AON6298

AON6298
100V N-Channel MOSFET
General Description
Product Summary
VDS
The AON6298 uses trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance. Both conduction and
switching power losses are minimized due to an
extremely low combination of RDS(ON), Ciss and Coss.
This device is ideal for boost converters and synchronous
rectifiers for consumer, telecom, industrial power supplies
and LED backlighting.
100V
46A
ID (at VGS=10V)
RDS(ON) (at VGS=10V)
< 16.5mΩ
RDS(ON) (at VGS=6V)
< 21mΩ
100% UIS Tested
100% Rg Tested
DFN5X6
Top View
D
Top View
Bottom View
1
8
2
7
3
6
4
5
G
S
PIN1
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current
Pulsed Drain Current C
Avalanche Current
C
Avalanche energy L=0.1mH C
TC=25°C
Power Dissipation B
TA=25°C
Power Dissipation
A
Junction and Storage Temperature Range
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
Rev.1.0: February 2013
14.5
15
A
EAS
11
mJ
78
Steady-State
Steady-State
W
31
7.4
RθJA
RθJC
W
4.7
TJ, TSTG
Symbol
t ≤ 10s
A
IAS
PDSM
TA=70°C
A
11.5
PD
TC=100°C
V
95
IDSM
TA=70°C
±20
30
IDM
TA=25°C
Continuous Drain
Current
Units
V
46
ID
TC=100°C
Maximum
100
-55 to 150
Typ
14
40
1.25
www.aosmd.com
°C
Max
17
55
1.6
Units
°C/W
°C/W
°C/W
Page 1 of 6
AON6298
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=250µA, VGS=0V
100
1
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250µA
2.4
ID(ON)
On state drain current
VGS=10V, VDS=5V
95
TJ=55°C
±100
nA
2.85
3.4
V
13.7
16.5
25.7
31
VGS=6V, ID=20A
16.6
21
mΩ
43
1
V
46
A
Static Drain-Source On-Resistance
TJ=125°C
gFS
Forward Transconductance
VDS=5V, ID=20A
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
Maximum Body-Diode Continuous Current
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=50V, f=1MHz
Gate Source Charge
Qgd
tD(on)
VGS=10V, VDS=50V, ID=20A
0.6
mΩ
S
1307
pF
127
pF
8
VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS
Qg(10V)
Total Gate Charge
Qgs
A
0.73
DYNAMIC PARAMETERS
Input Capacitance
Ciss
Output Capacitance
Units
µA
5
VGS=10V, ID=20A
Coss
Max
V
VDS=100V, VGS=0V
IDSS
RDS(ON)
Typ
pF
1.25
1.9
16
23
Ω
nC
5
nC
Gate Drain Charge
3
nC
Turn-On DelayTime
7.5
ns
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
2.5
ns
16.5
ns
tf
Turn-Off Fall Time
3
ns
trr
Body Diode Reverse Recovery Time
Qrr
IF=20A, dI/dt=500A/µs
30
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
132
ns
nC
VGS=10V, VDS=50V, RL=2.5Ω,
RGEN=3Ω
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA t ≤ 10s and the maximum allowed junction temperature of 150°C. The value in any given application
depends on the user's specific board design.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev.1.0: February 2013
www.aosmd.com
Page 2 of 6
AON6298
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
100
VDS=5V
10V
80
80
6V
60
60
ID(A)
ID (A)
5V
40
40
4.5V
125°C
20
20
VGS=4V
25°C
0
0
0
1
2
3
4
1
5
25
3
4
5
6
7
Normalized On-Resistance
2.4
20
RDS(ON) (mΩ
Ω)
2
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
VGS=6V
15
VGS=10V
10
5
2.2
2
VGS=10V
ID=20A
1.8
17
5
2
VGS=6V10
1.6
1.4
1.2
ID=20A
1
0.8
0
0
5
0
10
15
20
25
30
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
25
50
75
100
125
150
175
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction
18Temperature
(Note E)
50
1.0E+02
ID=20A
1.0E+01
120
40
40
30
IS (A)
RDS(ON) (mΩ
Ω)
1.0E+00
125°C
20
30
1.0E-01
125°C
1.0E-02
25°C
1.0E-03
10
25°C
1.0E-04
1.0E-05
0
2
4
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev.1.0: February 2013
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AON6298
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
1500
VDS=50V
ID=20A
Ciss
1200
Capacitance (pF)
VGS (Volts)
8
6
4
900
600
Coss
2
300
0
0
Crss
0
5
10
15
20
0
10
Qg (nC)
Figure 7: Gate-Charge Characteristics
30
40
50
60
70
80
90
100
VDS (Volts)
Figure 8: Capacitance Characteristics
500
1000.0
100µs
1ms
10ms
1.0
DC
TJ(Max)=150°C
TC=25°C
0.1
0.0
0.01
Power (W)
10µs
RDS(ON)
limited
10.0
TJ(Max)=150°C
TC=25°C
400
10µs
100.0
ID (Amps)
20
0.1
1
17
5
2
10
300
200
100
10
100
1000
0
0.0001
0.001
0.01
0.1
1
10
0
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-to-Case
VDS (Volts)
VGS > or equal to 6V
Figure 9: Maximum Forward Biased
Safe Operating Area (Note F)
(Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
120
40
RθJC=1.6°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
30
PD
0.1
Single Pulse
Ton
T
0.01
1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev.1.0: February 2013
www.aosmd.com
Page 4 of 6
AON6298
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
100
Power Dissipation (W)
IAR (A) Peak Avalanche Current
1000
TA=25°C
TA=100°C
TA=150°C
10
TA=125°C
1
80
60
40
20
0
1
10
100
1000
0
25
Time in avalanche, tA (µ
µs)
Figure 12: Single Pulse Avalanche capability
(Note C)
75
100
125
150
TCASE (°C)
Figure 13: Power De-rating (Note F)
10000
50
TA=25°C
40
1000
Power (W)
Current rating ID(A)
50
30
20
17
5
2
10
100
10
10
1
1E-05
0
0
25
50
75
100
125
150
TCASE (°C)
Figure 14: Current De-rating (Note F)
0.001
0.1
100
1000
Pulse Width (s)
18
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
120
40
RθJA=55°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
30
0.1
PD
0.01
Ton
Single Pulse
0.001
0.0001
0.001
0.01
T
0.1
1
10
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev.1.0: February 2013
www.aosmd.com
Page 5 of 6
AON6298
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds Isd
Vgs
Ig
Rev.1.0: February 2013
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6