ANPEC APA2181DHAI-TRG

APA2181
Low Supply Current, 50mW Stereo Cap-Free Headphone Driver
Features
General Description
•
Operating Voltage: 2.3V~5.5V
•
Supply Current
The APA2181 is a stereo, fixed gain, single supply, and
cap-free headphone driver, which is available in a
WLCSP1.6x1.6-12 package.
The APA2181 is ground-reference output, and no need
- IDD=1mA at VDD=3.6V
•
Low Shutdown Current
the output capacitors for DC blocking. The advantages of
eliminating the output capacitor are saving the cost, elimi-
- IDD=5µA at VDD=3.6V
•
Ground Reference Output
nating component height, and improving the low frequency
response.
- No Output Capacitor Required (for DC Blocking)
- Save the PCB Space
The internal fixed gain setting (-1.5V/V) can minimize the
external component counts and save the PCB space. High
- Reduce the BOM Costs
- Improve the Low Frequency Response
•
Output Power 50mW/Ch into 16Ω at VDD=3.6V
•
High PSRR: 80dB at 217Hz
•
Fast Start-Up Time: 4ms
•
Integrate the De-pop Circuitry
•
Thermal Protection
•
Integrated LDO (Low Dropout Regulator) for
PSRR provides increased immunity to noise and RF
rectification. LDO is the best solution for microphone
detection circuit requirement, and it can lower the total
BOM costs.
The APA2181 is capable of driving 50mW at 3.6V into16Ω
load, and provides thermal protection.
Microphone Detection Circuit (1.9V)
•
Simplified Application Circuit
Surface-Mount Packaging
Stereo
Headphone
WLCSP1.6x1.6-12
•
Lead Free and Green Devices Available
Stereo
Input
Signal
(RoHS Compliant)
Shutdown
Control
Applications
•
RIN
ROUT
LIN
APA2181
SDN
LOUT
LOUT To Microphone
Detection Circuit
Handsets
•
PDAs
•
Portable Multimedia Devices
•
Notebooks
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise
customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
1
www.anpec.com.tw
APA2181
Pin Configuration
LOUT
(C1)
ROUT
(C2)
LIN
(C3)
RIN
(C4)
VSS
(B1)
SDN
(B2)
GND
(B3)
VDD
(B4)
VOUT
(A1)
CPN
(A2)
PGND
(A3)
CPP
(A4)
A 8 1
V X
Marking
PIN A1
Date
Code
Voltage Code
WLCSP1.6x1.6-12
(Top View)
Ordering and Marking Information
Voltage Code
D : 1.9V M : 2.8V
Package Code
HA : WLCSP1.6x1.6-12
Temperature Range
I : - 40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
APA2181
Assembly Material
Handling Code
Temperature Range
Package Code
Voltage Code
APA2181 HA:
A81
VX
X - Date Code ; V - Voltage Code
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Absolute Maximum Ratings
Symbol
VPGND_GND
(Note 1)
Parameter
Rating
Unit
PGND to GND Voltage
-0.3 to 0.3
-0.3 to 5.5
VDD
Supply Voltage (VDD to GND and PGND)
VSDN
Input Voltage (SDN to GND)
VSS
VSS to GND and PGND Voltage
VOUT
ROUT and LOUT to GND Voltage
VCPP
CPP to PGND Voltage
PGND-0.3 to VDD+0.3
VCPN
CPN to PGND Voltage
PVSS-0.3 to PGND+0.3
TJ
TSTG
GND-0.3 to VDD+0.3
-5.5 to 0.3
VSS-0.3 to VDD+0.3
Maximum Junction Temperature
150
Storage Temperature Range
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
V
o
C
-65 to +150
2
www.anpec.com.tw
APA2181
Absolute Maximum Ratings (Cont.)
Symbol
(Note 1)
Parameter
TSDR
Rating
Maximum Soldering Temperature Range, 10 Seconds
PD
Unit
o
260
Power Dissipation
C
Internally Limited
W
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Thermal Characteristics
Symbol
Parameter
Typical Value
Thermal Resistance - Junction to Ambient
θJA
Unit
(Note 2)
O
160
WLCSP1.6x1.6-12
C/W
Note 2: Please refer to “Thermal Pad Consideration”. 2 layered 5 in2 printed circuit boards with 2oz trace and copper through several
thermal vias. The thermal pad is soldered on the PCB.
Recommended Operating Conditions
Symbol
Parameter
Range
Unit
VDD
Supply Voltage
2.3 ~ 5.5
VIH
High Level Threshold Voltage
SDN
VIL
Low Level Threshold Voltage
SDN
TA
Operating Ambient Temperature Range
-40 ~ 85
TJ
Operating Ambient Temperature Range
-40 ~ 125
RL
Headphone Resistance
16 ~ 100k
V
1.0 ~ VDD
0 ~ 0.35
Ο
C
Ω
Electrical Characteristics
o
VDD=3.6V, VGND=VPGND=0V, VSDN=VDD, CCPF=CCPO=1µF, Ci=1µF, TA=25 C (unless otherwise noted)
Symbol
Parameter
APA2181
Test Conditions
Min.
Typ.
Unit
Max.
IDD
VDD Supply Current
-
1
2
ISD
VDD Shutdown Current
VSDN=0V
-
5
10
Input current
SDN
-
0.1
-
400
500
600
kHz
-
15
18
Ω
-1.55
-1.5
-1.45
V/V
-
1
2
%
II
mA
µA
CHARGE PUMP
fOSC
Switching Frequency
Req
Equivalent Resistance
DRIVERS
AV
△AV
Internal Voltage Gain
No Load
Gain Matching
Ri
Input Resistance
12
14
16
Rf
Feedback Resistance
17
21
25
-
2.5
-
-8
-
8
mV
-
27
-
µVrms
VSR
Slew Rate
VOS
Output Offset Voltage
VN
Output Noise
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
VDD=2.3V to 5.5V, RL = 16Ω
3
kΩ
V/µs
www.anpec.com.tw
APA2181
Electrical Characteristics (Cont.)
o
VDD=3.6V, VGND=VPGND=0V, VSDN=VDD, CCPF=CCPO=1µF, Ci=1µF, TA=25 C (unless otherwise noted)
Symbol
Parameter
APA2181
Test Conditions
Min.
Unit
Typ.
Max.
-80
-80
-40
-60
-60
-35
DRIVERS (CONT.)
PSRR
CL
Tstart-up
VESD
PO
THD+N
Crosstalk
S/N
Power Supply Rejection Ratio
VDD=2.3V to 5.5V, Vrr=200mVrms
fin= 217Hz
fin= 1kHz
fin= 20kHz
-
dB
Maximum Capacitive Load
-
400
-
pF
Start-up Time
-
4
-
ms
-
8
-
kV
50
60
-
45
ESD Protection
Output Power (Stereo, In
Phase)
OUTR, OUTL
THD+N=1%, fin=1kHz
RL=16Ω
RL=32Ω
mW
THD+N=10%, fin=1kHz
RL=16Ω
RL=32Ω
-
Total Harmonic Distortion
Plus Noise
PO=20mW, RL=32Ω
fin=20Hz
fin=1kHz
fin=20kHz
-
Channel Separation
PO=40mW, RL=32Ω,
fin=20Hz
fin=1kHz
fin=20kHz
75
Signal to Noise Ratio
VDD=5V, PO=140mW, RL=32Ω,
With A-weighting Filter
70
80
0.03
0.03
0.20
85
85
70
-
-
%
dB
-
95
-
LDO (LOW DROP-OUT REGULATOR)
VO
Output Voltage Accuracy
-
±5
-
IO
Output Current
5
-
-
ILIM
Current-Limit
30
40
50
ISC
Short Circuit Current-Limit
6
8
10
-
40
-
PSRR
Power Supply Rejection Ratio
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
Over Temp & Over Load Current
IO=1mA, fin=1kHz
4
%
mA
dB
www.anpec.com.tw
APA2181
Typical Operating Characteristics
THD+N vs. Output Power
THD+N vs. Output Power
10
fin=20kHz
1
0.1
fin=1kHz
fin=20Hz
0.01
0
VDD=4.2V
RL=16Ω
Cin=1µF
BW<80kHz
Stereo, in Phase
50m
100m
150m
Output Power (mW)
fin=20kHz
1
THD+N (%)
THD+N (%)
10
0.1
fin=20Hz
0.01
0
200m
THD+N vs. Output Power
fin=1kHz
15m
THD+N (%)
THD+N (%)
fin=20kHz
fin=20Hz
VDD=2.8V
RL=16Ω
Cin=1µF
BW<80kHz
Stereo, in Phase
30m
45m
60m
Output Power (mW)
fin=1kHz
fin=20Hz
0.01
75m
0
THD+N vs. Output Power
VDD=4.2V
RL=32Ω
Cin=1µF
BW<80kHz
Stereo, in Phase
50m
100m
150m
Output Power (mW)
200m
THD+N vs. Output Power
10
fin=20kHz
1
THD+N (%)
THD+N (%)
125m
fin=20kHz
1
0.1
10
0.1
fin=1kHz
fin=20Hz
0.01
0
50m
75m
100m
Output Power (mW)
10
1
0.01
0
25m
VDD=3.6V
RL=16Ω
Cin=1µF
BW<80kHz
Stereo, in Phase
THD+N vs. Output Power
10
0.1
fin=1kHz
VDD=3.6V
RL=32Ω
Cin=1µF
BW<80kHz
Stereo, in Phase
50m
75m
100m
25m
Output Power (mW)
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
fin=20kHz
1
0.1
fin=1kHz
fin=20Hz
0.01
0
125m
5
15m
VDD=2.8V
RL=16Ω
Cin=1µF
BW<80kHz
Stereo, in Phase
30m
45m
60m
Output Power (mW)
75m
www.anpec.com.tw
APA2181
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
THD+N vs. Output Voltage
1
fin=1kHz
RL=10kΩ
Cin=1µF
BW<80kHz
Stereo, in Phase
1
VDD=4.2V
RL=16Ω
Cin=1µF
BW<80kHz
VDD=2.8V
THD+N (%)
THD+N (%)
10
VDD=4.2V
0.1
0.1
Po=55mW
VDD=3.6V
Po=30mW
0.01
0.01
0
0.006
1
2
3
Output Voltage (Vrms)
4
10
10k 20k
1
VDD=2.8V
RL=16Ω
Cin=1µF
BW<80kHz
THD+N (%)
VDD=3.6V
RL=16Ω
Cin=1µF
BW<80kHz
THD+N (%)
100
1k
Frequency (Hz)
THD+N vs. Frequency
THD+N vs. Frequency
1
0.1
Po=40mW
0.1
Po=20mW
Po=10mW
Po=10mW
Po=20mW
0.01
0.01
0.006
10
0.006
100
1k
10k 20k
10
Frequency (Hz)
100
1k
Frequency (Hz)
10k 20k
THD+N vs. Frequency
THD+N vs. Frequency
1
1
VDD=3.6V
RL=32Ω
Cin=1µF
BW<80kHz
THD+N (%)
VDD=4.2V
RL=32Ω
Cin=1µF
BW<80kHz
THD+N (%)
Po=10mW
0.1
Po=60mW
0.1
Po=40mW
Po=30mW
Po=20mW
Po=10mW
0.01
Po=10mW
0.01
0.006
0.006
10
100
1k
10k 20k
10
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
6
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2181
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
THD+N vs. Frequency
1
1
VDD=4.2V
RL=10kΩ
Cin=1µF
BW<80kHz
THD+N (%)
THD+N (%)
VDD=2.8V
RL=32Ω
Cin=1µF
BW<80kHz
0.1
Po=20mW
0.1
Vo=2Vrms
Vo=1Vrms
Vo=0.1Vrms
Po=10mW
0.01
0.01
0.006
10
100
1k
Frequency (Hz)
0.006
10
10k 20k
1
VDD=2.8V
RL=10kΩ
Cin=1µF
BW<80kHz
THD+N (%)
VDD=3.6V
RL=10kΩ
Cin=1µF
BW<80kHz
0.1
Vo=1.6Vrms
Vo=0.8Vrms
0.1
Vo=1.4Vrms
Vo=0.1Vrms
Vo=0.1Vrms
Vo=0.7Vrms
0.01
0.01
0.006
0.006
10
100
1k
Frequency (Hz)
10k 20k
10
Crosstalk vs. Frequency
100
1k
Frequency (Hz)
10k 20k
Crosstalk vs. Frequency
+0
+0
VDD=3.6V
RL=32Ω
PO=40mW
Cin=1µF
-20
-20
-40
Crosstalk (dB)
Crosstalk (dB)
10k 20k
THD+N vs. Frequency
THD+N vs. Frequency
1
THD+N (%)
100
1k
Frequency (Hz)
-60
Left to Right
-80
VDD=3.6V
RL=10kΩ
VO=1.6Vrms
Cin=1µF
-40
-60
-80
Right to Left
-100
Right to Left
-100
Left to Right
-120
10
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
-120
10
10k 20k
7
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2181
Typical Operating Characteristics (Cont.)
Frequency Response
Frequency Response
+4
+220
+4
+200
+3
+220
Gain
+180
VDD=3.6V
RL=32Ω
PO=40mW
Cin=1µF
+1
+0
10
100
1k
10k
Frequency (Hz)
200k
+200
Phase
+2
+180
VDD=3.6V
RL=10kΩ
VO=1.6Vrms
Cin=1µF
+160
+1
+140
+0
10
VDD=3.6V
RL=10kΩ
Cin=1µF
Vrr=100mVrms
-40
-50
PSRR (dB)
-60
-70
Left channel
-80
-60
-70
Left channel
-80
Right channel
-90
-100
10
100
1k
Frequency (Hz)
Right channel
-90
-100
10
10k 20k
Output Noise Voltage vs. Frequency
10k 20k
GSM Power Supply Rejection vs.
Frequency
50µ
+0
45µ
-40
40µ
35µ
-80
RL=16Ω
30µ
25µ
20µ
15µ
10µ
10
Output Voltage (dBV)
Output Noise Voltage (Vrms)
100
1k
Frequency (Hz)
RL=10kΩ
VDD=3.6V
Cin=1µF
A-Wighting
100
1k
Frequency (Hz)
10k20k
+0
-120
Supply Voltage (dBV)
PSRR (dB)
-50
+140
200k
1k
10k
Frequency (Hz)
-30
VDD=3.6V T
RL=32Ω
Cin=1µF
Vrr=100mVrms
-40
+160
PSRR vs. Frequency
PSRR vs. Frequency
-30
100
Phase (deg)
Phase
+2
Gain (dB)
Gain (dB)
+3
Phase (deg)
Gain
-40
-80
-120
0
400
800
1.2k
1.6k
2k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
8
www.anpec.com.tw
APA2181
Typical Operating Characteristics (Cont.)
Power Dissipation vs. Output Power
275
360
250
225
320
Power Dissipation (mW)
Power Dissipation (mW)
Power Dissipation vs. Output Power
400
RL=16Ω
280
240
RL=32Ω
200
160
VDD=4.5V
fin=1kHz
Cin=1µF
Stereo
120
80
40
0
0
RL=16Ω
200
175
RL=32Ω
150
125
100
VDD=3.3V
fin=1kHz
Cin=1µF
Stereo
75
50
25
0
40
80
120
160
Output Power (mW)
0
200
20
40
60
80
100
120
140
Output Power (mW)
Power Dissipation vs. Output Power
100
Power Dissipation (mW)
90
80
70
60
RL=32Ω
50
40
30
VDD=2.6V
fin=1kHz
Cin=1µF
Stereo
20
10
0
0
10
20
30
40
50
60
Output Power (mW)
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
9
www.anpec.com.tw
APA2181
Operating Waveforms
Shutdown Release
Shutdown
VSDN
V SDN
1
1
V ROUT
VROUT
2
2
VDD=3.6V, RL=32Ω
CH1: VSDN, 2V/Div, DC
CH2: VROUT, 1V/Div, DC
VDD=3.6V, RL=32Ω
CH1: VRSD, 2V/Div, DC
CH2: VROUT, 1V/Div, DC
TIME:2ms/Div
TIME:2ms/Div
Output Transient at Shutdown Release
Output Transient at Shutdown
VSDN
V SDN
1
1
VLOUT
VLOUT
2
2
VROUT
VROUT
3
3
VDD=3.6V, RL=32Ω
VDD=3.6V, RL=32Ω
CH1: VSDN, 2V/Div, DC
CH2: VLOUT, 20mV/Div, DC
CH3: VROUT, 20mV/Div, DC
TIME:2ms/Div
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
CH1: VSDN, 2V/Div, DC
CH2: VLOUT, 20mV/Div, DC
CH3: VROUT, 20mV/Div, DC
TIME:2ms/Div
10
www.anpec.com.tw
APA2181
Operating Waveforms (Cont.)
VOUT Power On
VOUT Power Off
V DD
V DD
1
1
VOUT
VOUT
2
2
VDD=3.6V, ROUT=10kΩ
CH1: VDD, 1V/Div, DC
CH2: VOUT, 1V/Div, DC
VDD=3.6V, ROUT=10kΩ
CH1: VDD, 1V/Div, DC
CH2: VOUT, 1V/Div, DC
TIME:4ms/Div
TIME:10ms/Div
GSM Power Supply Rejection vs. Time
1
VDD
V LOUT
2
V ROUT
3
VDD=3.6V, RL=32Ω
CH1: VDD, 200mV/Div, DC, Offset=3.6V
CH2: VLOUT, 20mV/Div, DC
CH3: VROUT, 20mV/Div, DC
TIME:2ms/Div
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
11
www.anpec.com.tw
APA2181
Pin Description
PIN
I/O/P
FUNCTION
NO.
NAME
A1
VOUT
O
LDO (Low Drop-Out Regulator)’s output pin.
A2
CPN
I/O
Charge pump flying capacitor negative connection.
A3
PGND
P
A4
CPP
I/O
B1
VSS
P
Headphone driver negative power supply.
B2
SDN
I
Shutdown mod control input signal, pull low for shutdown headphone driver.
B3
GND
P
Ground connection for circuitry.
B4
VDD
P
Supply voltage input pin.
C1
LOUT
O
Left channel output for headphone.
C2
ROUT
O
Right channel output for headphone.
C3
LIN
I
Left channel input terminal.
C4
RIN
I
Right channel input terminal.
Charge pump’s ground.
Charge pump flying capacitor positive connection.
Block Diagram
RIN
ROUT
GND
LIN
LOUT
LDO
SDN
Shutdown
Circuit
PGND
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
Power
and
Depop
Circuit
VOUT
CPP
Charge
Pump
CPN
VDD VSS
12
www.anpec.com.tw
APA2181
Typical Application Circuit
Ci1
RIN
ROUT
1µF
Stereo
Headphone
ROUT
AUDIO
DAC
GND
LIN
1µF
LOUT
LOUT
Ci2
LDO
VOUT
200kΩ
RMICBIAS
MICBIAS
1µF
CPP
Shutdown
Control
SDN
Shutdown
Circuit
Power
and
Depop
Circuit
Charge
Pump
CCPF
1µF
(X5R)
Microphone
Chip
CPN
MICIN
PGND
VDD VDD VSS
VSS
CS
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
1µF
CCPO
13
Microphone
1µF
www.anpec.com.tw
APA2181
Function Description
Headphone Driver Operation
Shutdown Function
In order to reduce power consumption while not in use,
the APA2181 contains shutdown controllers to externally
VDD
turn off the amplifier bias circuitry. This shutdown feature
turns the amplifier off when logic low is placed on the
VOUT
VDD/2
SDN pins for the APA2181. The trigger point between a
logic high is 1.0V and logic low level is 0.35V. It is recomGND
mended to switch between ground and the supply voltage VDD to provide maximum device performance. By
Conventional Headphone Driver
switching the SDN pins to a low level, the amplifier enters
a low-consumption current circumstance, charge pump
VDD
is disabled, and IDD for the APA2181 is in shutdown mode.
In normal operating, the APA2181’s SDN pins should be
pulled to a high level to keep the IC out of the shutdown
mode. The SDN pins should be tied to a definite voltage
VOUT
GND
to avoid unwanted circumstance changes.
Low Drop-Out (LDO) Regulator
The LDO regulator’s output provides maximum 5mA drive
capacity for external audio codec. A 1µF decoupling ca-
VSS
pacitor with 0.1µF capacitor (filtering the high frequency
noise) is recommended at LDO regulator’s output. The
Cap-free Headphone Driver
LDO monitors the output current and limits the maximum
output current to prevent damages during current over-
Figure 1. Cap-free Operation
The APA2181’s headphone drivers use a charge pump
load or short circuit conditions.
The LDO provides a soft-start function, using the con-
to invert the positive power supply (VDD) to negative power
supply (VSS), see figure1. The headphone drivers oper-
stant current to charge the output capacitor that gives a
rapid and linear output voltage rise. If the load current is
ate at this bipolar power supply (VDD and VSS) and the outputs reference refers to the ground. This feature elimi-
above the current limit start-up, the LDO cannot start
successfully.
nates the output capacitor that is using in conventional
single-ended headphone drive amplifier. Compare with
the single power supply amplifier, the power supply range
has almost doubled.
Thermal Protection
The thermal protection circuit limits the junction temperature of the APA2181. When the junction temperature exceeds TJ = +150 OC, a thermal sensor turns off the driver,
allowing the devices to cool. The thermal sensor allows
the driver to start-up after the junction temperature down
about 125OC. The thermal protection is designed with a
25OC hysteresis to lower the average TJ during continuous thermal overload conditions, increasing lifetime of
the ICs.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
14
www.anpec.com.tw
APA2181
Application Information
When input resistance variation is considered, the Ci is
1µF. Therefore, a value in the range of 1µF to 2.2µF would
Charge Pump Flying Capacitor (CCPF)
The flying capacitor (CCPF) affects the load transient of the
be chosen. A further consideration for this capacitor is the
leakage path from the input source through the input net-
charge pump. If the capacitor’s value is too small, and
then this increases charge pump’s output resistance and
work (Ri + Rf, Ci) to the load.
degrades the performance of headphone amplifier.
Increasing the flying capacitor’s value improves the load
This leakage current creates a DC offset voltage at the
transient of charge pump. It is recommend to use the low
ESR ceramic capacitors (X5R or X7R type is recommended)
input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a low-
above 1µF.
leakage tantalum or ceramic capacitor is the best choice.
When polarized capacitors are used, the negative side of
Charge Pump Output Capacitor (CCPO)
The charge pump needs an output capacitor(CCPO) to fil-
the capacitor should face the amplifiers’ inputs in most
applications because the DC level of the amplifiers’ in-
ter the negative output current pulse flowing into CVSS
pin as well as reduces the output voltage ripple(CVSS).
puts are held at 0V. Please note that it is important to
confirm the capacitor polarity in the application.
The capacitor also sucks in surge current flowing from
the VSS pin, the negative power input pin for the amplifiers.
Power Supply Decoupling (CS)
The APA2181 is a high-performance CMOS audio ampli-
The output ripple is determined by the capacitance, ESR,
and current ripple of the output capacitor. Increasing the
fier that requires adequate power supply decoupling to
ensure the output total harmonic distortion (THD+N) as
value of output capacitor and decreasing the ESR can
reduce the voltage ripple. Using a low-ESR ceramic ca-
low as possible. Power supply decoupling also prevents
the oscillations being caused by long lead length be-
pacitor greater than 1µF is recommended. For reducing
the parasitic inductance and improving the noise
tween the amplifier and the speaker.
decoupling, place the capacitor near the CVSS and PGND
pins as close as possible.
The optimum decoupling is achieved by using two different types of capacitor that target on different types of noise
Input Capacitor (Ci)
on the power supply leads. For higher frequency
transients, spikes, or digital hash on the line, a good low
equivalent-series- resistance (ESR) ceramic capacitor,
typically 0.1µF, is placed as close as possible to the de-
In the typical application, an input capacitor (Ci) is required
to allow the amplifier to bias the input signal to the proper
DC level for optimum operation. In this case, Ci and the
vice VDD lead for the best performance. For filtering lower
frequency noise signals, a large aluminum electrolytic
input impedance Ri from a high-pass filter with the cutoff
frequency are determined in the following equation:
capacitor of 10µF or greater placed near the audio power
amplifier is recommended.
fC(highpass)
1
=
2πRiCi
(1)
Thermal Consideration
Linear power amplifiers dissipate a significant amount
The value of Ci must be considered carefully because it
of heat in the package in normal operating condition. The
first consideration to calculate maximum ambient tem
directly affects the low frequency performance of the circuit.
Consider the example where Ri is 14kΩ and the specifi-
peratures is the numbers from the Power Dissipation vs.
Output Power graphs are per channel values, so the dis-
cation that calls for a flat bass response down to 10Hz.
The equation is reconfigured as below:
1
Ci =
2πRifC
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
sipation of the IC heat needs to be doubled for two-channel operation. Given θJA, the maximum allowable junc-
(2)
tion temperature (TJMax), the total internal dissipation (PD),
and the maximum ambient temperature can be calcu-
15
www.anpec.com.tw
APA2181
Application Information (Cont.)
lated with the following equation. The maximum recommended junction temperature for the APA2181 is 150oC.
The internal dissipation figures are taken from the Power
output trace
output trace
Thermal Consideration (Cont.)
Ci1
Ci2
Dissipation vs. Output Power graphs. The APA2181 is
designed with a thermal shutdown protection that turns
the device off when the junction temperature surpasses
150°C to prevent damaging the IC.
CCPB
Layout Consideration
PIN A1
1. All components should be placed close to the APA2181.
For example, the input capacitor (CiR, CiL) should be
CCPF
close to APA2181 input pins to avoid causing noise
coupling to APA2181 high impedance inputs; the
Figure 3. APA2181 Layout Suggestion
decoupling capacitor (C S ) should be placed by the
APA2181 power pin to decouple the power rail noise.
2. The output traces should be short, wide (>50mil), and
symmetric.
3. The input trace should be short and symmetric.
4. The power trace width should be greater than 50mil.
5. The input trace and output trace should be away from
CCPF and CCPB possible.
12 x Φ0.20mm
0.4mm
0.4mm
Figure 2. WLCSP2x2-16 land pattern recommendation
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
16
www.anpec.com.tw
APA2181
Package Information
E
WLCSP1.6x1.6-12
PIN 1
A2
D
A1
e
A
e/2
b
S
Y
M
B
O
L
e
WLCSP1.6x1.6-12
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
A
0.45
0.55
0.017
0.022
A1
0.10
0.20
0.004
0.008
A2
0.55
0.75
0.022
0.030
b
0.15
0.25
0.006
0.010
D
1.50
1.60
0.059
0.063
E
1.50
1.60
0.059
0.063
e
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
0.4 BSC
0.016 BSC
17
www.anpec.com.tw
APA2181
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
A
H
T1
C
d
D
W
E1
F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.30
1.75±0.10
3.5±0.05
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
1.75±0.15
1.75±0.15
0.75±0.10
WLCSP1.6x1.6-12
4.0±
0.10
4.0±0.10
(mm)
Devices Per Unit
Package Type
Unit
Quantity
WLCSP1.6x1.6-12
Tape & Reel
3000
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
18
www.anpec.com.tw
APA2181
Taping Direction Information
WLCSP1.6x1.6-12
USER DIRECTION OF FEED
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
19
www.anpec.com.tw
APA2181
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
3
Package
Thickness
<2.5 mm
Volume mm
<350
235 °C
Volume mm
≥350
220 °C
≥2.5 mm
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
20
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
www.anpec.com.tw
APA2181
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2010
21
www.anpec.com.tw