AOSMD AOTF256L

AOTF256L
150V N-Channel MOSFET
General Description
Product Summary
The AOTF256L uses trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance. Both conduction and
switching power losses are minimized due to an
extremely low combination of RDS(ON), Ciss and Coss.
This device is ideal for boost converters and synchronous
rectifiers for consumer, telecom, industrial power supplies
and LED backlighting.
VDS
150V
12A
ID (at VGS=10V)
RDS(ON) (at VGS=10V)
< 85mΩ
RDS(ON) (at VGS=4.5V)
< 100mΩ
100% UIS Tested
100% Rg Tested
TO220FL
Top View
Bottom View
G
D
D
G
S
S
D
G
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current
Pulsed Drain Current C
Avalanche Current
C
Avalanche energy L=0.1mH C
TC=25°C
Power Dissipation B
TA=25°C
Power Dissipation
A
Junction and Storage Temperature Range
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
Rev 0: August 2012
3
9
A
EAS
4
mJ
33
Steady-State
Steady-State
W
16
2.1
RθJA
RθJC
W
1.3
TJ, TSTG
Symbol
t ≤ 10s
A
IAS
PDSM
TA=70°C
A
2.5
PD
TC=100°C
V
35
IDSM
TA=70°C
±20
8.5
IDM
TA=25°C
Continuous Drain
Current
Units
V
12
ID
TC=100°C
Maximum
150
-55 to 175
Typ
12
50
3.8
www.aosmd.com
°C
Max
15
60
4.6
Units
°C/W
°C/W
°C/W
Page 1 of 6
AOTF256L
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=250µA, VGS=0V
150
1
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS,ID=250µA
1.8
ID(ON)
On state drain current
VGS=10V, VDS=5V
35
TJ=55°C
±100
nA
2.25
2.8
V
70
85
139
170
VGS=4.5V, ID=8A
78
100
mΩ
35
1
V
12
A
Static Drain-Source On-Resistance
TJ=125°C
gFS
Forward Transconductance
VDS=5V, ID=10A
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
Maximum Body-Diode Continuous Current
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
A
0.72
DYNAMIC PARAMETERS
Input Capacitance
Ciss
Output Capacitance
Units
µA
5
VGS=10V, ID=10A
Coss
Max
V
VDS=150V, VGS=0V
IDSS
RDS(ON)
Typ
VGS=0V, VDS=75V, f=1MHz
S
1165
pF
61.5
pF
2.5
VGS=0V, VDS=0V, f=1MHz
1.1
mΩ
2.2
pF
3.3
Ω
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
15.5
22
nC
Qg(4.5V) Total Gate Charge
7
10
nC
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
VGS=10V, VDS=75V, ID=10A
VGS=10V, VDS=75V, RL=7.5Ω,
RGEN=3Ω
4
nC
1.2
nC
6.5
ns
5
ns
23
ns
tf
Turn-Off Fall Time
2.5
ns
trr
Body Diode Reverse Recovery Time
IF=10A, dI/dt=500A/µs
37
Qrr
Body Diode Reverse Recovery Charge IF=10A, dI/dt=500A/µs
265
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0: August 2012
www.aosmd.com
Page 2 of 6
AOTF256L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
30
30
10V
VDS=5V
25
25
4.0V
20
20
ID(A)
ID (A)
4.5V
7V
15
10
15
10
3.5V
125°C
25°C
5
5
VGS=3.0V
0
0
0
1
2
3
4
1
5
100
3
4
5
Normalized On-Resistance
2.8
90
RDS(ON) (mΩ
Ω)
2
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
VGS=4.5V
80
70
VGS=10V
60
2.6
2.4
VGS=10V
ID=10A
2.2
2
17
5
2
VGS=4.5V10
1.8
1.6
1.4
1.2
ID=8A
1
0.8
50
0
3
0
6
9
12
15
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
25
50
75
100
125
150
175
200
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction
18Temperature
(Note E)
160
1.0E+01
ID=10A
1.0E+00
140
40
1.0E-01
120
IS (A)
RDS(ON) (mΩ
Ω)
125°C
125°C
1.0E-02
100
25°C
1.0E-03
25°C
80
1.0E-04
60
1.0E-05
2
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev 0: August 2012
4
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOTF256L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
1400
VDS=75V
ID=10A
Ciss
1200
Capacitance (pF)
VGS (Volts)
8
6
4
1000
800
600
400
2
Coss
200
0
Crss
0
0
4
8
12
16
Qg (nC)
Figure 7: Gate-Charge Characteristics
20
0
25
50
75
100
125
VDS (Volts)
Figure 8: Capacitance Characteristics
1000
100.0
TJ(Max)=175°C
TC=25°C
10µs
ID (Amps)
RDS(ON)
limited
800
100µs
Power (W)
10µs
10.0
1ms
10ms
1.0
DC
0.1
TJ(Max)=175°C
TC=25°C
17
5
2
10
600
400
200
0.0
0
0.01
0.1
1
10
VDS (Volts)
100
1000
10
0.0001 0.001
0.01
0.1
1
0
10
100
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
Zθ JC Normalized Transient
Thermal Resistance
150
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=4.6°C/W
1
PD
0.1
Single Pulse
Ton
T
0.01
1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev 0: August 2012
www.aosmd.com
Page 4 of 6
AOTF256L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
40
Power Dissipation (W)
IAR (A) Peak Avalanche Current
100
TA=100°C
TA=25°C
10
TA=150°C
TA=125°C
1
30
20
10
0
1
10
Time in avalanche, tA (µ
µs)
Figure 12: Single Pulse Avalanche capability
(Note C)
100
0
25
50
75
100
125
150
TCASE (°C)
Figure 13: Power De-rating (Note F)
175
10000
20
Power (W)
Current rating ID(A)
TA=25°C
1000
15
10
17
5
2
10
100
10
5
1
0
1E-05
0
25
50
75
100
125
150
TCASE (°C)
Figure 14: Current De-rating (Note F)
0.001
0.1
10
1000
0
18
175
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=60°C/W
0.1
PD
0.01
Single Pulse
Ton
T
0.001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 0: August 2012
www.aosmd.com
Page 5 of 6
AOTF256L
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds Isd
Vgs
Ig
Rev 0: August 2012
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6