low; the signal is only reset following a successful CRC (cyclic redundancy check). Table 25: Amplitude Error FERR Adr 0x03, Bit 0 Code Excessive frequency error message 0x00 0x01 disabled enabled Note Input frequency monitoring is operational for resolutions ≥ 16 Table 26: Frequency Error Configuration Error - Figure 16: Sin2 + Cos2 signal monitoring. If the data transfer from the EEPROM is faulty and the CRC unsuccessful, then the configuration phase is automatically repeated. The process aborts following a third unsuccessful attempt and the error message output remains set to low until a write access occurs at address 0 via the BiSS Interface (internal reset). To enable the successful diagnosis of faults other types of error are signaled at NERR using a PWM code as given in the key on the left. Messaging always released Table 27: Configuration Error Error Keys Failure Mode Pin NERR Error bits E1, E0 with BiSS and SSI No error Amplitude error HI LO/HI = 75 % (AERR = 0: HI) LO/HI = 50 % (FERR = 0: HI) 11 01 (11) 10 (11) Configuration LO 00 Undervoltage System error LO NERR = low caused by an external error signal 00 00 Frequency error Table 28: Error Keys Two error bits are provided to enable communication via the BiSS Interface; these bits can decode four different types of error. If NERR is held at low by an external source, such as an error message from the system, for example, this can also be verified via the BiSS Interface. Error events are stored for the BiSS sensor data output and deleted afterwards. Errors at NERR are displayed for a minimum of ca. 10 ms, as far as no BiSS readout causes a deletion. If an error in amplitude occurs the conversion process is terminated and the incremental output signals halted. An error in amplitude rules out the possibility of an error in frequency. iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 18/25 TEST FUNCTIONS TMODE Adr 0x06, Bit 3:1 TMA Adr 0x06, Bit 0 Code Signal at Z Description Code Pin A Pin B Pin SDA Pin SCL 0x00 Z no test mode 0x00 A B SDA SCL 0x01 0x02 A xor B ENCLK Output A EXOR B iC-Haus device test 0x01 COS+ COS- SIN+ SIN- Notes 0x03 NLOCK iC-Haus device test 0x04 0x05 CLK DIVC iC-Haus device test iC-Haus device test 0x06 PZERO - NZERO iC-Haus device test To permit the verification of GAIN and OFFSET settings, the input amplifier outputs are available at the pins. To operate the converter a signal of 4 Vpp is the ideal here and should not be exceeded. Pin loads above 1 MΩ are adviceable for accurate measurements. 0x07 TP iC-Haus device test Condition CFGABZ = 0x00 Table 30: Analog Test Mode Table 29: Test Mode Parameter GAIN ideally adjusts the signal levels to ca. 4 Vpp and should not be touched afterwards. 5V A: COS+ SDA: Sin+ Both scope display modes are feasible for OFFS (positive values) or RATIO adjustments; regarding the adjustment of PHASE the X/Y mode may be preferred. For OFFS adjustment towards negative values the test signals COS- (pin B) and SIN- (pin SCL) are relevant. 0V Y/T 1 V/Div vert. X/Y 1 V/Div vert. 1 V/Div hor. Figure 17: Calibrated signals with TMA mode. iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 19/25 BiSS INTERFACE Serial BiSS communication differentiates between the fast cyclic transmission of sensor data for the output of angle position and period counter data and the transmission of register data which can include bidirectional read and write access. The required mode of communication is initiated by the interface master; as a slave iC-NQ determines up to which maximum clock interval the selected mode is retained. Sensor mode timeout ttos and register mode timeout ttor thus give the master a minimum clock frequency of fclk(MA)min. Protocol and Data Format CFGTOS Adr 0x06, Bit 5:4 Code Timeout ttos Sensor mode Ref. clock counts fclk(MA) min* 0x00 0x01 typ. 128 µs typ. 16 µs 256-259 32-35 11 kHz 88 kHz 0x02 typ. 4 µs 8-11 352 kHz 0x03 typ. 1 µs 2-5 1.41 MHz CFGTOR Adr 0x06, Bit 7:6 Code Timeout ttor Regist. mode Ref. clock counts fclk(MA) min* 0x00 typ. 1 ms 2049-2060 1.4 kHz 3...13 DATA 0x01 0x02 typ. 256 µs typ. 32 µs 513-514 67-68 5.5 kHz 42 kHz Angle Data S(12:0): 3 to 13 bits (singleturn position) 1 ERROR Error bit E1 (amplitude error) 0x03 not permitted – 1 ERROR Error bit E0 (frequency error) 5 CRC Polynomial 0x25 x5 + x2 + x0 (inverted bit output) 6* CRC Polynomial 0x43* x6 + x1 + x0 (inverted bit output) Notes Figure 18: BiSS B Protocol – 32 fosc A ref. clock count is equal to (see El. Char. A01 ). The permissible max. clock frequency is specified by item E06 . Table 31: Interface Timeouts M2S Adr 0x00, Bit 6:5 Single-Cycle Data Channel: SCD Type Label Bits 0, 8 DATA 0,8, 12, 24* Period Counter P(7:0) Period Counter P(23:0)* (multiturn position) Multicycle Data Channel: MCD - not in use Bits Type 1 zero bit Label Register Data Channel: CD SCD CRC Poly. MCD Bits Type Label Code SCD* not in use 3 ID Slave ID 7 ADR Register Address 0x00 Chip releases iC-NQ X2, iC-NQ X3: 0x25 1 zero bit 1 WNR Write-Not-Read Command 0x01 P(7:0) 4 CRC Polynomial 0x13 x4 + x1 + x0 (inverted bit output) 0x00 Chip release iC-NQ V2: 0x25 1 zero bit Adr Content 0x01 P(7:0) 0x25 1 zero bit 0x10.. 1F Device Configuration Data 0x02 0x03 P(11:0) P(23:0) 0x43 0x43 1 zero bit n/a 0x20.. 77 OEM Daten 0x78.. 7F BiSS Identifier Notes *) Period counter output via SCD CRC Polynomial 0x13 x4 + x1 + x0 (inverted bit Output) 0x25 1 zero bit 8 4 Table 32: Period Counter Output BiSSMOD Adr 0x00, Bit 7 Code Version Description 0x00 B BiSS B without multicycle data 0x01 C Transparency for BiSS C Table 33: Protocol Version Table 34: BiSS Data Channels *) For chip release iC-NQ V2 iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 20/25 Sensor Data Communication The sensor data produced by iC-NQ contains 3 to 13 bits of angle value (S), the period counter (P) with up to 24 bits (optional), 2 bits of error messages (E1, E0), and 5 CRC bits (C). Here, M2S sets the output enable for the position counter; the counter bits, with the MSB leading, are transmitted in front of the angle value. Figure 19: BiSS B protocol The 5 bit CRC output is based on the polynomial 0x25 (100101b), the 6 bit CRC output on the polynomial 0x43 (1000011b) and comes active with longer SCD data. Generally, CRC bits are output inverted. As soon as the storage of sensor data is initiated Latch conversion is paused for one MA clock cycle. This time must be taken into consideration when calculating the maximum input frequency. The synchronization output at Z (CFGZ = 0x02) is stored until the start bit of the previous slave arrives. Figure 20: BiSS C protocol transparency, no interpretation of CDM Register Data Communication SCD: Angle data Bits Type Label 13 2 DATA ERROR Angle Data S(12:0) Error bits E1, E0 5 CRC Polynomial 0x25 1 Zero bit Config. SELRES = 0x03, M2S = 0x00 Table 35: Format example 1 For as long as the configuration error is active the longest timeout is used for the register mode independent of CFGTOR. Thus when configuring via BiSS CFGTOR and RPL should be written before address 0. A write access at Address 0 triggers an internal reset. This allows the period counter to be set to zero and configuration errors to be reset; the EEPROM is not read out a second time. SCD: Angle data with 8-bit period counter Bits Typ Label 8 DATA Period Counter S(7:0) 13 DATA Angle Data S(12:0) 2 5 ERROR CRC Error Bits E1, E0 Polynomial 0x25 1 Zero bit Config. SELRES = 0x03, M2S = 0x01 Table 36: Format example 2 Register access via BiSS can be limited using the programming bits RPL according to the following table. RPL Adr 0x03, Bit 3:2 RPL Configuration Address 0-31 User Address 32-119 BiSS Identifier Address 120-127 0x00 Read / Write Read / Write Read / Write 0x01 Read Read 0x02 - Read / Write Read / Write 0x03 - Read Read Read Table 37: Register Access Safety Level iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 21/25 Sensor Data Output in SSI Format With SELSSI = 1 the communication timing is switched to SSI compatibility. Data output is in binary format starting with the MSB. It can be configured if the error bits are to be send afterwards. CFGSSI Adr 0x03, Bit 7:6 Code Additional bits Ring register operation 0x00 E1, E0, zero bit no 0x01 0x02 none E1, E0, zero bit no yes 0x03 none yes Table 38: SSI Output Examples of SSI formats SSI Output Formats 13-bit SSI Res Mode Error CRC 10 bit SSI X - T1 T2 T3 T4... T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 S9 S8 S7 S6 ... S0 E1 E0 Example 13 bit SSI - - S12 S11 S10 S9 ... S3 S2 S1 0 Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop 0 0 S0 Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop 0 0 0 0 0 0 0 0 0 0 0 *1 Example SSI-R - - 0 S12 S11 S10 S9 ... S3 S2 S1 S0 0 0 0 0 Stop S12 S11 S10 S9 0 0 0 0 0 0 0 S8 S7 S6 S5 S4 S3 S2 *2 0 Example 25-bit SSI 13 bit SSI X - S12 S11 S10 S9 ... S3 S2 S1 S0 E1 E0 Example 8 + 13 SSI bit*3 X - P7 P6 P5 P4 ... P0, S10 S9 S12, S11 S8 S7 S6 0 Stop Stop Stop Stop Stop Stop Stop Stop Stop 0 0 0 0 0 0 0 0 0 0 S5 S4 S3 S2 S1 S0 E1 E0 0 Stop 0 0 Example Configuration Input SLI = 0, SELSSI = 1 CFGMCD = 0x00, CFGSSI = 0x00, unless otherwise noted. *1 CFGSSI = 0x01; *2 CFGSSI = 0x03; *3 CFGMCD = 0x01 Caption SSI protocol SSI ring operation Table 39: SSI Output Formats EEPROM INTERFACE Serial EEPROM components permitting operation from 3.3 V to 5 V can be connected (such as 24C02, for example). When the device is switched on the memory area of bytes 0 to 15 is mapped onto iC-NQ’s registers. The higher memory areas, bytes 16-111, are readily available to the system via BiSS. The EEPROM ad- dresses 0-111 are mapped onto the BiSS addresses 16-127. If no EEPROM is connected the device must be configured via BiSS and address 0 written last. In this case iC-NQ does not respond to addresses 16119; reading addresses 120-127 sends the device ID plus the contents of register 0 to address 124. iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 22/25 APPLICATION HINTS Principle Input Circuits PSIN + PSIN 11µApp PSIN + RS1 25kS - 1Vss to 120S S - RS2 25kS NSIN NSIN + PSIN INPUT SIN VREF RS 120S NSIN - SENSOR iC-NQ case NSIN + INPUT SIN VREF SENSOR iC-NQ case Figure 22: Input circuit for current signals of 11 µA. Figure 21: Input circuit for voltage signals of 1 Vpp with no ground reference. When grounds are not separated the connection NSIN to VREF must be omitted. R3 1kS +5V R001 1kS R1 1kS R2 1kS V-GEN 1Vpp PSIN + PSIN + R002 1kS + - R4 1kS - V-GEN 2Vpp - NSIN NSIN + + INPUT SIN INPUT SIN VREF VREF iC-NQ Figure 23: Input circuit for single-side voltage or current source signals with ground reference (adaptation via resistors R3, R4). iC-NQ Figure 24: Simplified input wiring for single-side voltage signals with ground reference. R1 10kS +TTL -TTL or open - 5kS RS3 1kS PSIN + 5kS PSIN - + + +SIN R2 10kS 120S RS2 5kS -SIN Ip 10µApp RS1 5kS GAIN= 10 CS1 220pF RS4 1kS NSIN + - In 10µApp NSIN + INPUT SIN ENCODER VREF case CS2 47nF iC-NQ INPUT SIN VREF iC-NQ Figure 25: Input circuit for differential current sink sensor outputs, eg. using Opto Encoder iC-WG. Figure 26: Combined input circuit for 11 µA, 1 Vpp (with 120 Ω termination) or TTL encoder signals. RS3/4 and CS1 serve as protection against ESD and transients. iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 23/25 Basic circuit Figure 27: Basic circuit for evaluation of magneto-resistor bridge sensors. EVALUATION BOARD The iC-NQ device is equipped with an evaluation board for test purposes; descriptions are available separately. iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 24/25 DESIGN REVIEW: Notes On Chip Functions iC-NQ X2 iC-NQ X3 No. Function, Parameter/Code Description and Application Hints 1 SELRES Illegal setting: 0x0E for resolution 4 A minimal resolution of 8 is required for the frequency monitoring function and period counting as well. Thus, a binary resolution of 4 is not permitted when using the period counter and the serial interface for data output with the BiSS or SSI protocol. A resolution of 4 may be used for solely incremental applications with A/B/Z output, what then requires the deactivation of the frequency monitoring function (by FERR set to 0x00). 2 ZPOS Illegal settings: 0x01...0x07, 0x09...0x0F, 0x11...0x17, 0x19...0x1F Illegal settings of ZPOS delay accurate converter operation following power on. Depending on the sin/cos input signals (phase angle) the A/B outputs can provide pulses causing an external counter to alternately count up and down. This may disturb the startup of a drive if the motion controller tolerates only single A/B edges during standstill checking. The converter operation is again accurate when the sin/cos input signals have changed, by a maximum of 45 angular degrees. 3 M2S Illegal settings: 0x02, 0x03 Illegal settings, enabling a period counter output of 12 or 24 bits, may cause position data jumping with fast changes in the direction of count (e.g. applications with length gauges). It is thus advisable to use 8-bit period counting (M2S 0x01) and to capture the overflow in the external microcontroller. Table 40: Notes on chip functions regarding iC-NQ chip releases X2, X3 iC-NQ V2 No. Function, Parameter/Code Description and Application Hints 1 SELRES See description given for iC-NQ X2, X3 2 No further exclusions known at time of printing. Table 41: Notes on chip functions regarding iC-NQ chip release V2 iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source. iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product. As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe). We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to. iC-NQ 13-bit Sin/D CONVERTER WITH CALIBRATION Rev D1, Page 25/25 ORDERING INFORMATION Type Package Order Designation iC-NQ TSSOP20 4.4 mm iC-NQ TSSOP20 iC-NQ TSSOP20 ET -40/125 Evalutaion Board iC-NQ EVAL NQ1D For technical support, information about prices and terms of delivery please contact: iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (61 35) 92 92-0 Fax: +49 (61 35) 92 92-192 Web: http://www.ichaus.com E-Mail: [email protected] Appointed local distributors: http://www.ichaus.com/sales_partners