ETC Q68100

SFH6700/6719
SFH6701/6711
SFH6702/6712
SFH6705
]
Low Input Current Logic Gate Optocoupler
Preliminary Data Sheet
FEATURES
• Data Rate 5 MBits/s (2.5 MBit/s over
Temperature)
• Buffer
• Isolation Test Voltage, 2500 VACRMS for 1 min.
• TTL, LSTTL and CMOS Compatible
• Internal Shield for Very High Common Mode
Transient Immunity
• Wide Supply Voltage Range (4.5 to 15 V)
• Low Input Current (1.6 mA to 5 mA)
• Three State Output (SFH6700/19)
• Totem Pole Output (SFH6701/02/11/12)
• Open Collector Output (SFH6705)
• Specified from 0°C to 85°C
APPLICATIONS
• Industrial Control
• Replace Pulse Transformers
• Routine Logic Interfacing
• Motion/Power Control
• High Speed Line Receiver
• Microprocessor System Interfaces
• Computer Peripheral Interfaces
Dimensions in Inches (mm)
pin one ID
4
3
2
1
5
6
7
8
.255 (6.48)
.268 (6.81)
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
4° typ.
.300 (7.62)
typ.
.031 (0.79)
.130 (3.30)
.150 (3.81)
.050 (1.27)
10°
.020 (.51 )
.035 (.89 )
.018 (.46)
.022 (.56)
3°–9°
.008 (.20)
.012 (.30)
.100 (2.54) typ.
SFH6700/6719
SFH6701/6711
8 VCC
NC 1
NC 1
7 VO
Anode 2
7 VO
Cathode 3
6 VE
Cathode 3
6 NC
5 GND
NC 4
The SFH67xx uses an industry standard DIP8 package. With standard lead bending, creepage distance
and clearance of ≥7 mm with lead bending options 6,
7, and 9 ≥8 mm are achieved.
Truth Table SFH6701/11/02/12/05 (Positive Logic)
IR Diode
Output
on
H
off
L
8 VCC
Anode 2
DESCRIPTION
The SFH67xx high speed optocoupler series consists
of a GaAlAs infrared emitting diode, optically coupled
with an integrated photodetector. The detector incorporates a Schmitt-Trigger stage for improved noise
immunity. Using the Enable input, the output can be
switched to the high ohmic state, which is necessary
for data bus applications. A Faraday shield provides a
common mode transient immunity of1000 V/µs at
VCM=50 V for SFH6700/01/02/05 and 2500 V/µs at
VCM=400 V for SFH6711/12/19.
.230(5.84)
.110 (2.79) .250(6.35)
.130 (3.30)
SFH6702/6712/6705
NC 1
8 VCC
Anode 2
7 NC
Cathode 3
6 VO
5 GND
NC 4
Truth Table SFH6700/19 (Positive Logic)
IR Diode
Enable
Output
on
H
Z
off
H
Z
on
L
H
off
L
L
5–263
NC 4
5 GND
Maximum Ratings
Figure 1. Schematics
Parameter
Sym.
Min.
Max.
Units
ICC
Emitter
Reverse Voltage
VR
3
V
DC Forward Current
IF
10
mA
Surge Forward Current (tp≤1 µs, 300 pulses/s)
IFSM
1
A
Total Power Dissipation
Ptot
20
mW
(2)
IO
IE
K
(3)
Detector
Supply Voltage
VCC
–0.5
15
V
VEN
–0.5
15
V
Output Voltage
VO
–0.5
15
V
Average Output Current
IO
25
mA
Total Power Dissipation
Ptot
100
mW
SFH6700/19
ICC
Package
Storage Temperature Range
TSTG
–55
125
°C
Ambient Temperature Range
TA
–40
85
°C
Lead Soldering Temperature (t=10 sec.)
TS
260
°C
Isolation Test Voltage (t=1 min.)
VISO
2500
7
Options 6, 7, 9
8
Comparative Tracking Index per DIN IEC112/
VDE 0303, part 1
Isolation Resistance
A
(2)
IO
VO
(7)
K
(3)
VIO=500 V, TA=25°C
RISO
VIO=500 V, TA=100°C
SFH6701/11
mm
175
GND
(5)
Shield
2
Standard Lead Bending
VCC
(8)
IF
VACRMS
Pollution Degree
400
Ω
1012
ICC
1011
VCC
(8)
IF
A
(2)
Recommended Operating Conditions
A 0.1 µF bypass capacitor connected between pins 5 and 8 must be used.
Parameter
Symbol
Min.
Max.
Unit
Supply Volage
VCC
4.5
15
V
Enable Voltage High (SFH6700/19)
VEH
2.0
15
V
Enable Voltage Low (SFH6700/19)
VEL
0
0.8
V
Forward Input Current
IFon
1.6(1)
5
mA
Forward Input Current
IFoff
–
0.1
mA
Operating Temperature
TA
0
85
°C
Output Pull-up Resistor (SFH6705
only)
RL
350
4k
Ω
Fan Out (SFH6705 at RL=1 KΩ)
N
IO
VO
(6)
K
(3)
GND
(5)
Shield
SFH6702/12
ICC
VCC
(8)
IF
A
IO
(2)
16
VO
(7)
VEN (6)
GND
(5)
Shield
Three State Enable Voltage (SFH6700/19 only)
Creepage Distance
and Clearance
VCC
(8)
IF
A
LS TTL Loads
1. We recommend using a 2.2 mA to permit at least 20% CTR degradation guard band.
VO
(6)
K
(3)
GND
(5)
Shield
SFH6705
5–264
SFH6700/6701/6702/6719/6711/6712/6705
Characteristics
0°C≤ TA≤85°C; 4.5 V≤VCC≤15 V; 1.6 mA≤IFon≤5 mA; 2.0≤VEH≤15 V; 0≤ VEL≤0.8 V; 0 mA≤IFoff≤0.1 mA
Typical values: TA=25°C; VCC=5 V; IFon=3 mA unless otherwise specified
Parameter
Sym.
Min.
Typ.
Max.
Unit
Test Condition
1.75
V
IF=5 mA, TA=25°C
Emitter
Forward Voltage
VF
1.6
Input Current Hysteresis
IHYS
0.1
Reverse Current
IR
0.5
Capacitance
C0
Thermal Resistance
RthJA
1.8
V
IF=5 mA
mA
VCC=5 V, IHYS=IFon–IFoff
µA
VR=3 V, TA=25°C
60
pF
VR=0 V, f=1 MHz, TA=25°C
700
K/W
10
Detector
Logic Low Output Voltage
VOL
0.5
Logic High Output Voltage (except SFH6705)
VOH
Output Leakage Current (VOUT>VCC)
(except SFH6705)
IOHH
Output Leakage Current (SFH6705 only)
IOHH
Logic High Enable Voltage (SFH6700/19 only)
VEH
2.4
*
V
IOL=6.4 mA
V
IOH=–2.6 mA, *VOH=VCC–1.8 V
0.5
100
µA
VO=5.5 V, VCC=4.5 V, IF=5 mA
1
500
µA
VO=15 V, VCC=4.5 V, IF=5 mA
0.5
100
µA
VO=5.5 V, VCC=5.5 V, IF=5 mA
1
500
µA
VO=15 V, VCC=15 V, IF=5 mA
2.0
V
Logic Low Enable Voltage (SFH6700/19 only)
VEL
0.8
V
Logic High Enable Current (SFH6700/19 only)
IEH
20
µA
VEN=2.7 V
100
µA
VEN=5.5 V
250
µA
VEN=15 V
µA
VEN=0.4 V
µA
VO=0.4 V, VEN=2.0 V, IF=5 mA
20
µA
VO=2.4 V, VEN=2.0 V, IF=0
0.00
1
Logic Low Enable Current (SFH6700/19 only)
IEL
–320
High Impedance State Output Current
(SFH6700/19 only)
IOZL
–20
–50
IOZH
100
µA
VO=5.5 V, VEN=2.0 V, IF=0
0.00
1
500
µA
VO=15 V, VEN=2.0 V, IF=0
6.0
mA
VCC=5.5 V, IF=0
Logic Low Supply Current
ICCL
3.7
4.1
6.5
mA
VCC=15 V, IF=0
Logic High Supply Current
ICCH
3.4
4.0
mA
VCC=5.5 V, IF=5 mA
3.7
5.0
mA
VCC=15 V, IF=5 mA
25
mA
VO=VCC=5.5 V, IF=0
40
mA
VO=VCC=15 V, IF=0
–10
mA
VCC=5.5 V, Vo=0 V , IF=5 mA
–25
mA
VCC=15 V, Vo=0 V, IF=5 mA
Logic Low Short Circuit Output Current
(2)
IOSL
Logic High Short Circuit Output Current
(except SFH6705)
IOSH(2)
Thermal Resistance
RthJA
300
K/W
0.6
Package
Coupling Capacitance
Isolation Resistance
pF
f=1 MHz, pins 1–4 and 5–8 shorted together
12
Ω
VIO=500 V, TA=25°C
11
Ω
VIO=500 V, TA=100°C
CIO
RISO
10
10
2. Output short circuit time ≤10 ms.
5–265
SFH6700/6701/6702/6719/6711/6712/6705
Switching Times (3)
0°C≤ TA≤85°C; 4.5 V≤VCC≤15 V; 1.6 mA≤IFon≤5 mA; 2.0≤VEH≤15 V (SFH6700/19);
0≤ VEL≤0.8 V (SFH6700/19); 0 mA≤IFoff≤0.1 mA
Typical values: TA=25°C; VCC=5 V; IFon=3 mA unless otherwise specified
Parameter, SFH6700/01/02/11/12/19
Symbol
Propagation Delay Time to Logic Low Output Level
tPHL
Min.
Typ.
Max.
120
115
Propagation Delay Time to Logic Low Output Level
Test Condition
Without Peaking Capacitor
300
125
tPLH
Unit
ns
With Peaking Capacitor
ns
90
Without Peaking Capacitor
300
With Peaking Capacitor
Output Enable Time to Logic High (SFH6700/19)
tPZH
20
ns
Output Enable Time to Logic Low (SFH6700/19)
tPZL
25
ns
Output Disable Time from Logic High (SFH6700/19)
tPHZ
50
ns
Output Disable Time from Logic Low (SFH6700/19)
tPLZ
50
ns
Output Rise Time
tr
40
ns
10% to 90%
Output Fall Time
tf
10
ns
90% to 10%
Unit
Test Condition
ns
Without Peaking Capacitor
Switching Times (3)
Typical values: TA=25°C, VCC=5 V; IFon=3 mA, RL=390 Ω, unless otherwise specified
Parameter, SFH6705
Symbol
Propagation Delay Time to Logic Low Output Level
tPHL
Min.
Typ.
Max.
115
105
300
With Peaking Capacitor
Propagation Delay Time to Logic Low Output Level
tPLH
125
ns
Output Rise Time
tr
25
ns
10% to 90%
Output Fall Time
tf
4
ns
90% to 10%
90
Without Peaking Capacitor
300
With Peaking Capacitor
Common Mode Transient Immunity TA=25°C, VCC=5 V(4)
Parameter
Device
Logic High Common Mode Transient Immunity
Symbol
SFH6700/01/02/05
|(4)
| CMH
SFH6711/12/19
Logic Low Common Mode Transient Immunity
SFH6700/01/02/05
| CML
|(4)
SFH6711/12/19
Min.
Unit
Test Condition
1000
V/µs
| VCM |=50 V, IF=1.6 mA
2500
V/µs
| VCM |=400 V, IF=1.6 mA
1000
V/µs
| VCM |=50 V, IF=0
2500
V/µs
| VCM |=400 V, IF=0
3. A 0.1 µF bypass capacitor connected between pins 5 and 8 must be used.
4. CMH is the maximum slew rate of a common mode voltage VCM at which the output voltage remains at logic high level (VO>2 V).
CML is the maximum slew rate of a common mode voltage VCM at which the output voltage remains at logic low level (VO<0.8 V).
150
Figure 3. Typical iput diode forward current vs. forward
voltage
10.000
120
Detector
100
75
50
Emitter
25
0
–60
IF - Forward Current - mA
Ptot - Power dissipation - mW
Figure 2. Permissible total power disipation vs. temperature
–40
–20
0
20
40
60
80
TA =25°C
1.000
0.100
0.010
100
1.3
TA - Temperature-°C
1.4
1.5
1.6
1.7
V F - Forward Voltage
5–266
SFH6700/6701/6702/6719/6711/6712/6705
Figure 4. Typical forward input voltage vs. temperature
Figure 8. Typical output leakage current vs. temperature
1.75
IOHH - Output Leakage
Current - nA
IF=5mA
VF - Forward Voltage - V
1.70
1.65
1.60
1.55
1.50
-40
-20
0
20
40
TA - Temperature - °C
60
80
40
IOL - Low Level Output
Current - mA
Vo - Output Voltage - V
Vcc = 4.5 V
TA = 25 °C
3
I OH = -2.6 mA
2
1
I OL = 6.4 mA
0
0.0 0.1
VCC = 5 V
IF = 0 mA
38
35
33
VOL=0.8V
30
28
VOL=0.6V
25
23
VOL=0.4V
20
-60
0.2 0.3 0.4 0.5 0.6 0.7 0.8
IF - Input Current - mA
0.9
-40
-20
1.0
0
20
40
60
TA - Temperature - °C
80
100
Figure 10. Typical low level output voltage vs. temperature
Figure 6. Typical output forward voltage vs. forward
input current (only SFH6705)
0.30
6
TA = 25 °C
VCC = 5 V
5
VOL - Low Level Output
Voltage - V
VO - Output Voltage - V
80 100
Figure 9. Typical low level output
current vs. temperature
7
5
4
3
2
VCC =VO=5.5V
100
Figure 5. Typical output voltage vs. forward input current
(except SFH6705)
4
VCC =VO=15V
-60 -40 -20 0
20 40 60
TA - Temperature - °C
1.45
-60
RL = 1k - 4kΩ
RL = 390Ω
1
Vcc = 5 V
IF = 0 mA
0.25
0.20
IO=16mA
0.15
IO=12.8mA
IO=9.6mA
0.10
IO=6.4mA
0.05
-60
0
0.0
0.2
0.4
0.6
0.8
IF - Forward Input Current - mA
-40
1.0
-20
0
20
40
TA - Temperature - °C
60
80
100
Figure 11. Typical high level output current vs.
temperature (except SFH6705)
Figure 7. Typical supply current vs.
5 temperature
0
4.2
IOH - High Level Output
Current - mA
IC C - Supply Current - mA
1100
1000
900
800
700
600
500
400
ICCL @ VCC=15V
4.0
ICCH @ VCC=15V &
ICCL @ VCC=5.5V
3.8
3.6
ICCH @ VCC=5.5V
3.4
3.2
-60
-40
-20
0
20
40
TA - Temperature - °C
60
80
-1
-2
VCC = 4.5 V
IF = 5 mA
VOH = 2.7V
-3
-4
-5
VOH = 2.4V
-6
-7
-8
100
-60
5–267
-40
-20
0
20
40
TA - Temperature - °C
60
80
100
SFH6700/6701/6702/6719/6711/6712/6705
Figure 16. Typical propagation delays to logic low vs.
temperature
170
60
54
48
42
36
30
24
18
12
6
0
-60
t pHL - Propagation Delay - ns
tR, tF - Rise, Fall Time - ns
Figure 12. Typical rise, fall time vs. temperature
(except SFH6705)
VCC = 5 V
CL = 15 pF
tR
tF
-40
-20
0
20
40
60
TA - Temperature - °C
80
100
tpLH - Propagation Delay - ns
tpLH - Propagation Delay - ns
IF=1.6 mA
130
IF=3 mA
110
IF=5 mA
90
-40
-20
0
20
40
T A - Temperature - °C
60
80
IF=1.6mA
70
50
-60
-40
-20
0
20
40
60
80
100
120
Vcc=15
IF=1.6 mA
C1=15 pF (without peaking capacitor)
110
100
IF=3 mA
90
80
IF =5 mA
70
60
50
-60
-40
-20
0
20
40
60
T A - Temperature - °C
80
100
Figure 18. Typical propagation delays to logic low vs.
temperature
170
180
160
tpHL - Propagation Delay - ns
Vcc = 5 V
C1 = 15 pF (Without Peaking Capacitor)
140
IF = 5mA
120
IF = 3mA
100
IF = 1.6mA
80
60
-60
-40
-20
0
20
40
TA - Temperature - °C
60
80
Figure 15. Typical propagation delays to logic high vs.
temperature (except SFH6705)
Vcc=5 V
C1=120 pF (with peaking capacitor)
80
I F=1.6, 3 and 5 mA
70
60
50
-60
-40
-20
0
20
40
60
80
C1 = 15 pF (Without Peaking Capacitor)
130
IF = 5mA
110
IF = 3mA
90
IF = 1.6mA
70
50
-40
-20
0
20
40
60
TA - Temperature - °C
80
100
Figure 19. Typical propagation delays to logic high vs.
temperature
100
90
Vcc = 15 V
150
-60
100
t pLH - Propagation Delay - ns
tpHL - Propagation Delay - ns
IF=5mA
90
100
Figure 14. Typical propagation delays to logic low vs.
temperature (except SFH6705)
tpLH - Propagation Delay - ns
IF=3mA
110
Figure 17. Typical propagation delays to logic high vs.
temperature
150
70
-60
C1=120 pF (with Peaking Capacitor)
130
T A - Temperature - °C
Figure 13. Typical propagation delays to logic high vs.
temperature (except SFH6705)
Vcc=5 V
C=15 pF (without peaking capacitor)
VCC 5 V
150
100
T A - Temperature - °C
80
70
Vcc=15 V
C1=120 pF (with peaking capacitor)
60
50
IF=1.6,3 and 5 mA
40
30
-60
-40
-20
0
20
40
60
80
100
TA - Temperature - °C
5–268
SFH6700/6701/6702/6719/6711/6712/6705
Figure 20. Typical propagation delays to logic low vs. temperature (except SFH6705)
Figure 24. Typical propagation delays to high level vs. temperature (only SFH 6705)
tpLH - Propagation Delay - ns
tpHL - Propagation Delay - ns
180
VCC = 15 V
C1=120 pF (Peaking Capacitor is used)
160
140
120
IF = 5mA
IF = 3mA
100
80
IF = 1.6mA
60
-60
-40
-20
0
20
40
TA - Temperature - °C
60
80
180
160
RL=4kΩ
140
RL=1kΩ
120
100
RL=350Ω
80
-60
-40
-20
0
20
40
TA - Temperature - °C
60
80
100
Figure 25. Typical progagation delays to low level vs. temperature (only SFH 6705)
80
150
tpHL - Propagation Delay - ns
CL = 15 pF
70
tp - Enable Propagation
Delay - ns
VCC = 5 V
IF = 3 mA
200
100
Figure 21. Typical logic low enable propagation delays vs.
temperature (only SFH6700/11)
VCC= 15 V
60
50
tPLZ
40
VCC= 4.5 V
30
20
tPZL
VCC = 4.5 –15 V
10
0
-60
-40
-20
0
20
40
60
TA - Temperature - °C
80
100
Figure 22. Typical logic high enable propagation delays vs.
temperature (only SFH6700/11)
IF=5mA
120
110
IF=3mA
100
IF=1.6mA
90
80
70
-40
-20
0
20
40
TA - Temperature - °C
60
80
100
80
100
250
125
CL = 15 pF
60
VCC=4.5V
50
tPHZ
40
30
tPZH
VCC= 4.5 –15V
20
10
0
-60
130
Figure 26. Typical rise, fall time vs. temperature
(only SFH6705)
tR, tF - Rise, Fall Time - ns
70
VCC = 5 V
RL = 350 - 4kΩ
140
-60
80
tp - Enable Propagation
Delay - ns
220
VCC=15V
-40
-20
tPHZ
0
20
40
60
TA - Temperature - °C
80
VCC = 5V
225
100
75
200
tR @ RL=1kΩ
50
tR @ RL=350Ω
25
0
-25
-60
100
tR @ RL=4kΩ
tF @ RL=350-4kΩ
-40
-20
0
20
40
TA - Temperature - °C
60
Figure 23. Typical propagation delays vs. pulse Input
current (only SFH6705)
tP- Propagation Delay - ns
250
VCC = 5 V
TA = 25 °C
200
tPLH @ RL=4kΩ
150
tPLH @ RL=1kΩ
tPHL @ RL=350-4kΩ
100
tPLH @ RL=350Ω
50
1
3
5
7
9
IF - Pulse Input Current - mA
11
5–269
SFH6700/6701/6702/6719/6711/6712/6705
Figure 27. Test circuit for tPLH, tPHL, tr and tf—SFH6700/01/02/11/12/19
5V
VCC
R3=619 Ohm
Pulse Generator
tr = tf = 5ns
f=100kHz
10% Duty cycle
Output Vo
IF
2
Input IF
Monitoring
Node
Monitoring
Node
VCC 8
Out*
7
1
3
En*
4
Gnd
D1
0.1 µF
Bypass
6
D2
D3
5
D4
R1
C1=120pF
C2=15pF
R1
IF (ON)
2.15 kOhm 1.1 kOhm 681 Ohm
1.6 mA
3 mA
5 mA
R2=5kOhm
All diodes are 1N916 or 1N3064
The Probe and Jig Capacitances are included in C1 and C2
* SFH6701/02/11/12 without VEN
* SFH6702/12 Pin 6 VOUT and Pin 7 n.c.
IFon
50% IFon
0mA
Input IF
VOH
Output VO
1.3V
VOL
tPHL
tPLH
Figure 28. Test circuit for tPLH, tPHL, tr and tf—SFH6705
VCC
Pulse Generator
tr = tf = 5ns
Zo = 50 Ohm
Input IF
Monitoring
Node
RL
IF
1
VCC 8
2
n.c. 7
VOUT
6
3
4
R1
5V
Gnd
5
0.1µF
Bypass
Output VO
Monitoring
Node
C2=15pF
C1=120pF
The Probe and Jig Capacitances are included in C1 and C2
R1
IF (ON)
2.15 kOhm 1.1 kOhm 681 Ohm
1.6 mA
3 mA
5 mA
IFon
50% IFon
0mA
Input IF
VOH
Output VO
1.5V
VOL
tPLH
tPHL
5–270
SFH6700/6701/6702/6719/6711/6712/6705
Figure 29. Test circuit for tPHZ, tPZH, tPLZ and tPZL–SFH6700/19
IF
Input VC
Monitoring
Node
5V
VCC
Pulse Generator
ZO = 50 Ohm
tr = tf = 5 ns
1
VCC 8
Out
2
7
3
6
En
4
Output VO
S1
Monitoring
Node 619 Ohm
D1
5 kOhm
D2
D3
.
D4
0.1uF C1
Bypass
5
Gnd
S2
C1 = 15 pF including Probe and Jig Capacitances
All diodes are 1N916 or 1N3064
3.0 V
1.3 V
0V
Input VEN
Output VO
S1 closed
S2 open
0.5 V
1.3 V
S1 and S2 closed
VOL
tPZL
tPLZ
0.5 V
Output VO
S1 open
S2 closed
1.3 V
VOH
ca. 1.5 V
S1 and S2 closed
0V
tPZH
tPHZ
Figure 30. Test circuit for common mode transient immunity
and typical waveforms—SFH 6700/01/02/11/12/19
Figure 31. Test circuit for common modetransient
immunity and typical waveforms—SFH6705L
VCC
Vcc
1
A
B
R
7
3
En*
4
Gnd
+
Pulse Generator
5V
8
Out*
2
VCC
6
Output VO
Monitoring
Node
0.1 µF
Bypass
1
VCC 8
2
n.c. 7
RL
A
0.1 µF
Output VO
Bypass Monitoring
B
R
3
Out
5
4
Gnd
6
Node
5
+
VCM
Pulse Generator
* SFH6701/02/11/12 without VEN
* SFH6702/12 Pin 6 VOUT and Pin 7 n.c.
-
VCM
50 V
400 V / 50 V
VCM
VCM
0V
0V
VOH
VOH
Switch at A: IF = 1.6 mA
Switch at A: IF = 1.6 mA
VO(min)
VO (min)
Output VO
Output VO
VO (max)
VOL
VO (max)
Switch at B: IF = 0 mA
VOL
Switch at B: IF = 0 mA
5–271
SFH6700/6701/6702/6719/6711/6712/6705