NSC MM74HC191J

MM54HC190/MM74HC190 Synchronous
Decade Up/Down Counters with Mode
Control MM54HC191/MM74HC191
Synchronous Binary Up/Down Counters
with Mode Control
General Description
These high speed synchronous counters utilize advanced
silicon-gate CMOS technology. They possess the high noise
immunity and low power consumption of CMOS technology,
along with the speeds of low power Schottky TTL.
These circuits are synchronous, reversible, up/down counters. The MM54HC191/MM74HC191 are 4-bit binary counters and the MM54HC190/MM74HC190 are BCD counters.
Synchronous operation is provided by having all flip-flops
clocked simultaneously, so that the outputs change simultaneously when so instructed by the steering logic. This mode
of operation eliminates the output counting spikes normally
associated with asynchronous (ripple clock) counters.
The outputs of the four master-slave flip-flops are triggered
on a low-to-high level transition of the clock input, if the
enable input is low. A high at the enable input inhibits counting. The direction of the count is determined by the level of
the down/up input. When low, the counter counts up and
when high, it counts down.
These counters are fully programmable; that is, the outputs
may be preset to either level by placing a low on the load
input and entering the desired data at the data inputs. The
output will change independent of the level of the clock input. This feature allows the counters to be used as modulo-
N dividers by simply modifying the count length with the
preset inputs.
Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count.
The latter output produces a high-level output pulse with a
duration approximately equal to one complete cycle of the
clock when the counter overflows or underflows. The ripple
clock output produces a low-level output pulse equal in
width to the low-level portion of the clock input when an
overflow or underflow condition exists. The counters can be
easily cascaded by feeding the ripple clock output to the
enable input of the succeeding counter if parallel clocking is
used, or to the clock input if parallel enabling is used. The
maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.
Features
Y
Y
Y
Y
Level changes on Enable or Down/Up can be made regardless of the level of the clock input
Wide power supply range: 2 – 6V
Low quiescent supply current: 80 mA maximum
(74HC Series)
Low input current: 1 mA maximum
Connection Diagram
Dual-In-Line Package
Load
Enable
G
Down/
Up
H
H
L
H
L
L
X
H
L
H
X
X
Clock
Function
u
u
Count Up
Count Down
Load
No Change
X
X
Asynchronous inputs Low input to load sets QA e A,
QB e B, QC e C, and QD e D
Order Number MM54HC190/191 or MM74HC190/191
TL/F/5322 – 1
Top View
C1995 National Semiconductor Corporation
TL/F/5322
RRD-B30M105/Printed in U. S. A.
MM54HC190/MM74HC190/MM54HC191/MM74HC191
January 1988
Absolute Maximum Ratings (Notes 1 & 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (VCC)
Operating Conditions
Supply Voltage (VCC)
DC Input or Output Voltage
(VIN, VOUT)
b 0.5 to a 7.0V
b 1.5 to VCC a 1.5V
DC Input Voltage (VIN)
b 0.5 to VCC a 0.5V
DC Output Voltage (VOUT)
g 20 mA
Clamp Diode Current (IIK, IOK)
g 25 mA
DC Output Current, per pin (IOUT)
g 50 mA
DC VCC or GND Current, per pin (ICC)
b 65§ C to a 150§ C
Storage Temperature Range (TSTG)
Power Dissipation (PD)
(Note 3)
600 mW
S.O. Package only
500 mW
Lead Temp. (TL) (Soldering 10 seconds)
260§ C
Operating Temp. Range (TA)
MM74HC
MM54HC
Min
2
Max
6
0
VCC
Units
V
V
b 40
b 55
a 85
a 125
§C
§C
1000
500
400
ns
ns
ns
Input Rise or Fall Times
VCC e 2.0V
(tr, tf)
VCC e 4.5V
VCC e 6.0V
DC Electrical Characteristics (Note 4)
Symbol
Parameter
Conditions
TA e 25§ C
VCC
74HC
TA eb40 to 85§ C
Typ
54HC
TA eb55 to 125§ C
Units
Guaranteed Limits
VIH
Minimum High Level
Input Voltage
2.0V
4.5V
6.0V
1.5
3.15
4.2
1.5
3.15
4.2
1.5
3.15
4.2
V
V
V
VIL
Maximum Low Level
Input Voltage**
2.0V
4.5V
6.0V
0.5
1.35
1.8
0.5
1.35
1.8
0.5
1.35
1.8
V
V
V
VOH
Minimum High Level
Output Voltage
VIN e VIH or VIL
lIOUTl s20 mA
2.0V
4.5V
6.0V
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
V
V
4.5V
6.0V
4.2
5.7
3.98
5.48
3.84
5.34
3.7
5.2
V
V
2.0V
4.5V
6.0V
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
V
V
VIN e VIH or VIL
lIOUTl s4.0 mA
lIOUTl s5.2 mA
4.5V
6.0V
0.2
0.2
0.26
0.26
0.33
0.33
0.4
0.4
V
V
VIN e VIH or VIL
lIOUTl s4.0 mA
lIOUTl s5.2 mA
VOL
Maximum Low Level
Output Voltage
VIN e VIH or VIL
lIOUTl s20 mA
IIN
Maximum Input
Current
VIN e VCC or GND
6.0V
g 0.1
g 1.0
g 1.0
mA
ICC
Maximum Quiescent
Supply Current
VIN e VCC or GND
IOUT e 0 mA
6.0V
8.0
80
160
mA
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating Ð plastic ‘‘N’’ package: b 12 mW/§ C from 65§ C to 85§ C; ceramic ‘‘J’’ package: b 12 mW/§ C from 100§ C to 125§ C.
Note 4: For a power supply of 5V g 10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when designing
with this supply. Worst case VIH and VIL occur at VCC e 5.5V and 4.5V respectively. (The VIH value at 5.5V is 3.85V.) The worst case leakage current (IIN, ICC, and
IOZ) occur for CMOS at the higher voltage and so the 6.0V values should be used.
**VIL limits are currently tested at 20% of VCC. The above VIL specification (30% of VCC) will be implemented no later than Q1, CY’89.
2
AC Electrical Characteristics TA e 25§ C, VCC e 5.0V, tr e tf e 6 ns, CL e 15 pF (unless otherwise specified)
Symbol
From
(Input)
Parameter
To
(Output)
Typ
Units
40
MHz
fMAX
Maximum Clock
Frequency
tPLH, tPHL
Maximum Propagation Delay Time
Load
QA, QB
QC, QD
30
ns
tPLH, tPHL
Maximum Propagation Delay Time
Data A,
B, C, D
QA, QB
QC, QD
27
ns
tPLH, tPHL
Maximum Propagation Delay Time
Clock
Ripple
Clock
16
ns
tPLH, tPHL
Maximum Propagation Delay Time
Clock
QA, QB
QC, QD
24
ns
tPLH, tPHL
Maximum Propagation Delay Time
Clock
Max/Min
30
ns
tPLH, tPHL
Maximum Propagation Delay Time
Down/Up
Ripple
Clock
29
ns
tPLH, tPHL
Maximum Propagation Delay Time
Down/Up
Max/Min
22
ns
tPHL, tPLH
Maximum Propagation Delay Time
Enable
Ripple Clock
22
ns
tW
Minimum Clock, Clear or Load
Input Pulse Width
10
ns
AC Electrical Characteristics VCC e 2.0V to 6.0V, CL e 50 pF, tr e tf e 6 ns (unless otherwise specified)
Symbol
Parameter
From
(Input)
To
(Output)
TA e 25§ C
VCC
Typ
fMAX
Maximum Clock
Frequency
tPLH, tPHL
Maximum Propagation
Delay Time
Load
tPLH, tPHL
Maximum Propagation
Delay Time
tPLH, tPHL
tPLH, tPHL
74HC
TA e b40 to 85§ C
54HC
TA eb55 to 125§ C
Units
Guaranteed Limits
2.0V
4.5V
6.0V
9
30
36
4.0
20
24
3.5
16
19
2.6
13
15
MHz
MHz
MHz
QA, QB
QC, QD
2.0V
4.5V
6.0V
80
27
21
220
44
37
275
55
47
330
66
56
ns
ns
ns
Data A,
B, C, D
QA, QB
QC, QD
2.0V
4.5V
6.0V
71
25
19
200
40
34
250
50
43
300
60
51
ns
ns
ns
Maximum Propagation
Delay Time
Clock
Ripple
Clock
2.0V
4.5V
6.0V
44
25
14
125
25
21
155
31
26
190
38
32
ns
ns
ns
Maximum Propagation
Delay Time
Clock
QA, QB
QC, QD
2.0V
4.5V
6.0V
83
29
22
215
43
37
270
54
46
325
65
55
ns
ns
ns
3
AC Electrical Characteristics (Continued)
Symbol
Parameter
From
(Input)
74HC
54HC
TA e 25§ C
To
Conditions VCC
TA eb40 to 85§ C TA eb55 to 125§ C Units
(Output)
Typ
Guaranteed Limits
tPLH, tPHL Maximum Propagation
Delay Time
Clock
Max/Min
tPLH, tPHL Maximum Propagation
Delay Time
Down/Up
Ripple
Clock
tPLH,tPHL Maximum Propagation
Delay Time
Down/Up Max/Min
tPHL, tPLH Maximum Propagation
Delay Time
Enable
Ripple
Clock
2.0V 125
4.5V 41
6.0V 31
255
51
43
320
64
54
385
77
65
ns
ns
ns
2.0V
4.5V
6.0V
90
30
24
210
42
36
265
53
45
315
63
54
ns
ns
ns
2.0V
4.5V
6.0V
88
30
23
190
38
32
240
48
41
285
57
48
ns
ns
ns
2.0V
4.5V
6.0V
50
18
14
125
25
21
155
31
26
190
38
32
ns
ns
ns
2.0V
4.5V
6.0V
36
12
9
125
25
21
155
31
26
190
38
32
ns
ns
ns
50
14
10
100
20
17
125
25
21
150
30
26
ns
ns
ns
tW
Minimum Clock, Load or
Clear Input Pulse Width
tS
Minimum Setup Time
Data
Load
2.0V
4.5V
6.0V
tH
Data Hold Time
Load
Data
2.0V b16
4.5V b3
6.0V b2
25
5
5
30
6
6
40
8
7
ns
ns
ns
tS
Minimum Setup Time
Down/Up
Clock
2.0V
4.5V
6.0V
150
30
26
190
38
33
225
48
38
ns
ns
ns
tH
Minimum Hold Time
Clock
Down/Up
0
0
0
0
0
0
0
0
0
ns
ns
ns
tS
Minimum Setup Time
Enable
Clock
2.0V
4.5V
6.0V
100
20
17
125
25
21
150
30
26
ns
ns
ns
tH
Minimum Hold Time
Clock
Enable
2.0V b11
4.5V b5
6.0V b3
0
0
0
0
0
0
0
0
0
ns
ns
ns
trem
Minimum Removal Time
Load
Clock
2.0V
4.5V
6.0V
1
1
0
25
5
5
30
6
6
40
8
7
ns
ns
ns
tTHL, tTLH Maximum Output
Rise and Fall Time
2.0V
4.5V
6.0V
30
10
9
75
15
13
95
19
16
110
22
19
s
ns
ns
tW
Minimum Load
Pulse Width
2.0V
4.5V
6.0V
53
15
12
100
20
17
125
25
21
150
30
26
ns
ns
ns
CIN
Input Capacitance
5
10
10
10
pF
CPD
Power Dissipation
Capacitance (Note 5)
35
62
18
14
2.0V b23
4.5V b5
6.0V b4
28
10
7
pF
Note 5: CPD determines the no load dynamic power consumption, PD e CPD VCC2 f a ICC VCC, and the no load dynamic current consumption, IS e CPD VCC f a
ICC.
4
Logic Diagrams
’HC190 Decade Counters
TL/F/5322 – 2
Pin (16) e VCC, Pin (8) e GND
5
Logic Diagrams (Continued)
’HC191 Binary Counters
TL/F/5322 – 3
Pin (16) e VCC, Pin (8) e GND
6
Timing Diagrams
’HC190 Synchronous Decade Counters
Typical Load, Count, and Inhibit Sequences
TL/F/5322 – 4
Sequence:
(1) Load (preset) to BCD seven
(2) Count up to eight, nine, zero, one and two
(3) Inhibit
(4) Count down to one, zero, nine, eight, and seven
’HC191 Synchronous Binary Counters
Typical Load, Count, and Inhibit Sequence
TL/F/5322 – 5
Sequence:
(1) Load (preset) to binary thirteen
(2) Count up to fourteen, fifteen, zero, one, and two
(3) Inhibit
(4) Count down to one, zero, fifteen, fourteen, and thirteen
7
MM54HC190/MM74HC190/MM54HC191/MM74HC191
Physical Dimensions inches (millimeters)
Order Number MM54HC190J, MM54HC191J, MM74HC190J, or MM74HC191J
NS Package J16A
Order Number MM74HC190N or MM74HC191N
NS Package N16E
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.
National Semiconductor
Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
National Semiconductor
Europe
Fax: (a49) 0-180-530 85 86
Email: cnjwge @ tevm2.nsc.com
Deutsch Tel: (a49) 0-180-530 85 85
English Tel: (a49) 0-180-532 78 32
Fran3ais Tel: (a49) 0-180-532 93 58
Italiano Tel: (a49) 0-180-534 16 80
National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960
National Semiconductor
Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.