ETC DMV1500M7F5

DMV1500M7
®
DAMPER + MODULATION DIODE FOR VIDEO
DAMPER
MODULATION
MAIN PRODUCT CHARACTERISTICS
MODUL
DAMPER
IF(AV)
3A
6A
VRRM
700 V
1500 V
trr (max)
55 ns
135 ns
VF (max)
1.55 V
1.65 V
1
2
3
1
■
■
■
■
■
■
■
■
3
Insulated TO-220AB
(Bending option F5 available)
FEATURES AND BENEFITS
■
2
700V Modulation diode
Full kit in one package
High breakdown voltage capability
Very fast recovery diode
Specified turn on switching characteristics
Low static and peak forward voltage drop for low
dissipation
Insulated version:
Insulated voltage = 2500 VRMS
Capacitance = 7 pF
Planar technology allowing high quality and
best electrical characteristics
Outstanding performance of well proven DTV
as damper and new faster Turbo 700V
technology as modulation.
DESCRIPTION
High voltage semiconductor especially designed
for horizontal deflection stage in standard and high
resolution video display with E/W correction.
The insulated TO-220AB package includes both
the DAMPER diode and the MODULATION diode.
Assembled on automated line, it offers excellent
insulating and dissipating characteristics, thanks
to the internal ceramic insulation layer.
ABSOLUTE RATINGS (limiting values, per diode)
Value
Symbol
Parameter
Unit
MODUL DAMPER
VRRM
Repetitive peak reverse voltage
IFSM
Surge non repetitive forward current
Tstg
Storage temperature range
Tj
tp = 10 ms sinusoidal
Maximum operating junction temperature
July 2002 - Ed: 1A
700
1500
V
50
75
A
- 40 to + 150
°C
150
1/9
DMV1500M7
THERMAL RESISTANCES
Symbol
Value
Unit
Rth(j-c)
Damper junction to case
Parameter
4.8
°C/W
Rth(j-c)
Modulation junction to case
5.5
STATIC ELECTRICAL CHARACTERISTICS OF THE DAMPER DIODES
Value
Symbol
Parameter
Test conditions
VF *
Forward voltage drop
IF = 6 A
IR **
Reverse leakage current
VR = 1500V
Pulse test :
Tj = 25°C
Tj = 125°C
Unit
Typ.
Max.
Typ.
Max.
1.4
2.2
1.2
1.65
V
100
100
1000
µA
* tp = 380 µs, δ < 2%
**tp = 5 ms, δ < 2%
To evaluate the maximum conduction losses of the DAMPER diode use the following equations :
2
P = 1.37 x IF(AV) + 0.047 x IF (RMS)
STATIC ELECTRICAL CHARACTERISTICS OF THE MODULATION DIODE
Value
Symbol
Parameter
Test
conditions
Tj = 25°C
Typ.
Tj = 125°C
Unit
Max.
Typ.
Max.
VF *
Forward voltage drop
IF = 3A
2.0
1.25
1.55
V
IR **
Reverse leakage current
VR = 700V
20
4
50
µA
Pulse test :
* tp = 380 µs, δ < 2%
** tp = 5 ms, δ < 2%
To evaluate the maximum conduction losses of the MODULATION diode use the following equations :
2
P = 0.98 x IF(AV) + 0.19 x IF (RMS)
RECOVERY CHARACTERISTICS OF THE DAMPER DIODE
Symbol
2/9
Parameter
Test conditions
Value
Typ.
trr
Reverse recovery time
IF = 100mA
IR = 100mA
IRR = 10mA
Tj = 25°C
750
trr
Reverse recovery time
IF = 1A
dIF/dt = -50A/µs
VR = 30V
Tj = 25°C
110
Max.
Unit
ns
135
ns
®
DMV1500M7
RECOVERY CHARACTERISTICS OF THE MODULATION DIODE
Symbol
Parameter
Test conditions
trr
Reverse recovery time
IF = 100mA
IR = 100mA
IRR = 10mA
Tj = 25°C
trr
Reverse recovery time
IF = 1A
dIF/dt = -50A/µs
VR = 30V
Tj = 25°C
Value
Unit
Typ.
Max.
120
360
ns
55
ns
TURN-ON SWITCHING CHARACTERISTICS OF THE DAMPER DIODE
Test conditions
Value
Symbol
Parameter
tfr
Forward recovery time
IF = 6A
dIF/dt = 80A/µs
VFR = 3V
Tj = 100°C
570
VFP
Peak forward voltage
IF = 6A
dIF/dt = 80A/µs
Tj = 100°C
21
Typ.
Max.
Unit
ns
28
V
TURN-ON SWITCHING CHARACTERISTICS OF THE MODULATION DIODE
Parameter
tfr
Forward recovery time
IF = 3A
dIF/dt = 80A/µs
VFR = 2V
Tj = 100°C
240
ns
VFP
Peak forward voltage
IF = 3A
dIF/dt = 80A/µs
Tj = 100°C
9
V
®
Test conditions
Value
Symbol
Typ.
Max.
Unit
3/9
DMV1500M7
Fig. 1-1: Power dissipation versus peak forward
current (triangular waveform, δ = 0.45) (damper
diode).
Fig. 1-2: Power dissipation versus peak forward
current (triangular waveform, δ = 0.45) (modulation diode).
PF(AV)(W)
PF(AV)(W)
2.2
2.5
2.0
1.8
2.0
1.6
1.4
1.5
1.2
1.0
1.0
0.8
0.6
0.5
0.4
0.2
IP(A)
IP(A)
0.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Fig. 2-1: Average forward current versus ambient
temperature (damper diode).
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Fig. 2-2: Average forward current versus ambient
temperature (modulation diode).
IF(AV)(A)
IF(AV)(A)
7
3.5
Rth(j-a) = Rth(j-c)
Rth(j-a) = Rth(j-c)
6
3.0
5
2.5
4
2.0
3
1.5
2
1.0
T
T
1
0.5
δ=tp/T
0
0
Tamb(°C)
tp
δ=tp/T
0.0
25
50
75
100
125
150
Fig. 3-1: Forward voltage drop versus forward
current (damper diode).
0
25
50
75
125
150
IFM(A)
100.0
T j= 125 °C
(Maximum values)
Tj = 125 °C
(Maximum values)
Tj = 125 °C
(Typical values)
Tj = 125 °C
(Typical values)
10.0
Tj = 25 °C
(Maximum values)
Tj = 25 °C
(Maximum values)
1.0
1.0
VFM(V)
0.1
VFM(V)
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
4/9
100
Fig. 3-2: Forward voltage drop versus forward
current (modulation diode).
IFM(A)
100.0
10.0
Tamb(°C)
tp
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
®
DMV1500M7
Fig. 4: Relative variation of thermal impedance
junction to case versus pulse duration.
Fig. 5-1: Non repetitive peak forward current versus overload duration (damper diode).
Zth(j-c)/Rth(j-c)
IM(A)
1.0
50
0.9
45
0.8
40
0.7
0.6
35
δ = 0.5
30
0.5
25
0.4
δ = 0.2
20
0.3
δ = 0.1
TC = 25 °C
TC = 50 °C
15
T
0.2
10
tP(s)
δ=tp/T
0.0
1.E-03
1.E-02
1.E-01
TC = 100 °C
IM
Single pulse
0.1
5
tp
δ=0.5
0
1.E+00
Fig. 5-2: Non repetitive peak forward current versus overload duration (modulation diode).
t(s)
t
1.E-03
1.E-02
1.E-01
1.E+00
Fig. 6-1: Reverse recovery charges versus dIF/dt
(damper diode).
IM(A)
QRR(nC)
30
1000
IF = 6A
Tj = 125 °C
90% confidence
900
25
800
700
20
600
15
TC = 25 °C
10
TC = 50 °C
500
400
5
IM
200
100
t(s)
t
0
1.E-03
300
TC = 100 °C
δ=0.5
dIF/dt(A/µs)
0
1.E-02
1.E-01
1.E+00
Fig. 6-2: Reverse recovery charges versus dIF/dt
(modulation diode).
0.1
1.0
10.0
Fig. 7-1: Peak reverse recovery current versus
dIF/dt (damper diode).
QRR(nC)
IRM(A)
180
2.0
IF = 3A
Tj = 125 °C
90% confidence
160
IF = 6A
Tj = 125 °C
90% confidence
1.8
1.6
140
1.4
120
1.2
100
1.0
80
0.8
60
0.6
40
0.4
20
0.2
dIF/dt(A/µs)
dIF/dt(A/µs)
0.0
0
0.1
®
1.0
10.0
100.0
0.1
1.0
10.0
5/9
DMV1500M7
Fig. 7-2: Peak reverse recovery current versus
dIF/dt (modulation diode).
Fig. 8-1: Transient peak forward voltage versus
dIF/dt (damper diode).
IRM(A)
VFP(V)
4.0
40
IF = 3A
Tj = 125 °C
90% confidence
3.5
IF = 6A
Tj = 125 °C
90% confidence
35
3.0
30
2.5
25
2.0
20
1.5
15
1.0
10
5
0.5
dIF/dt(A/µs)
dIF/dt(A/µs)
0
0.0
1.0
10.0
0
100.0
Fig. 8-2: Transient peak forward voltage versus
dIF/dt (modulation diode).
20
40
60
80
100
120
140
Fig. 9-1: Forward recovery time versus dIF/dt
(damper diode).
VFP(V)
tfr(ns)
12
800
IF = 3A
Tj = 125 °C
90% confidence
10
IF = 6A
Tj= 125 °C
VFR = 3 V
90% confidence
750
700
8
650
6
600
550
4
500
2
450
dIF/dt(A/µs)
0
dIF/dt(A/µs)
400
0
20
40
60
80
100
120
140
Fig. 9-2: Forward recovery time versus dIF/dt
(modulation diode).
0
20
40
60
80
100
120
140
Fig. 10: Relative variations of dynamic parameters versus junction temperature.
tfr(ns)
IRM, VFP, QRR[Tj] / IRM, VFP, QRR [Tj=125°C]
200
1.2
IF = 3A
Tj= 125 °C
VFR= 2 V
90% confidence
180
160
1.0
140
0.8
120
VFP
100
0.6
IRM
80
0.4
60
QRR
40
0.2
20
dIF/dt(A/µs)
Tj(°C)
0
0.0
0
6/9
20
40
60
80
100
120
140
160
180
200
25
50
75
100
125
®
DMV1500M7
Fig. 11: Junction capacitance versus reverse voltage
applied (typical values)
C(pF)
100
F= 1 MHz
Vosc = 30 mV
Tj = 25 °C
Modulation diode
Damper diode
10
VR(V)
1
1
10
100
1000
ORDERING INFORMATION
DMV1500M
7
/
F5
LEAD BENDING (OPTION)
VRRM = 700V (Modulation diode)
DAMPER AND MODULATION DIODES FOR VIDEO
®
7/9
DMV1500M7
PACKAGE MECHANICAL DATA
TO-220AB F5 OPTION
DIMENSIONS
REF.
B
Millimeters
Inches
Min.
Max.
Min.
Max.
A
15.20
15.90
0.598
0.625
a1
24.16
26.90
0.951
1.059
a3
1.65
2.41
0.064
0.094
B
10.00
10.40
0.393
0.409
b1
0.61
0.88
0.024
0.034
b2
1.23
1.32
0.048
0.051
C
4.40
4.60
0.173
0.181
c1
0.49
0.70
0.019
0.027
c2
2.40
2.72
0.094
0.107
R2 a3
e
2.40
2.70
0.094
0.106
R1
F
6.20
6.60
0.244
0.259
I
3.75
3.85
0.147
0.151
L
2.65
2.95
0.104
0.116
I2
1.14
1.70
0.044
0.066
C
b2
L
F
ØI
A
l4
a1
c2
l3
l2
c2
b1
c1
M1
e
l3
1.14
1.70
0.044
0.066
l4
15.80
16.80
0.622
0.661
16.40 typ.
M1
PRINTED CIRCUIT LAYOUT FOR F5 LAYOUT
■
■
■
2.92
3.30
0.645 typ.
0.114
0.129
R1
1.40 typ.
0.055 typ.
R2
1.40 typ.
0.055 typ.
Cooling method: by conduction (c)
Recommended torque value: 0.8 m.N.
Maximum torque value: 1 m.N.
3.1mm
1mm
2.2mm
2.54mm
8/9
®
DMV1500M7
PACKAGE MECHANICAL DATA
TO-220AB
DIMENSIONS
REF.
B
C
b2
A
Millimeters
Min.
Typ. Max. Min.
Typ. Max.
15.20
15.90 0.598
0.625
a1
L
F
I
A
Inches
3.75
0.147
a2
13.00
14.00 0.511
0.551
B
10.00
10.40 0.393
0.409
b1
0.61
0.88 0.024
0.034
b2
1.23
1.32 0.048
0.051
C
4.40
4.60 0.173
0.181
c1
0.49
0.70 0.019
0.027
c2
2.40
2.72 0.094
0.107
e
2.40
2.70 0.094
0.106
F
6.20
6.60 0.244
0.259
I
3.75
3.85 0.147
0.151
I4
15.80 16.40 16.80 0.622 0.646 0.661
L
2.65
2.95 0.104
0.116
l2
1.14
1.70 0.044
0.066
l3
1.14
1.70 0.044
0.066
l4
c2
a1
l3
l2
a2
b1
M
c1
e
M
■
■
■
■
2.60
0.102
Cooling method: by conduction (c)
Recommended torque value: 0.8 m.N.
Maximum torque value: 1 m.N.
Type
Marking
Package
Weight
Base qty
Delivery mode
DMV1500M7
DMV1500M7F5
DMV1500M7
TO-220AB
2.2 g
50
Tube
Epoxy meets UL94, V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
®
9/9