BYT200PIV-400 ULTRAFAST POWER RECTIFIER DIODE MAIN PRODUCT CHARACTERISTICS IF(AV) 2 x100 A VRRM 400 V VF (max) 1.4 V FEATURES AND BENEFITS n n n n A1 K1 A2 K2 1= 2= 3= 4= 2 4 LOW CONDUCTION LOSSES NEGLIGIBLE SWITCHING LOSSES HIGH AVALANCHE CAPABILITY ISOLATED PACKAGE : 2500 VDC CAPACITANCE 42pF A1 K1 A2 K2 1 3 DESCRIPTION ISOTOPTM High current power rectifier diode suited for Switched Mode Power Supply and high frequency DC to DC converters. Packaged in ISOTOP, this device is intended for use in a medi um v oltage high c urrent applic ations such as welding equ ipment and Telecom su pplies. ABSOLUTE MAXIMUM RATING Symbol Parameter Value Unit VRRM Repetitive peak reverse voltage 400 V IF(RMS) RMS forward current 150 A IF(AV) Average forward current Tc = 80°C δ = 0.5 100 A IFSM Surge non repetitive forward current tp = 10 ms Sinusoidal 600 A IFRM Repetitive peak forward current tp 10 µs 800 A Tstg Storage temperature range - 40 to + 150 °C 150 °C Tj Maximum junction temperature ISOTOP is a trademark of STMicroelectronics May 2000 - Ed: 3C 1/5 BYT200PIV-400 THERMAL RESISTANCES Symbol Rth (j-c) Parameter Junction to case Rth (c) Value Unit Per leg 0.55 °C/W Total 0.33 Coupling 0.1 STATIC ELECTRICAL CHARACTERISTICS (per diode) Symbol Parameter IR * Reverse leakage current Tests Conditions Tj = 25°C Min. VR = VRRM Tj = 100°C VF ** Pulse test : Forward voltage drop Typ. 4 Tj = 25°C IF = 100 A Tj = 125°C IF = 100 A Max. Unit 120 µA 12 mA 1.6 V 0.95 1.4 Typ. Max. * tp = 5 ms, duty cycle < 2 % ** tp = 380 µs, duty cycle < 2% RECOVERY CHARACTERISTICS Symbol trr IRM Parameter Reverse recovery time Test Conditions IF=0.5A IR=1A Irr=0.25A IF=1A dI/dt= -50A/µs Vr=30V Reverse recovery current dIF/dt=-200A/µs VR=400V Tj=125°C IF=100A Softness factor dIF/dt=-200A/µs VR=400V Tj=125°C IF=100A tfr Forward recovery time VFP Peak forward voltage IF=100A dIF/dt=500A/µs Measured at 1.1 x VF max. Tj=25°C S factor To evaluate the conduction losses use the following equation : P = 0.8 x IF(AV) + 0.00228 x IF2(RMS) 2/5 Min. 55 Unit ns 100 40 A 500 ns 12 V 0.25 BYT200PIV-400 Fig. 1: Average forward power dissipation versus average forward current (per diode). Fig. 2: Peak current versus form factor (per diode). IM(A) PF(av)(W) 500 140 δ = 0.5 δ = 0.2 120 400 δ = 0.1 100 δ= 1 δ = 0.05 80 P=100W 300 60 P=75W P=125W 200 P=150W 40 100 20 0 IF(av) (A) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Fig. 3: Average forward current versus ambient temperature (δ = 0.5, per diode). 0 0.0 δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 Fig. 4: Non repetitive surge peak forward current versus overload duration (per diode). IF(av)(A) IM(A) 120 700 Rth(j-a)=Rth(j-c) 600 100 500 80 400 60 Tc=50°C Tc=75°C 300 40 Rth(j-a)=2°C/W 200 20 0 25 50 75 Tc=100°C 100 Tamb(°C) 0 0.9 100 125 150 Fig. 5: Relative variation of thermal impedance junction to case versus pulse duration (per diode). t(s) 0 1E-3 1E-2 1E-1 1E+0 Fig. 6: Forward voltage drop versus forward current (maximum values, per diode). IFM(A) K=[Zth(j-c)/Rth(j-c)] 1.0 500 δ = 0.5 100 0.5 Tj=125°C δ = 0.2 Tj=25°C δ = 0.1 10 0.2 Single pulse 0.1 1E-3 tp(s) 1E-2 VFM(V) 1E-1 1E+0 1 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3/5 BYT200PIV-400 Fig. 7: Junction capacitance versus reverse voltage applied (typical values, per diode). Fig. 8: Recovery charges versus dIF/dt (per diode). Qrr(µC) C(pF) 3.0 500 F=1MHz Tj=25°C 450 IF=IF(av) 90% confidence Tj=125°C 2.5 400 2.0 350 1.5 300 250 1.0 200 150 100 0.5 VR(V) 1 dIF/dt(A/µs) 10 100 200 Fig. 9: Recovery current versus dIF/dt (per diode). 0.0 100 200 300 400 500 Fig. 10: Transient peak forward voltage versus dIF/dt (per diode). IRM(A) 50 45 40 35 30 25 20 15 10 5 0 0 VFP(V) 14 IF=IF(av) 90% confidence Tj=125°C IF=IF(av) 90% confidence Tj=125°C 12 10 8 6 4 2 dIF/dt(A/µs) 0 100 200 300 400 500 Fig. 11: Dynamic parameters versus junction temperature. Qrr;IRM[Tj] / Qrr;IRM[Tj=125°C] 1.25 1.00 0.75 IRM 0.50 Qrr 0.25 Tj(°C) 0.00 4/5 0 25 50 75 100 125 150 0 dIF/dt(A/µs) 0 100 200 300 400 500 600 700 800 BYT200PIV-400 PACKAGE MECHANICAL DATA ISOTOP DIMENSIONS REF. Millimeters Min. A A1 B C C2 D D1 E E1 E2 G G1 G2 F F1 P P1 S n Max. 11.80 12.20 8.90 9.10 7.8 8.20 0.75 0.85 1.95 2.05 37.80 38.20 31.50 31.70 25.15 25.50 23.85 24.15 24.80 typ. 14.90 15.10 12.60 12.80 3.50 4.30 4.10 4.30 4.60 5.00 4.00 4.30 4.00 4.40 30.10 30.30 Inches Min. 0.465 0.350 0.307 0.030 0.077 1.488 1.240 0.990 0.939 0.976 0.587 0.496 0.138 0.161 0.181 0.157 0.157 1.185 Max. 0.480 0.358 0.323 0.033 0.081 1.504 1.248 1.004 0.951 typ. 0.594 0.504 0.169 0.169 0.197 0.69 0.173 1.193 Epoxy meets UL94, V0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2000 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 5/5