AON6298 100V N-Channel MOSFET General Description Product Summary VDS The AON6298 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. 100V 46A ID (at VGS=10V) RDS(ON) (at VGS=10V) < 16.5mΩ RDS(ON) (at VGS=6V) < 21mΩ 100% UIS Tested 100% Rg Tested DFN5X6 Top View D Top View Bottom View 1 8 2 7 3 6 4 5 G S PIN1 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.1mH C TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev.1.0: February 2013 14.5 15 A EAS 11 mJ 78 Steady-State Steady-State W 31 7.4 RθJA RθJC W 4.7 TJ, TSTG Symbol t ≤ 10s A IAS PDSM TA=70°C A 11.5 PD TC=100°C V 95 IDSM TA=70°C ±20 30 IDM TA=25°C Continuous Drain Current Units V 46 ID TC=100°C Maximum 100 -55 to 150 Typ 14 40 1.25 www.aosmd.com °C Max 17 55 1.6 Units °C/W °C/W °C/W Page 1 of 6 AON6298 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250µA, VGS=0V 100 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 2.4 ID(ON) On state drain current VGS=10V, VDS=5V 95 TJ=55°C ±100 nA 2.85 3.4 V 13.7 16.5 25.7 31 VGS=6V, ID=20A 16.6 21 mΩ 43 1 V 46 A Static Drain-Source On-Resistance TJ=125°C gFS Forward Transconductance VDS=5V, ID=20A VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=50V, f=1MHz Gate Source Charge Qgd tD(on) VGS=10V, VDS=50V, ID=20A 0.6 mΩ S 1307 pF 127 pF 8 VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs A 0.73 DYNAMIC PARAMETERS Input Capacitance Ciss Output Capacitance Units µA 5 VGS=10V, ID=20A Coss Max V VDS=100V, VGS=0V IDSS RDS(ON) Typ pF 1.25 1.9 16 23 Ω nC 5 nC Gate Drain Charge 3 nC Turn-On DelayTime 7.5 ns tr Turn-On Rise Time tD(off) Turn-Off DelayTime 2.5 ns 16.5 ns tf Turn-Off Fall Time 3 ns trr Body Diode Reverse Recovery Time Qrr IF=20A, dI/dt=500A/µs 30 Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 132 ns nC VGS=10V, VDS=50V, RL=2.5Ω, RGEN=3Ω A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA t ≤ 10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.1.0: February 2013 www.aosmd.com Page 2 of 6 AON6298 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 VDS=5V 10V 80 80 6V 60 60 ID(A) ID (A) 5V 40 40 4.5V 125°C 20 20 VGS=4V 25°C 0 0 0 1 2 3 4 1 5 25 3 4 5 6 7 Normalized On-Resistance 2.4 20 RDS(ON) (mΩ Ω) 2 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) VGS=6V 15 VGS=10V 10 5 2.2 2 VGS=10V ID=20A 1.8 17 5 2 VGS=6V10 1.6 1.4 1.2 ID=20A 1 0.8 0 0 5 0 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 50 1.0E+02 ID=20A 1.0E+01 120 40 40 30 IS (A) RDS(ON) (mΩ Ω) 1.0E+00 125°C 20 30 1.0E-01 125°C 1.0E-02 25°C 1.0E-03 10 25°C 1.0E-04 1.0E-05 0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev.1.0: February 2013 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AON6298 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 1500 VDS=50V ID=20A Ciss 1200 Capacitance (pF) VGS (Volts) 8 6 4 900 600 Coss 2 300 0 0 Crss 0 5 10 15 20 0 10 Qg (nC) Figure 7: Gate-Charge Characteristics 30 40 50 60 70 80 90 100 VDS (Volts) Figure 8: Capacitance Characteristics 500 1000.0 100µs 1ms 10ms 1.0 DC TJ(Max)=150°C TC=25°C 0.1 0.0 0.01 Power (W) 10µs RDS(ON) limited 10.0 TJ(Max)=150°C TC=25°C 400 10µs 100.0 ID (Amps) 20 0.1 1 17 5 2 10 300 200 100 10 100 1000 0 0.0001 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case VDS (Volts) VGS > or equal to 6V Figure 9: Maximum Forward Biased Safe Operating Area (Note F) (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 120 40 RθJC=1.6°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 30 PD 0.1 Single Pulse Ton T 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev.1.0: February 2013 www.aosmd.com Page 4 of 6 AON6298 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=25°C TA=100°C TA=150°C 10 TA=125°C 1 80 60 40 20 0 1 10 100 1000 0 25 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 10000 50 TA=25°C 40 1000 Power (W) Current rating ID(A) 50 30 20 17 5 2 10 100 10 10 1 1E-05 0 0 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F) 0.001 0.1 100 1000 Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 120 40 RθJA=55°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 30 0.1 PD 0.01 Ton Single Pulse 0.001 0.0001 0.001 0.01 T 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev.1.0: February 2013 www.aosmd.com Page 5 of 6 AON6298 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev.1.0: February 2013 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6