AOSMD AOD200

AOD200
30V N-Channel MOSFET
General Description
Product Summary
The AOD200 uses trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance.Power losses are
minimized due to an extremely low combination of
RDS(ON) and Crss.In addition,switching behavior is well
controlled with a "Schottky style" soft recovery body diode.
VDS
ID (at VGS=10V)
30V
36A
RDS(ON) (at VGS=10V)
< 7.8mΩ
RDS(ON) (at VGS = 4.5V)
< 11mΩ
100% UIS Tested
100% Rg Tested
TO252
DPAK
Top View
D
Bottom View
D
D
S
G
G
S
S
G
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current G
Pulsed Drain Current
Avalanche Current
C
C
Avalanche energy L=0.1mH
TC=25°C
Power Dissipation
B
Power Dissipation
A
TA=25°C
Junction and Storage Temperature Range
Thermal Characteristics
Parameter
A
Maximum Junction-to-Ambient
AD
Maximum Junction-to-Ambient
Maximum Junction-to-Case
Rev 0: November 2010
14
28
A
EAS, EAR
39
mJ
50
Steady-State
Steady-State
W
25
2.5
RθJA
RθJC
W
1.6
TJ, TSTG
Symbol
t ≤ 10s
A
IAS, IAR
PDSM
TA=70°C
A
11
PD
TC=100°C
V
120
IDSM
TA=70°C
±20
28
IDM
TA=25°C
Continuous Drain
Current
Units
V
36
ID
TC=100°C
C
Maximum
30
°C
-55 to 175
Typ
15
41
2.1
www.aosmd.com
Max
20
50
3
Units
°C/W
°C/W
°C/W
Page 1 of 6
AOD200
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
Drain-Source Breakdown Voltage
BVDSS
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=250µA, VGS=0V
Max
30
1
TJ=55°C
µA
5
IGSS
Gate-Body leakage current
VDS=0V, VGS= ±20V
Gate Threshold Voltage
VDS=VGS ID=250µA
1.3
ID(ON)
On state drain current
VGS=10V, VDS=5V
120
Units
V
VDS=30V, VGS=0V
VGS(th)
100
nA
1.85
2.4
V
6.3
7.8
9.5
11.5
VGS=4.5V, ID=15A
8.7
11
VGS=10V, ID=20A
RDS(ON)
Typ
Static Drain-Source On-Resistance
TJ=125°C
A
gFS
Forward Transconductance
VDS=5V, ID=20A
60
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
IS
Maximum Body-Diode Continuous CurrentG
DYNAMIC PARAMETERS
Ciss
Input Capacitance
mΩ
mΩ
S
1
V
36
A
860
1084
1300
pF
VGS=0V, VDS=15V, f=1MHz
325
470
615
pF
7
24
40
pF
VGS=0V, VDS=0V, f=1MHz
0.3
0.7
1.1
Ω
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
10
12.8
16
nC
Qg(4.5V) Total Gate Charge
3.5
5.3
7
nC
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
VGS=10V, VDS=15V, ID=20A
VGS=10V, VDS=15V, RL=0.75Ω,
RGEN=3Ω
3.2
nC
1.2
nC
6.7
ns
2.1
ns
15.5
ns
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=500A/µs
11
2.0
14
17
ns
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
24
30
36
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0: November 2010
www.aosmd.com
Page 2 of 6
AOD200
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
80
50
10V
4.5V
VDS=5V
4V
40
60
ID(A)
ID (A)
30
3V
40
20
125°C
20
10
VGS=3.5V
25°C
0
0
0
1
2
3
4
1
5
15
Normalized On-Resistance
VGS=4.5V
RDS(ON) (mΩ
Ω)
2
2.5
3
3.5
4
2
12
9
6
VGS=10V
3
1.8
VGS=10V
ID=20A
1.6
17
5
2
10
=4.5V
1.4
1.2
VGS
ID=15A
1
0.8
0
0
5
0
10
15
20
25
30
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
25
50
75
100
125
150
175
200
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction
18Temperature
(Note E)
20
1.0E+02
ID=20A
1.0E+01
40
15
1.0E+00
125°C
IS (A)
RDS(ON) (mΩ
Ω)
1.5
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
10
125°C
1.0E-01
1.0E-02
25°C
1.0E-03
5
25°C
1.0E-04
1.0E-05
0
2
4
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev 0: November 2010
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOD200
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
1800
1400
Capacitance (pF)
VGS (Volts)
1600
VDS=15V
ID=20A
8
6
4
Ciss
1200
1000
800
Coss
600
400
2
200
0
0
0
5
10
15
Qg (nC)
Figure 7: Gate-Charge Characteristics
20
0
5
10
15
20
VDS (Volts)
Figure 8: Capacitance Characteristics
25
200
1000.0
160
10µs
100.0
10.0
TJ(Max)=175°C
TC=25°C
10µs
RDS(ON)
limited
100µs
1ms
10ms
DC
1.0
TJ(Max)=175°C
TC=25°C
0.1
Power (W)
ID (Amps)
Crss
17
5
2
10
120
80
40
0.0
0
0.01
0.1
1
VDS (Volts)
10
100
0.0001
0.001
0.01
0.1
1
10
0
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-to-Case
(Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=3°C/W
1
0.1
PD
Ton
Single Pulse
T
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev 0: November 2010
www.aosmd.com
Page 4 of 6
AOD200
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
IAR (A) Peak Avalanche Current
60
Power Dissipation (W)
TA=25°C
TA=100°C
TA=150°C
TA=125°C
50
40
30
20
10
10
0
0.000001
0.00001
0.0001
0.001
Time in avalanche, tA (µ
µs)
Figure 12: Single Pulse Avalanche capability (Note
C)
0
25
50
75
100
125
TCASE (°
°C)
Figure 13: Power De-rating (Note F)
150
10000
40
Power (W)
Current rating ID(A)
TA=25°C
1000
30
20
17
5
2
10
100
10
10
1
0
0.00001
0
25
50
75
100
125
150
TCASE (°
°C)
Figure 14: Current De-rating (Note F)
0.001
0.1
10
1000
0
18
175
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=50°C/W
0.1
PD
0.01
Single Pulse
Ton
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
T
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 0: November 2010
www.aosmd.com
Page 5 of 6
AOD200
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds Isd
Vgs
Ig
Rev 0: November 2010
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6