AOD200 30V N-Channel MOSFET General Description Product Summary The AOD200 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance.Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition,switching behavior is well controlled with a "Schottky style" soft recovery body diode. VDS ID (at VGS=10V) 30V 36A RDS(ON) (at VGS=10V) < 7.8mΩ RDS(ON) (at VGS = 4.5V) < 11mΩ 100% UIS Tested 100% Rg Tested TO252 DPAK Top View D Bottom View D D S G G S S G Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS VGS Gate-Source Voltage TC=25°C Continuous Drain Current G Pulsed Drain Current Avalanche Current C C Avalanche energy L=0.1mH TC=25°C Power Dissipation B Power Dissipation A TA=25°C Junction and Storage Temperature Range Thermal Characteristics Parameter A Maximum Junction-to-Ambient AD Maximum Junction-to-Ambient Maximum Junction-to-Case Rev 0: November 2010 14 28 A EAS, EAR 39 mJ 50 Steady-State Steady-State W 25 2.5 RθJA RθJC W 1.6 TJ, TSTG Symbol t ≤ 10s A IAS, IAR PDSM TA=70°C A 11 PD TC=100°C V 120 IDSM TA=70°C ±20 28 IDM TA=25°C Continuous Drain Current Units V 36 ID TC=100°C C Maximum 30 °C -55 to 175 Typ 15 41 2.1 www.aosmd.com Max 20 50 3 Units °C/W °C/W °C/W Page 1 of 6 AOD200 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS Drain-Source Breakdown Voltage BVDSS IDSS Zero Gate Voltage Drain Current Conditions Min ID=250µA, VGS=0V Max 30 1 TJ=55°C µA 5 IGSS Gate-Body leakage current VDS=0V, VGS= ±20V Gate Threshold Voltage VDS=VGS ID=250µA 1.3 ID(ON) On state drain current VGS=10V, VDS=5V 120 Units V VDS=30V, VGS=0V VGS(th) 100 nA 1.85 2.4 V 6.3 7.8 9.5 11.5 VGS=4.5V, ID=15A 8.7 11 VGS=10V, ID=20A RDS(ON) Typ Static Drain-Source On-Resistance TJ=125°C A gFS Forward Transconductance VDS=5V, ID=20A 60 VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 IS Maximum Body-Diode Continuous CurrentG DYNAMIC PARAMETERS Ciss Input Capacitance mΩ mΩ S 1 V 36 A 860 1084 1300 pF VGS=0V, VDS=15V, f=1MHz 325 470 615 pF 7 24 40 pF VGS=0V, VDS=0V, f=1MHz 0.3 0.7 1.1 Ω SWITCHING PARAMETERS Qg(10V) Total Gate Charge 10 12.8 16 nC Qg(4.5V) Total Gate Charge 3.5 5.3 7 nC Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime VGS=10V, VDS=15V, ID=20A VGS=10V, VDS=15V, RL=0.75Ω, RGEN=3Ω 3.2 nC 1.2 nC 6.7 ns 2.1 ns 15.5 ns tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 11 2.0 14 17 ns Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 24 30 36 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 0: November 2010 www.aosmd.com Page 2 of 6 AOD200 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 80 50 10V 4.5V VDS=5V 4V 40 60 ID(A) ID (A) 30 3V 40 20 125°C 20 10 VGS=3.5V 25°C 0 0 0 1 2 3 4 1 5 15 Normalized On-Resistance VGS=4.5V RDS(ON) (mΩ Ω) 2 2.5 3 3.5 4 2 12 9 6 VGS=10V 3 1.8 VGS=10V ID=20A 1.6 17 5 2 10 =4.5V 1.4 1.2 VGS ID=15A 1 0.8 0 0 5 0 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 200 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 20 1.0E+02 ID=20A 1.0E+01 40 15 1.0E+00 125°C IS (A) RDS(ON) (mΩ Ω) 1.5 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 10 125°C 1.0E-01 1.0E-02 25°C 1.0E-03 5 25°C 1.0E-04 1.0E-05 0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev 0: November 2010 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOD200 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 1800 1400 Capacitance (pF) VGS (Volts) 1600 VDS=15V ID=20A 8 6 4 Ciss 1200 1000 800 Coss 600 400 2 200 0 0 0 5 10 15 Qg (nC) Figure 7: Gate-Charge Characteristics 20 0 5 10 15 20 VDS (Volts) Figure 8: Capacitance Characteristics 25 200 1000.0 160 10µs 100.0 10.0 TJ(Max)=175°C TC=25°C 10µs RDS(ON) limited 100µs 1ms 10ms DC 1.0 TJ(Max)=175°C TC=25°C 0.1 Power (W) ID (Amps) Crss 17 5 2 10 120 80 40 0.0 0 0.01 0.1 1 VDS (Volts) 10 100 0.0001 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=3°C/W 1 0.1 PD Ton Single Pulse T 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev 0: November 2010 www.aosmd.com Page 4 of 6 AOD200 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 IAR (A) Peak Avalanche Current 60 Power Dissipation (W) TA=25°C TA=100°C TA=150°C TA=125°C 50 40 30 20 10 10 0 0.000001 0.00001 0.0001 0.001 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 0 25 50 75 100 125 TCASE (° °C) Figure 13: Power De-rating (Note F) 150 10000 40 Power (W) Current rating ID(A) TA=25°C 1000 30 20 17 5 2 10 100 10 10 1 0 0.00001 0 25 50 75 100 125 150 TCASE (° °C) Figure 14: Current De-rating (Note F) 0.001 0.1 10 1000 0 18 175 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=50°C/W 0.1 PD 0.01 Single Pulse Ton 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 T 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev 0: November 2010 www.aosmd.com Page 5 of 6 AOD200 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev 0: November 2010 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6