AVT-50663 DC – 6000 MHz InGaP HBT Gain Block Data Sheet Description Features Avago Technologies’ AVT-50663 is an economical, easyto-use, general purpose InGaP HBT MMIC gain block amplifier utilizing Darlington pair configuration housed in a 6-lead (SOT-363) surface mount plastic package. • Small signal gain amplifier The Darlington feedback structure provides inherent broad bandwidth performance, resulting in useful operating frequency up to 6 GHz. This is an ideal device for small-signal gain cascades or IF amplification. AVT-50663 is fabricated using advanced InGaP HBT (Hetero-junction Bipolar Transistor) technology that offers state-of-the-art reliability, temperature stability and performance consistency. Component Image • Operating frequency DC to 6 GHz • Unconditionally stable • 50 Ohm input & output • Flat, Broadband Frequency Response up to 2 GHz • Industry standard SOT-363 • Lead-free, RoHS compliant, Green Specifications 2 GHz, 5V Vcc, 36mA (typical) • 15.3 dB Gain • 12.5 dBm P1dB • 25 dBm OIP3 Output & Vd GND 50X GND GND • 15 dB IRL and ORL Applications GND Input • 4 dB NF • Cellular / PCS / 3G base station • Wireless Data / WLAN Top View Notes: Package marking provides orientation and identification “50” = Device Code “X” = Month of Manufacture “•” = Pin 1 • WiMAX / WiBRO • CATV & Cable modem • ISM Typical Biasing Configuration VCC = 5V Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (120V) ESD Human Body Model (1200V) Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. Rbias Cbyp RFin Cblock Pin 3 Cbyp Rbias = (VCC - Vd)/Id RFout Pin 6 Vd Pin 1, 2, 4, 5 (GND) Cblock Absolute Maximum Rating[1] TA=25°C Thermal Resistance Symbol Parameter Units Absolute Max. Id Device Current mA 70 PIN,MAX CW RF Input Power dBm 15 PDISS Total Power Dissipation [3] mW 297 TOPT Operating Temperature °C -40 to 85 TJ,MAX Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 Thermal Resistance [2] θJC = 149°C/W (Id = 36 mA, TC = 85°C) Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Thermal resistance measured using Infrared measurement technique. 3. Ground lead temperature is 25°C. Derate 6.7mW/°C for TC >106°C. Electrical Specifications [4] TA = 25°C, Zo = 50 Ω, VCC = 5 V, Rbias = 30 Ω, Pin = -15 dBm (unless specified otherwise) Symbol Parameter and Test Condition Id Device Current Gp Power Gain Frequency 900 MHz 2000 MHz ΔGp Gain Flatness f3dB 3 dB Bandwidth OIP3 [5] Output 3rd Intercept Point Units Min. Typ. Max. mA 32.5 36 39.5 13.8 15.8 15.3 16.8 dB 0.05 - 2 GHz 0.6 GHz 900 MHz 2000 MHz dBm 5.2 23.5 26.4 25 S11 Input Return Loss, 50Ω source 900 MHz 2000 MHz dB -21.9 -15.4 S22 Output Return Loss, 50Ω load 900MHz 2000 MHz dB -19.1 -14.4 S12 Reverse Isolation 900 MHz 2000 MHz dB -19.2 -19.2 P1dB Output Power at 1dB Gain Compression 900 MHz 2000 MHz dBm 13 12.5 NF Noise Figure 900 MHz 2000 MHz dB 3.7 4 Notes: 4. Measurements obtained on CPWG line with reference plane at the ends of DUT leads (as shown in Figure 1). 5. OIP3 test condition: FRF1 - FRF2 = 10MHz with input power of -15 dBm per tone measured at worse side band. VCC Rbias Bias Tee RFin Pin 6 Zo = 50 Ohm RFout Zo = 50 Ohm Pin 3 Pin 1, 2, 4, 5 (GND) Figure 1. Block diagram of board used for Id, Gain, OIP3, S11, S22, S12, OP1dB and NF measurements. Circuit losses have been de-embedded from actual measurements. 2 Product Consistency Distribution Charts at 2 GHz, Vcc = 5 V, Rbias = 30 Ω LSL 32 LSL USL 33 34 35 36 37 38 39 40 Figure 2. Id (mA) distribution. LSL = 32.5, Nominal = 36, USL = 39.5 13.5 14 USL 14.5 15 15.5 16 16.5 17 17.5 Figure 3. Gain (dB) distribution. LSL = 13.8, Nominal = 15.2, USL = 16.8 LSL Notes: 1. Statistical distribution determined from a sample size of 1421 samples taken from 6 different wafers, measured on a production test board. 2. Future wafers allocated to this product may have typical values anywhere between the minimum and maximum specification limits. 23.5 24 24.5 25 25.5 26 Figure 4. OIP3 (dBm) distribution. LSL = 23.5, Nominal = 25 3 26.5 AVT-50663 Typical Performance Curves 18 14 17 13 16 12 15 P1dB (dBm) Gain (dB) TA = 25°C, Zo = 50 Ω, Pin = -15 dBm (unless specified otherwise) 14 13 11 10 9 8 12 7 11 6 10 0 1 2 3 4 Frequency (GHz) 5 5 6 Figure 5. Gain vs Frequency at Id = 36mA 0 1 2 3 4 Frequency (GHz) 5 6 5 6 Figure 6. P1dB vs Frequency at Id = 36mA 6 29 27 5 23 NF (dB) OIP3 (dBm) 25 21 19 4 17 15 13 0 1 2 3 4 Frequency (GHz) 5 6 Figure 7. OIP3 vs Frequency at Id = 36mA 25°C 85°C -40°C Id (mA) 50 40 30 20 10 0 0 1 2 Figure 9. Id vs Vd and Temperature 4 3 Vd (V) 0 1 2 3 4 Frequency (GHz) Figure 8. NF vs Frequency at Id = 36mA 70 60 3 4 5 6 AVT-50663 Typical Performance Curves TA = 25°C, Zo = 50 Ω, Pin = -15 dBm (unless specified otherwise), continued 17 20 25°C 85°C -40°C 15 P1dB (dBm) Gain (dB) 16 15 14 10 20 30 Id (mA) 40 0 50 Figure 10. Gain vs Id and Temperature at 900 MHz 10 20 30 Id (mA) 40 50 40 50 40 50 Figure 11. P1dB vs Id and Temperature at 900 MHz 35 5.0 25°C 85°C -40°C 30 4.5 4.0 25 NF (dB) OIP3 (dBm) 10 5 13 12 25°C 85°C -40°C 20 3.5 3.0 15 10 2.0 10 20 30 Id (mA) 40 10 50 Figure 12. OIP3 vs Id and Temperature at 900 MHz 25°C 85°C -40°C 15 P1dB (dBm) Gain (dB) 30 Id (mA) 20 25°C 85°C -40°C 16 15 14 10 5 13 10 20 30 Id (mA) Figure 14. Gain vs Id and Temperature at 2 GHz 5 20 Figure 13. NF vs Id and Temperature at 900 MHz 17 12 25°C 85°C -40°C 2.5 40 50 0 10 20 30 Id (mA) Figure 15. P1dB vs Id and Temperature at 2 GHz AVT-50663 Typical Performance Curves TA = 25°C, Zo = 50 Ω, Pin = -15 dBm (unless specified otherwise), continued 5.0 35 25°C 85°C -40°C 4.5 4.0 25 NF (dB) OIP3 (dBm) 30 20 3.5 3.0 15 10 10 20 30 Id (mA) 40 2.0 50 Figure 16. OIP3 vs Id and Temperature at 2 GHz 10 20 30 Id (mA) 40 50 Figure 17. NF vs Id and Temperature at 2 GHz 20 17 0.05 0.9 2.0 2.5 3.0 4.0 15 14 0.05 0.9 2.0 2.5 3.0 4.0 15 P1dB (dBm) 16 Gain (dB) 25°C 85°C -40°C 2.5 5.0 13 10 5.0 6.0 12 6.0 5 11 10 10 20 30 Id (mA) 40 0 50 Figure 18. Gain vs Id and Frequency (GHz) 40 0.05 0.9 2.0 2.5 3.0 4.0 50 25 20 6.0 5.0 4.0 5.0 NF (dB) OIP3 (dBm) 30 Id (mA) 6.0 30 5.0 3.0 2.5 2.0 0.9 0.05 4.0 6.0 15 10 20 30 Id (mA) Figure 20. OIP3 vs Id and Frequency (GHz) 6 20 Figure 19. P1dB vs Id and Frequency (GHz) 35 10 10 40 50 3.0 10 20 30 Id (mA) Figure 21. NF vs Id and Frequency (GHz) 40 50 AVT-50663 Typical Performance Curves 0 0 -5 -5 -10 -10 -15 -15 S22 (dB) S11 (dB) TA = 25°C, Zo = 50 Ω, Pin = -15 dBm (unless specified otherwise), continued -20 -25 Id=20mA Id=36mA Id=45mA -35 -40 0 2 4 6 Frequency (GHz) Figure 22. S11 vs Frequency and Id 7 -25 -30 -30 -45 -20 8 Id=20mA Id=36mA Id=45mA -35 -40 10 -45 0 2 4 6 Frequency (GHz) Figure 23. S22 vs Frequency and Id 8 10 AVT-50663 Typical Scattering Parameters TA = 25°C, Zo = 50 Ω, Id = 20 mA, (unless specified otherwise) S11 S21 S12 S22 Id=20mA mag angle dB mag angle mag angle mag angle K 0.05 0.11 0.5 14.84 5.52 178.1 0.12 -1.16 0.15 -1.3 1.1 0.1 0.11 0.058 14.83 5.51 176.3 0.12 -1.79 0.15 -2.2 1.1 0.5 0.12 -4.9 14.79 5.49 161.8 0.12 -8.75 0.17 -10.7 1.1 0.9 0.16 -14.3 14.68 5.42 147.4 0.12 -15.6 0.2 -21.3 1.1 1.5 0.21 -30.4 14.48 5.3 126.1 0.12 -25.6 0.25 -39.2 1.1 2.0 0.23 -42.5 14.32 5.2 108.7 0.11 -33.6 0.26 -54.1 1.1 2.5 0.24 -54.7 14.14 5.09 91.24 0.11 -41.5 0.28 -69.3 1.1 3.0 0.25 -67.6 13.94 4.98 73.8 0.1 -49.1 0.28 -85.2 1.2 3.5 0.26 -82 13.71 4.85 56.21 0.09 -56.5 0.29 -102 1.3 4.0 0.27 -98.3 13.41 4.68 38.38 0.09 -63.5 0.3 -120 1.3 4.5 0.29 -116 13 4.47 20.38 0.08 -69.7 0.33 -139 1.4 5.0 0.32 -135 12.44 4.19 2.521 0.07 -74.3 0.37 -156 1.6 5.5 0.35 -153 11.78 3.88 -14.9 0.06 -76.2 0.41 -172 1.8 6.0 0.37 -171 11.04 3.56 -31.7 0.05 -74.7 0.44 172.9 2.1 6.5 0.39 171.5 10.23 3.25 -48.2 0.05 -70.4 0.46 157.5 2.1 7.0 0.41 154.8 9.35 2.94 -64.4 0.05 -65.1 0.48 141.6 2.2 7.5 0.43 138.8 8.41 2.64 -80.2 0.05 -61 0.5 125.5 2.2 8.0 0.44 123.5 7.42 2.35 -95.5 0.06 -59.6 0.52 109.6 2.0 8.5 0.44 108.3 6.38 2.09 -110 0.06 -61.1 0.54 94.53 2.1 9.0 0.44 92.68 5.29 1.84 -124 0.07 -64.6 0.57 80.78 1.9 9.5 0.45 76.47 4.13 1.61 -137 0.07 -69.3 0.59 68.48 2.1 10.0 0.46 61.11 2.91 1.4 -150 0.08 -74.6 0.62 57.6 1.9 10.5 0.49 48.39 1.64 1.21 -161 0.08 -79.8 0.64 48.02 2.1 11.0 0.52 38.47 0.36 1.04 -171 0.09 -85 0.66 39.08 1.9 11.5 0.54 29.93 -0.89 0.9 179.5 0.09 -90.7 0.67 29.65 2.1 12.0 0.56 21.19 -2.13 0.78 169.2 0.09 -97.4 0.68 19.03 2.3 12.5 0.57 11.68 -3.33 0.68 158.4 0.1 -105 0.69 7.452 2.3 13.0 0.58 1.218 -4.48 0.6 147.1 0.1 -114 0.7 -4.48 2.5 13.5 0.59 -10.6 -5.58 0.53 135.5 0.1 -123 0.71 -16.3 2.8 14.0 0.59 -23.8 -6.69 0.46 124.2 0.1 -133 0.72 -27.5 3.1 14.5 0.61 -37.2 -7.91 0.4 113.8 0.1 -142 0.74 -37 3.3 15.0 0.63 -48.6 -9.22 0.35 105.1 0.1 -149 0.76 -44.1 3.3 16.0 0.69 -62.8 -11.8 0.26 93.18 0.1 -159 0.79 -51.8 3.4 17.0 0.71 -69.7 -14.2 0.19 85.49 0.1 -167 0.8 -57.5 4.3 18.0 0.72 -73.8 -16.2 0.15 78.34 0.1 -175 0.79 -67.4 5.6 19.0 0.71 -87.4 -18.1 0.12 65.13 0.1 169.3 0.79 -86.3 7.4 20.0 0.73 -111 -20.9 0.09 47.87 0.09 148.5 0.82 -109 9.1 Notes: 1. S-parameters are measured on a CPWG line fabricated on 0.025 inch thick Rogers® RO4350 material. The input reference plane is at the end of the input lead. The output reference plane is at the end of the output lead. 8 AVT-50663 Typical Scattering Parameters TA = 25°C, Zo = 50 Ω, Id = 36 mA, (unless specified otherwise) S11 S21 S12 S22 Id=36mA mag angle dB mag angle mag angle mag angle K 0.05 0.02 8.06 16.03 6.33 178.2 0.11 -0.93 0.06 -0.64 1.1 0.10 0.02 15.19 16.02 6.32 176.4 0.11 -1.6 0.07 -0.29 1.1 0.50 0.04 24.46 15.98 6.3 161.7 0.11 -7.94 0.08 -2.75 1.1 0.90 0.08 10.9 15.89 6.23 147.2 0.11 -14.4 0.11 -13 1.1 1.50 0.14 -14.7 15.68 6.08 125.6 0.11 -23.9 0.17 -33.1 1.1 2.00 0.17 -27.4 15.48 5.95 107.9 0.11 -31.7 0.19 -48.6 1.1 2.50 0.19 -39.7 15.26 5.79 90.43 0.1 -39.3 0.21 -64.5 1.1 3.00 0.21 -52.9 15.00 5.62 73.02 0.1 -46.7 0.22 -81.1 1.1 3.50 0.22 -67.7 14.71 5.44 55.58 0.09 -54 0.23 -99 1.2 4.00 0.23 -84.8 14.38 5.23 37.97 0.08 -60.9 0.25 -118 1.3 4.50 0.26 -104 13.95 4.98 20.21 0.08 -67.1 0.28 -138 1.3 5.00 0.28 -124 13.39 4.67 2.574 0.07 -71.6 0.33 -156 1.5 5.50 0.31 -145 12.74 4.33 -14.7 0.06 -73.3 0.38 -172 1.7 6.00 0.34 -164 12.01 3.99 -31.5 0.05 -71.3 0.41 171.9 2.0 6.50 0.37 178 11.22 3.64 -47.9 0.05 -66.3 0.44 156 2.0 7.00 0.39 160.5 10.35 3.29 -64.1 0.05 -60.4 0.47 139.7 2.0 7.50 0.41 143.7 9.42 2.96 -80 0.05 -56.2 0.49 123.3 2.1 8.00 0.42 127.7 8.43 2.64 -95.5 0.06 -55.2 0.51 107.1 1.8 8.50 0.43 112 7.39 2.34 -110 0.06 -57.3 0.54 91.87 1.9 9.00 0.43 95.8 6.30 2.07 -125 0.07 -61.6 0.57 78.02 1.7 9.50 0.44 79.08 5.15 1.81 -138 0.08 -66.9 0.6 65.67 1.6 10.00 0.45 63.22 3.92 1.57 -150 0.08 -72.8 0.62 54.82 1.8 10.50 0.48 50.05 2.65 1.36 -161 0.09 -78.5 0.64 45.31 1.6 11.00 0.51 39.79 1.37 1.17 -171 0.09 -84.1 0.66 36.42 1.7 11.50 0.53 30.99 0.11 1.01 178.6 0.09 -90.1 0.67 27.04 1.9 12.00 0.55 22.04 -1.13 0.88 168.3 0.1 -97.1 0.68 16.47 1.9 12.50 0.57 12.35 -2.34 0.76 157.3 0.1 -105 0.69 4.954 2.0 13.00 0.58 1.748 -3.49 0.67 145.9 0.1 -114 0.7 -6.9 2.2 13.50 0.58 -10.2 -4.59 0.59 134.2 0.1 -124 0.71 -18.6 2.5 14.00 0.59 -23.5 -5.71 0.52 122.7 0.1 -133 0.72 -29.7 2.7 14.50 0.61 -36.9 -6.92 0.45 112.2 0.1 -142 0.74 -39.1 2.9 15.00 0.63 -48.4 -8.23 0.39 103.4 0.1 -150 0.75 -46.1 3.1 16.00 0.69 -62.8 -10.82 0.29 91.06 0.1 -160 0.78 -53.5 3.2 17.00 0.71 -69.7 -13.19 0.22 82.81 0.1 -167 0.79 -59 3.8 18.00 0.72 -74 -15.13 0.18 74.96 0.1 -176 0.78 -68.8 4.8 19.00 0.71 -87.5 -17.05 0.14 60.98 0.1 168.7 0.77 -87.6 6.8 20.00 0.73 -112 -19.79 0.1 42.85 0.09 147.9 0.8 -110 9.0 Notes: 1. S-parameters are measured on a CPWG line fabricated on 0.025 inch thick Rogers® RO4350 material. The input reference plane is at the end of the input lead. The output reference plane is at the end of the output lead. 9 AVT-50663 Typical Scattering Parameters TA = 25°C, Zo = 50 Ω, Id = 45 mA, (unless specified otherwise) S11 S21 S12 S22 Id=45mA mag angle dB mag angle mag angle mag angle K 0.05 0 46.76 16.24 6.48 178.2 0.11 -0.72 0.05 -0.52 1.1 0.10 0.01 58.22 16.23 6.48 176.4 0.11 -1.52 0.05 0.833 1.1 0.50 0.03 48.46 16.19 6.45 161.8 0.11 -7.75 0.06 1.615 1.1 0.90 0.07 22.8 16.1 6.38 147.3 0.11 -14.1 0.09 -8.8 1.1 1.50 0.13 -9.99 15.89 6.23 125.7 0.11 -23.5 0.15 -30.6 1.1 2.00 0.16 -23.4 15.69 6.09 108 0.1 -31.2 0.18 -46.3 1.1 2.50 0.18 -36 15.45 5.93 90.57 0.1 -38.8 0.2 -62.3 1.1 3.00 0.2 -49.2 15.19 5.75 73.22 0.1 -46.2 0.21 -79.1 1.1 3.50 0.21 -64.1 14.9 5.56 55.87 0.09 -53.5 0.22 -97.1 1.2 4.00 0.22 -81.4 14.57 5.35 38.36 0.08 -60.4 0.24 -117 1.3 4.50 0.25 -101 14.14 5.1 20.7 0.08 -66.7 0.27 -137 1.3 5.00 0.27 -122 13.6 4.79 3.128 0.07 -71.3 0.32 -155 1.5 5.50 0.3 -142 12.96 4.45 -14.1 0.06 -73.1 0.37 -172 1.7 6.00 0.33 -162 12.25 4.1 -30.8 0.05 -71.4 0.41 172.7 2.0 6.50 0.36 179.9 11.47 3.75 -47.3 0.05 -66.4 0.44 156.7 2.0 7.00 0.38 162 10.62 3.4 -63.6 0.05 -60.2 0.46 140.3 2.0 7.50 0.4 145.1 9.702 3.06 -79.5 0.05 -55.7 0.49 123.7 2.0 8.00 0.42 128.9 8.724 2.73 -95 0.06 -54.6 0.51 107.4 1.7 8.50 0.42 113 7.69 2.42 -110 0.06 -56.6 0.54 92.11 1.9 9.00 0.43 96.69 6.603 2.14 -124 0.07 -60.9 0.57 78.13 1.7 9.50 0.43 79.8 5.45 1.87 -138 0.08 -66.3 0.6 65.67 1.6 10.00 0.45 63.79 4.226 1.63 -150 0.08 -72.2 0.62 54.74 1.7 10.50 0.48 50.49 2.953 1.4 -161 0.09 -78 0.65 45.17 1.5 11.00 0.51 40.13 1.671 1.21 -171 0.09 -83.7 0.66 36.24 1.7 11.50 0.53 31.23 0.408 1.05 178.5 0.1 -89.8 0.67 26.81 1.6 12.00 0.55 22.22 -0.83 0.91 168.1 0.1 -96.9 0.68 16.2 1.8 12.50 0.57 12.47 -2.04 0.79 157.1 0.1 -105 0.69 4.669 2.0 13.00 0.58 1.813 -3.19 0.69 145.6 0.1 -114 0.7 -7.19 2.2 13.50 0.58 -10.1 -4.29 0.61 133.9 0.1 -124 0.71 -19 2.4 14.00 0.59 -23.5 -5.42 0.54 122.3 0.11 -133 0.72 -30 2.4 14.50 0.6 -36.9 -6.63 0.47 111.7 0.1 -142 0.74 -39.4 2.8 15.00 0.63 -48.4 -7.93 0.4 102.9 0.1 -150 0.75 -46.4 3.0 16.00 0.69 -62.9 -10.5 0.3 90.4 0.1 -160 0.78 -53.8 3.1 17.00 0.71 -69.8 -12.9 0.23 81.97 0.1 -167 0.79 -59.3 3.7 18.00 0.72 -74.1 -14.8 0.18 73.92 0.1 -176 0.78 -69.1 4.8 19.00 0.71 -87.7 -16.7 0.15 59.73 0.1 168.5 0.77 -87.9 6.3 20.00 0.73 -112 -19.5 0.11 41.32 0.09 147.8 0.8 -110 8.1 Notes: 1. S-parameters are measured on a CPWG line fabricated on 0.025 inch thick Rogers® RO4350 material. The input reference plane is at the end of the input lead. The output reference plane is at the end of the output lead. 10 Part Number Ordering Information Part Number No. of Devices Container AVT-50663-TR1G 3000 7” Reel AVT-50663-BLKG 100 Antistatic Bag Package Dimensions Recommended PCB Pad Layout for Avago's SC70 6L/SOT-363 Products Outline 63 (SOT-363/SC-70) 0.026 HE E 0.079 e 0.039 D 0.018 Q1 A2 A Dimensions in inches. c A1 b SYMBOL E D HE A A2 A1 Q1 e b c L 11 DIMENSIONS (mm) MAX. MIN. 1.35 1.15 2.25 1.80 2.40 1.80 1.10 0.80 1.00 0.80 0.10 0.00 0.40 0.10 0.65 0.30 0.15 0.25 0.10 0.46 0.10 L Notes: 1. All dimensions are in mm. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash & metal burr. 4. All specifications comply to EIAJSC70. 5. Die is facing up for mold and facing down for trim/form, ie: reverse trim/form. 6. Package surface to be mirror finish. 0.650BCS. Device Orientation REEL TOP VIEW END VIEW 4 mm 8 mm CARRIER TAPE USER FEED DIRECTION 2Kx 50X 2Kx 50X 2Kx 50X 2Kx 50X (Package marking example orientation shown.) COVER TAPE Tape Dimensions and Product Orientation for Outline 63 P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) K0 10 MAX. A0 CAVITY 10 MAX. B0 SYMBOL A0 B0 K0 P D1 SIZE (mm) 2.40 0.10 2.40 0.10 1.20 0.10 4.00 0.10 1.00 + 0.25 SIZE (INCHES) 0.094 0.004 0.094 0.004 0.047 0.004 0.157 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.50 0.10 4.00 0.10 1.75 0.10 0.061 + 0.002 0.157 0.004 0.069 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 + 0.30 - 0.10 0.254 0.02 0.315 + 0.012 0.0100 0.0008 COVER TAPE WIDTH TAPE THICKNESS CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION) C Tt F 5.40 0.10 0.062 0.001 3.50 0.05 0.205 + 0.004 0.0025 0.0004 0.138 0.002 P2 2.00 0.05 0.079 0.002 DISTANCE 12 DESCRIPTION LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER Tt (COVER TAPE THICKNESS) Reel Dimension 7 inch For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. AV02-2244EN - December 1, 2009