AOT210L/AOB210L 30V N-Channel MOSFET General Description Product Summary The AOT210L/AOB210L uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Power losses are minimized due to an extremely low combination of RDS(ON) and Crss. VDS 30V 105A ID (at VGS=10V) < 2.9mΩ (< 2.6mΩ∗) RDS(ON) (at VGS=10V) < 3.7mΩ (< 3.5mΩ∗) RDS(ON) (at VGS = 4.5V) 100% UIS Tested 100% Rg Tested TO-263 TO220 Top View Top View Bottom View D D2PAK D Bottom View D D D G G D S S D G G Absolute Maximum Ratings TA=25°C unless otherwise noted Symbol Parameter VDS Drain-Source Voltage VGS Gate-Source Voltage Continuous Drain Current G TC=25°C Pulsed Drain Current C Continuous Drain Current TA=25°C S S Maximum 30 Units V ±20 V 82 IDM A 400 20 IDSM TA=70°C G 105 ID TC=100°C S A 16 Avalanche Current C IAS, IAR 68 A Avalanche energy L=0.1mH C EAS, EAR 231 mJ TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range 1.9 Steady-State Steady-State RθJA RθJC W 1.2 TJ, TSTG Symbol t ≤ 10s W 88 PDSM TA=70°C Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case 176 PD TC=100°C -55 to 175 Typ 12 54 0.7 °C Max 15 65 0.85 Units °C/W °C/W °C/W * Surface mount package TO263 Rev0 : Sep 2010 www.aosmd.com Page 1 of 6 AOT210L/AOB210L Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Min Conditions ID=250µA, VGS=0V VDS=30V, VGS=0V IGSS Gate-Body leakage current VDS=0V, VGS= ±20V VGS(th) Gate Threshold Voltage VDS=VGS ID=250µA 1 ID(ON) On state drain current VGS=10V, VDS=5V 400 TJ=55°C 5 100 VGS=10V, ID=20A VGS=4.5V, ID=20A TO220 3 3.7 VGS=10V, ID=20A TO263 2.1 2.6 VGS=4.5V, ID=20A TO263 VDS=5V, ID=20A 2.7 78 3.5 0.65 1 V 105 A IS=1A,VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous CurrentG TJ=125°C DYNAMIC PARAMETERS Ciss Input Capacitance Reverse Transfer Capacitance Rg Gate resistance SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qg(4.5V) Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf Turn-Off Fall Time V A 4.7 VSD Crss nA 2.9 Forward Transconductance Output Capacitance 2.2 3.7 gFS Coss 1.7 µA 2.4 TO220 IS Units V 1 Zero Gate Voltage Drain Current Static Drain-Source On-Resistance Max 30 IDSS RDS(ON) Typ VGS=0V, VDS=15V, f=1MHz VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=15V, ID=20A mΩ S 2800 3520 4300 pF 920 1320 1720 pF 50 90 120 pF 0.5 1 1.5 Ω 39 48 58 nC 17 22 27 nC 7 9 11 nC 4 7 10 nC VGS=10V, VDS=20V, RL=0.75Ω, RGEN=3Ω 11 ns 10 ns 38 ns 11 ns trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 14 21 28 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 40 58 76 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev0 : Sep 2010 www.aosmd.com Page 2 of 6 AOT210L/AOB210L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V 7V VDS=5V 3.5V 80 3V 80 60 ID(A) ID (A) 60 40 40 20 20 125°C 25°C Vgs=2.5V 0 0 0 1 2 3 4 1 5 8 2 2.5 3 3.5 4 Normalized On-Resistance 2 6 RDS(ON) (mΩ) 1.5 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) VGS=4.5V 4 2 VGS=10V 1.8 VGS=10V ID=20A 1.6 17 VGS=4.5V5 ID=20A 2 10 1.4 1.2 1 0.8 0 0 5 0 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 200 Temperature (°C) 0 Figure 4: On-Resistance vs. Junction Temperature 18 (Note E) 1.0E+02 8 ID=20A 1.0E+01 40 1.0E+00 6 IS (A) RDS(ON) (mΩ) 125°C 125°C 4 1.0E-01 25°C 1.0E-02 1.0E-03 2 1.0E-04 25°C 1.0E-05 0.0 0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev0 : Sep 2010 www.aosmd.com 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT210L/AOB210L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 5000 10 VDS=20V ID=20A 4000 Capacitance (pF) VGS (Volts) 8 6 4 2 3000 2000 Coss 1000 0 10 20 30 40 Qg (nC) Figure 7: Gate-Charge Characteristics 50 0 RDS(ON) limited 10µs 10µs 10 15 20 25 VDS (Volts) Figure 8: Capacitance Characteristics 1ms 10ms 10.0 DC 1.0 TJ(Max)=175°C TC=25°C 0.1 0.0 0.01 0.1 1 VDS (Volts) 500 100µs Power (W) 100.0 5 30 600 1000.0 ID (Amps) Crss 0 0 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC TJ(Max)=175°C TC=25°C 17 5 2 10 400 300 200 10 100 100 0.0001 0.001 0.01 1 0 10 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=0.85°C/W PD 0.1 Ton 0.01 0.00001 0.1 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) ZθJC Normalized Transient Thermal Resistance Ciss Single Pulse 0.0001 0.001 0.01 T 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev0 : Sep 2010 www.aosmd.com Page 4 of 6 AOT210L/AOB210L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 200 TA=25°C Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=100°C 100 TA=150°C TA=125°C 10 160 120 80 40 0 0 1 10 100 1000 Time in avalanche, tA (µs) Figure 12: Single Pulse Avalanche capability (Note C) 120 25 50 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 175 1000 90 Power (W) Current rating ID(A) TA=25°C 60 17 5 2 10 10 30 0 0 10 ZθJA Normalized Transient Thermal Resistance 100 1 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F) D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 175 1 0.001 0.1 10 0 1000 Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=65°C/W 0.1 PD 0.01 Single Pulse 0.001 0.01 0.1 1 Ton 10 T 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev0 : Sep 2010 www.aosmd.com Page 5 of 6 AOT210L/AOB210L Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - VDC DUT Qgs Qgd - Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC Rg - 10% Vgs Vgs t d(on) tr t d(off) ton tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR= 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs VDC Rg - I AR Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds - Isd Vgs Ig Rev0 : Sep 2010 Vgs L Isd + Vdd VDC - IF t rr dI/dt I RM Vdd Vds www.aosmd.com Page 6 of 6