SHENZHENFREESCALE IRF1404

IRF1404
l
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
Automotive Qualified (Q101)
HEXFET® Power MOSFET
D
VDSS = 40V
RDS(on) = 0.004Ω
G
ID = 202A†
S
Description
Seventh Generation HEXFET® Power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve extremely low on-resistance per
silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that
HEXFET power MOSFETs are well known for, provides
the designer with an extremely efficient and reliable
device for use in a wide variety of applications including
automotive.
The TO-220 package is universally preferred for all
automotive-commercial-industrial applications at power
dissipation levels to approximately 50 watts. The low
thermal resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy‡
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Max.
Units
202†
143†
808
333
2.2
± 20
620
See Fig.12a, 12b, 15, 16
1.5
-55 to + 175
-55 to + 175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
1/9
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
0.45
–––
62
°C/W
www.freescale.net.cn
IRF1404
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
40
–––
–––
2.0
76
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
LS
Internal Source Inductance
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance …
–––
–––
–––
–––
–––
–––
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Typ. Max. Units
Conditions
––– –––
V
VGS = 0V, ID = 250µA
0.039 ––– V/°C Reference to 25°C, ID = 1mA
0.0035 0.004
Ω
VGS = 10V, ID = 121A „
––– 4.0
V
VDS = 10V, ID = 250µA
––– –––
S
VDS = 25V, ID = 121A
––– 20
VDS = 40V, VGS = 0V
µA
––– 250
VDS = 32V, VGS = 0V, TJ = 150°C
––– 200
VGS = 20V
nA
––– -200
VGS = -20V
131 196
ID = 121A
36 –––
nC
VDS = 32V
37
56
VGS = 10V„
17 –––
VDD = 20V
190 –––
ID = 121A
ns
46 –––
RG = 2.5Ω
33 –––
RD = 0.2Ω „
D
Between lead,
4.5 –––
6mm (0.25in.)
nH
G
from package
7.5 –––
and center of die contact
S
5669 –––
VGS = 0V
1659 –––
pF
VDS = 25V
223 –––
ƒ = 1.0MHz, See Fig. 5
6205 –––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
1467 –––
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
2249 –––
VGS = 0V, VDS = 0V to 32V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 202†
showing the
A
G
integral reverse
––– ––– 808
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS = 121A, VGS = 0V „
––– 78 117
ns
TJ = 25°C, IF = 121A
––– 163 245
nC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
‚ Starting TJ = 25°C, L = 85µH
RG = 25Ω, IAS = 121A. (See Figure 12)
ƒ ISD ≤ 121A, di/dt ≤ 130A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
2/9
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
†
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
www.freescale.net.cn
IRF1404
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
100
10
4.5V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
4.5V
10
20µs PULSE WIDTH
TJ = 175 °C
1
0.1
100
1
10
100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
1000
TJ = 25 ° C
TJ = 175 ° C
100
10
V DS= 25V
20µs PULSE WIDTH
4
5
6
7
8
9
10
11
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
3/9
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM4.5V
TOP
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
1000
12
2.5
ID = 202A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20 0
VGS = 10V
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.freescale.net.cn
IRF1404
10000
VGS , Gate-to-Source Voltage (V)
Crss = Cgd
Coss = Cds + Cgd
8000
C, Capacitance(pF)
20
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Ciss
6000
4000
Coss
2000
Crss
0
1
10
ID = 121A
16
12
8
4
100
0
FOR TEST CIRCUIT
SEE FIGURE 13
0
100
150
200
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
ISD , Reverse Drain Current (A)
50
QG , Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
10000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
TJ = 175 ° C
100
ID , Drain Current (A)
1000
10
10us
100us
100
TJ = 25 ° C
1
0.1
0.0
V GS = 0 V
0.5
1.0
1.5
2.0
2.5
3.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4/9
V DS= 32V
V DS= 20V
3.5
1ms
10ms
10
1
TC = 25 °C
TJ = 175 °C
Single Pulse
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.freescale.net.cn
IRF1404
220
VDS
LIMITED BY PACKAGE
200
VGS
ID , Drain Current (A)
180
140
+
-V DD
10V
120
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
100
80
Fig 10a. Switching Time Test Circuit
60
VDS
40
90%
20
0
D.U.T.
RG
160
RD
25
50
75
100
125
150
TC , Case Temperature ( °C)
175
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
0.01
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5/9
www.freescale.net.cn
IRF1404
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
1500
15V
ID
49A
101A
BOTTOM 121A
TOP
1200
A
900
600
300
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( ° C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
-VGS(th) Gate threshold Voltage (V)
10 V
3.0
ID = -250µA
2.0
1.0
-75
VGS
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 14. Threshold Voltage Vs. Temperature
Fig 13b. Gate Charge Test Circuit
6/9
www.freescale.net.cn
IRF1404
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
100
0.05
0.10
10
1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
400
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 121A
EAR , Avalanche Energy (mJ)
350
300
250
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
7/9
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax
is not exceeded.
3. Equation below based on circuit and waveforms shown
in Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = t av ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
www.freescale.net.cn
IRF1404
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

RG
•
•
•
•
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D=
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. For N-channel HEXFET® Power MOSFETs
8/9
www.freescale.net.cn
IRF1404
TO-220AB Package Outline
Dimensions are shown in millimeters
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
1.15 (.045)
MIN
1
2
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
3
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
ASS EMB LED ON WW 19, 1997
IN THE ASS EMB LY LINE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INTERNAT IONAL
RECTIFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMB ER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
For GB Production
EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
AS SEMBLED ON WW 19, 1997
IN T HE AS SEMBLY LINE "C"
INTERNATIONAL
RECTIFIER
LOGO
LOT CODE
PART NUMBER
DATE CODE
TO-220AB package is not recommended for Surface Mount Application.
9/9
www.freescale.net.cn