DMV1500M7 ® DAMPER + MODULATION DIODE FOR VIDEO DAMPER MODULATION MAIN PRODUCT CHARACTERISTICS MODUL DAMPER IF(AV) 3A 6A VRRM 700 V 1500 V trr (max) 55 ns 135 ns VF (max) 1.55 V 1.65 V 1 2 3 1 ■ ■ ■ ■ ■ ■ ■ ■ 3 Insulated TO-220AB (Bending option F5 available) FEATURES AND BENEFITS ■ 2 700V Modulation diode Full kit in one package High breakdown voltage capability Very fast recovery diode Specified turn on switching characteristics Low static and peak forward voltage drop for low dissipation Insulated version: Insulated voltage = 2500 VRMS Capacitance = 7 pF Planar technology allowing high quality and best electrical characteristics Outstanding performance of well proven DTV as damper and new faster Turbo 700V technology as modulation. DESCRIPTION High voltage semiconductor especially designed for horizontal deflection stage in standard and high resolution video display with E/W correction. The insulated TO-220AB package includes both the DAMPER diode and the MODULATION diode. Assembled on automated line, it offers excellent insulating and dissipating characteristics, thanks to the internal ceramic insulation layer. ABSOLUTE RATINGS (limiting values, per diode) Value Symbol Parameter Unit MODUL DAMPER VRRM Repetitive peak reverse voltage IFSM Surge non repetitive forward current Tstg Storage temperature range Tj tp = 10 ms sinusoidal Maximum operating junction temperature July 2002 - Ed: 1A 700 1500 V 50 75 A - 40 to + 150 °C 150 1/9 DMV1500M7 THERMAL RESISTANCES Symbol Value Unit Rth(j-c) Damper junction to case Parameter 4.8 °C/W Rth(j-c) Modulation junction to case 5.5 STATIC ELECTRICAL CHARACTERISTICS OF THE DAMPER DIODES Value Symbol Parameter Test conditions VF * Forward voltage drop IF = 6 A IR ** Reverse leakage current VR = 1500V Pulse test : Tj = 25°C Tj = 125°C Unit Typ. Max. Typ. Max. 1.4 2.2 1.2 1.65 V 100 100 1000 µA * tp = 380 µs, δ < 2% **tp = 5 ms, δ < 2% To evaluate the maximum conduction losses of the DAMPER diode use the following equations : 2 P = 1.37 x IF(AV) + 0.047 x IF (RMS) STATIC ELECTRICAL CHARACTERISTICS OF THE MODULATION DIODE Value Symbol Parameter Test conditions Tj = 25°C Typ. Tj = 125°C Unit Max. Typ. Max. VF * Forward voltage drop IF = 3A 2.0 1.25 1.55 V IR ** Reverse leakage current VR = 700V 20 4 50 µA Pulse test : * tp = 380 µs, δ < 2% ** tp = 5 ms, δ < 2% To evaluate the maximum conduction losses of the MODULATION diode use the following equations : 2 P = 0.98 x IF(AV) + 0.19 x IF (RMS) RECOVERY CHARACTERISTICS OF THE DAMPER DIODE Symbol 2/9 Parameter Test conditions Value Typ. trr Reverse recovery time IF = 100mA IR = 100mA IRR = 10mA Tj = 25°C 750 trr Reverse recovery time IF = 1A dIF/dt = -50A/µs VR = 30V Tj = 25°C 110 Max. Unit ns 135 ns ® DMV1500M7 RECOVERY CHARACTERISTICS OF THE MODULATION DIODE Symbol Parameter Test conditions trr Reverse recovery time IF = 100mA IR = 100mA IRR = 10mA Tj = 25°C trr Reverse recovery time IF = 1A dIF/dt = -50A/µs VR = 30V Tj = 25°C Value Unit Typ. Max. 120 360 ns 55 ns TURN-ON SWITCHING CHARACTERISTICS OF THE DAMPER DIODE Test conditions Value Symbol Parameter tfr Forward recovery time IF = 6A dIF/dt = 80A/µs VFR = 3V Tj = 100°C 570 VFP Peak forward voltage IF = 6A dIF/dt = 80A/µs Tj = 100°C 21 Typ. Max. Unit ns 28 V TURN-ON SWITCHING CHARACTERISTICS OF THE MODULATION DIODE Parameter tfr Forward recovery time IF = 3A dIF/dt = 80A/µs VFR = 2V Tj = 100°C 240 ns VFP Peak forward voltage IF = 3A dIF/dt = 80A/µs Tj = 100°C 9 V ® Test conditions Value Symbol Typ. Max. Unit 3/9 DMV1500M7 Fig. 1-1: Power dissipation versus peak forward current (triangular waveform, δ = 0.45) (damper diode). Fig. 1-2: Power dissipation versus peak forward current (triangular waveform, δ = 0.45) (modulation diode). PF(AV)(W) PF(AV)(W) 2.2 2.5 2.0 1.8 2.0 1.6 1.4 1.5 1.2 1.0 1.0 0.8 0.6 0.5 0.4 0.2 IP(A) IP(A) 0.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Fig. 2-1: Average forward current versus ambient temperature (damper diode). 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Fig. 2-2: Average forward current versus ambient temperature (modulation diode). IF(AV)(A) IF(AV)(A) 7 3.5 Rth(j-a) = Rth(j-c) Rth(j-a) = Rth(j-c) 6 3.0 5 2.5 4 2.0 3 1.5 2 1.0 T T 1 0.5 δ=tp/T 0 0 Tamb(°C) tp δ=tp/T 0.0 25 50 75 100 125 150 Fig. 3-1: Forward voltage drop versus forward current (damper diode). 0 25 50 75 125 150 IFM(A) 100.0 T j= 125 °C (Maximum values) Tj = 125 °C (Maximum values) Tj = 125 °C (Typical values) Tj = 125 °C (Typical values) 10.0 Tj = 25 °C (Maximum values) Tj = 25 °C (Maximum values) 1.0 1.0 VFM(V) 0.1 VFM(V) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 4/9 100 Fig. 3-2: Forward voltage drop versus forward current (modulation diode). IFM(A) 100.0 10.0 Tamb(°C) tp 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 ® DMV1500M7 Fig. 4: Relative variation of thermal impedance junction to case versus pulse duration. Fig. 5-1: Non repetitive peak forward current versus overload duration (damper diode). Zth(j-c)/Rth(j-c) IM(A) 1.0 50 0.9 45 0.8 40 0.7 0.6 35 δ = 0.5 30 0.5 25 0.4 δ = 0.2 20 0.3 δ = 0.1 TC = 25 °C TC = 50 °C 15 T 0.2 10 tP(s) δ=tp/T 0.0 1.E-03 1.E-02 1.E-01 TC = 100 °C IM Single pulse 0.1 5 tp δ=0.5 0 1.E+00 Fig. 5-2: Non repetitive peak forward current versus overload duration (modulation diode). t(s) t 1.E-03 1.E-02 1.E-01 1.E+00 Fig. 6-1: Reverse recovery charges versus dIF/dt (damper diode). IM(A) QRR(nC) 30 1000 IF = 6A Tj = 125 °C 90% confidence 900 25 800 700 20 600 15 TC = 25 °C 10 TC = 50 °C 500 400 5 IM 200 100 t(s) t 0 1.E-03 300 TC = 100 °C δ=0.5 dIF/dt(A/µs) 0 1.E-02 1.E-01 1.E+00 Fig. 6-2: Reverse recovery charges versus dIF/dt (modulation diode). 0.1 1.0 10.0 Fig. 7-1: Peak reverse recovery current versus dIF/dt (damper diode). QRR(nC) IRM(A) 180 2.0 IF = 3A Tj = 125 °C 90% confidence 160 IF = 6A Tj = 125 °C 90% confidence 1.8 1.6 140 1.4 120 1.2 100 1.0 80 0.8 60 0.6 40 0.4 20 0.2 dIF/dt(A/µs) dIF/dt(A/µs) 0.0 0 0.1 ® 1.0 10.0 100.0 0.1 1.0 10.0 5/9 DMV1500M7 Fig. 7-2: Peak reverse recovery current versus dIF/dt (modulation diode). Fig. 8-1: Transient peak forward voltage versus dIF/dt (damper diode). IRM(A) VFP(V) 4.0 40 IF = 3A Tj = 125 °C 90% confidence 3.5 IF = 6A Tj = 125 °C 90% confidence 35 3.0 30 2.5 25 2.0 20 1.5 15 1.0 10 5 0.5 dIF/dt(A/µs) dIF/dt(A/µs) 0 0.0 1.0 10.0 0 100.0 Fig. 8-2: Transient peak forward voltage versus dIF/dt (modulation diode). 20 40 60 80 100 120 140 Fig. 9-1: Forward recovery time versus dIF/dt (damper diode). VFP(V) tfr(ns) 12 800 IF = 3A Tj = 125 °C 90% confidence 10 IF = 6A Tj= 125 °C VFR = 3 V 90% confidence 750 700 8 650 6 600 550 4 500 2 450 dIF/dt(A/µs) 0 dIF/dt(A/µs) 400 0 20 40 60 80 100 120 140 Fig. 9-2: Forward recovery time versus dIF/dt (modulation diode). 0 20 40 60 80 100 120 140 Fig. 10: Relative variations of dynamic parameters versus junction temperature. tfr(ns) IRM, VFP, QRR[Tj] / IRM, VFP, QRR [Tj=125°C] 200 1.2 IF = 3A Tj= 125 °C VFR= 2 V 90% confidence 180 160 1.0 140 0.8 120 VFP 100 0.6 IRM 80 0.4 60 QRR 40 0.2 20 dIF/dt(A/µs) Tj(°C) 0 0.0 0 6/9 20 40 60 80 100 120 140 160 180 200 25 50 75 100 125 ® DMV1500M7 Fig. 11: Junction capacitance versus reverse voltage applied (typical values) C(pF) 100 F= 1 MHz Vosc = 30 mV Tj = 25 °C Modulation diode Damper diode 10 VR(V) 1 1 10 100 1000 ORDERING INFORMATION DMV1500M 7 / F5 LEAD BENDING (OPTION) VRRM = 700V (Modulation diode) DAMPER AND MODULATION DIODES FOR VIDEO ® 7/9 DMV1500M7 PACKAGE MECHANICAL DATA TO-220AB F5 OPTION DIMENSIONS REF. B Millimeters Inches Min. Max. Min. Max. A 15.20 15.90 0.598 0.625 a1 24.16 26.90 0.951 1.059 a3 1.65 2.41 0.064 0.094 B 10.00 10.40 0.393 0.409 b1 0.61 0.88 0.024 0.034 b2 1.23 1.32 0.048 0.051 C 4.40 4.60 0.173 0.181 c1 0.49 0.70 0.019 0.027 c2 2.40 2.72 0.094 0.107 R2 a3 e 2.40 2.70 0.094 0.106 R1 F 6.20 6.60 0.244 0.259 I 3.75 3.85 0.147 0.151 L 2.65 2.95 0.104 0.116 I2 1.14 1.70 0.044 0.066 C b2 L F ØI A l4 a1 c2 l3 l2 c2 b1 c1 M1 e l3 1.14 1.70 0.044 0.066 l4 15.80 16.80 0.622 0.661 16.40 typ. M1 PRINTED CIRCUIT LAYOUT FOR F5 LAYOUT ■ ■ ■ 2.92 3.30 0.645 typ. 0.114 0.129 R1 1.40 typ. 0.055 typ. R2 1.40 typ. 0.055 typ. Cooling method: by conduction (c) Recommended torque value: 0.8 m.N. Maximum torque value: 1 m.N. 3.1mm 1mm 2.2mm 2.54mm 8/9 ® DMV1500M7 PACKAGE MECHANICAL DATA TO-220AB DIMENSIONS REF. B C b2 A Millimeters Min. Typ. Max. Min. Typ. Max. 15.20 15.90 0.598 0.625 a1 L F I A Inches 3.75 0.147 a2 13.00 14.00 0.511 0.551 B 10.00 10.40 0.393 0.409 b1 0.61 0.88 0.024 0.034 b2 1.23 1.32 0.048 0.051 C 4.40 4.60 0.173 0.181 c1 0.49 0.70 0.019 0.027 c2 2.40 2.72 0.094 0.107 e 2.40 2.70 0.094 0.106 F 6.20 6.60 0.244 0.259 I 3.75 3.85 0.147 0.151 I4 15.80 16.40 16.80 0.622 0.646 0.661 L 2.65 2.95 0.104 0.116 l2 1.14 1.70 0.044 0.066 l3 1.14 1.70 0.044 0.066 l4 c2 a1 l3 l2 a2 b1 M c1 e M ■ ■ ■ ■ 2.60 0.102 Cooling method: by conduction (c) Recommended torque value: 0.8 m.N. Maximum torque value: 1 m.N. Type Marking Package Weight Base qty Delivery mode DMV1500M7 DMV1500M7F5 DMV1500M7 TO-220AB 2.2 g 50 Tube Epoxy meets UL94, V0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2002 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com ® 9/9