AOW2918 100V N-Channel MOSFET General Description Product Summary The AOW2918 uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition, switching behavior is well controlled with a soft recovery body diode.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS ID (at VGS=10V) 100V 90A RDS(ON) (at VGS=10V) < 7mΩ 100% UIS Tested 100% Rg Tested TO-262 D Bottom View Top View G G D S S D G S Absolute Maximum Ratings TA=25°C unless otherwise noted Symbol Parameter Drain-Source Voltage VDS VGS Gate-Source Voltage TC=25°C Continuous Drain Current G Pulsed Drain Current Continuous Drain Current V A 70 13 IDSM TA=70°C ±20 260 IDM TA=25°C Units V 90 ID TC=100°C C Maximum 100 A 10 Avalanche Current C IAS, IAR 35 A Avalanche energy L=0.1mH C TC=25°C EAS, EAR 61 mJ Power Dissipation B TC=100°C Power Dissipation A TA=70°C TA=25°C Rev 0 : Aug 2011 2.1 Steady-State Steady-State RθJA RθJC W 1.33 TJ, TSTG Symbol t ≤ 10s W 133 PDSM Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case 267 PD -55 to 175 Typ 12 50 0.45 °C Max 15 60 0.56 Units °C/W °C/W °C/W Page 1 of 6 AOW2918 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250µA, VGS=0V 100 Typ 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS= ±20V VGS(th) Gate Threshold Voltage VDS=VGS,ID=250µA 2.7 ID(ON) On state drain current VGS=10V, VDS=5V 260 TJ=55°C VGS=10V, ID=20A 100 nA 3.3 3.9 V 5.6 7 9 12 A Static Drain-Source On-Resistance gFS Forward Transconductance VDS=5V, ID=20A 34 VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 IS Maximum Body-Diode Continuous CurrentG TJ=125°C DYNAMIC PARAMETERS Ciss Input Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=50V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg(10V) Total Gate Charge mΩ S 1 V 90 A 2580 3430 pF 1530 2035 pF 37 63 pF Ω 1.5 38 VGS=10V, VDS=50V, ID=20A µA 5 RDS(ON) Output Capacitance Units V VDS=100V, VGS=0V IDSS Coss Max 53 nC Qgs Gate Source Charge Qgd Gate Drain Charge 12 tD(on) Turn-On DelayTime 17 38 ns tr Turn-On Rise Time 24 53 ns VGS=10V, VDS=50V, RL=2.5Ω, RGEN=3Ω tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 12 nC nC 30 66 ns 24 53 ns 46 65 230 320 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current limited by package is 120A. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev0 : Aug 2011 www.aosmd.com Page 2 of 6 AOW2918 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V VDS=5V 7V 80 80 6V 60 ID(A) ID (A) 60 40 40 125°C 20 20 25°C Vgs=5V 0 0 0 1 2 3 4 2 5 VDS (Volts) Fig 1: On-Region Characteristics (Note E) 10 4 5 6 7 VGS(Volts) Figure 2: Transfer Characteristics (Note E) 8 2 Normalized On-Resistance VGS=10V 8 RDS(ON) (mΩ Ω) 3 6 4 2 1.8 VGS=10V ID=20A 1.6 17 5 2 10 1.4 1.2 1 0.8 0 0 5 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 0 25 50 75 100 125 150 175 200 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 20 1.0E+02 ID=20A 1.0E+01 40 16 1.0E+00 IS (A) RDS(ON) (mΩ Ω) 125°C 125°C 12 1.0E-01 25°C 1.0E-02 1.0E-03 8 25°C 1.0E-04 1.0E-05 4 5 8 9 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev0 : Aug 2011 6 7 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOW2918 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 5000 VDS=50V ID=20A 8 4000 Capacitance (pF) VGS (Volts) Ciss 6 4 2 3000 2000 Coss 1000 0 0 0 5 10 15 20 25 30 35 Qg (nC) Figure 7: Gate-Charge Characteristics 40 0 20 40 60 80 VDS (Volts) Figure 8: Capacitance Characteristics 100 1000 1000.0 10µs 10µs 100µs RDS(ON) 10.0 1ms DC 10ms 1.0 TJ(Max)=175°C TC=25°C 0.1 900 TJ(Max)=175°C TC=25°C 800 Power (W) 100.0 ID (Amps) Crss 700 17 5 2 10 600 500 400 300 0.0 200 0.01 0.1 1 10 VDS (Volts) 100 1000 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=0.56°C/W 1 PD 0.1 Single Pulse Ton T 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev0 : Aug 2011 www.aosmd.com Page 4 of 6 AOW2918 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 IAR (A) Peak Avalanche Current 300 Power Dissipation (W) TA=25°C TA=100°C TA=150°C 250 200 150 100 50 TA=125°C 10 0 1 10 100 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 0 50 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 175 10000 100 TA=25°C 80 1000 Power (W) Current rating ID(A) 25 60 40 17 5 2 10 100 10 20 0 1 0 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F) 0.001 0.1 10 0 1000 18 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) 175 1E-05 Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=60°C/W 0.1 PD 0.01 Single Pulse Ton T 0.001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev0 : Aug 2011 www.aosmd.com Page 5 of 6 AOW2918 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev0 : Aug 2011 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6