STMICROELECTRONICS TS912IYD

TS912
Rail-to-Rail CMOS Dual Operational Amplifier
■
Rail-to-rail input and output voltage ranges
■
Single (or dual) supply operation from 2.7V to
16V
■
Extremely low input bias current: 1pA typ.
■
Low input offset voltage: 2mV max.
■
Specified for 600Ω and 100Ω loads
■
Low supply current: 200µA/ampli
(VCC = 3V)
■
Latch-up immunity
■
ESD tolerance: 3kV
■
Spice macromodel included in this specification
N
DIP-8
(Plastic Package)
D
SO-8
(Plastic Micropackage)
Description
Pin connections (top view)
The TS912 is a rail-to-rail CMOS dual operational
amplifier designed to operate with a single or dual
supply voltage.
The input voltage range Vicm includes the two
supply rails VCC+ and VCC-.
Output 1
1
Inverting Input 1
2
-
Non-inverting Input 1
3
+
VCC
4
8 VCC +
7 Output 2
-
6 Inverting Input 2
+
5 Non-inverting Input 2
The output reaches:
■
VCC- +30mV, VCC+ -40mV, with RL = 10kΩ
■
VCC- +300mV, VCC+ -400mV, with R L = 600Ω
This product offers a broad supply voltage
operating range from 2.7V to 16V and a supply
current of only 200µA/amp (VCC = 3V).
Source and sink output current capability is
typically 40mA (at VCC = 3V), fixed by an internal
limitation circuit.
February 2006
Rev. 4
1/19
www.st.com
19
Order Codes
1
TS912
Order Codes
Part Number
Package
Packing
Marking
TS912IN
DIP8
Tube
TS912IN
TS912ID/IDT
SO-8
Tube or Tape & Reel
912I
TS912AIN
DIP8
Tube
TS912AIN
TS912AID/AIDT
TS912BID/BIDT
TS912IYD/IYDT
TS912AIYD/AIYDT
2/19
Temperature Range
-40, +125°C
SO-8
SO-8
SO-8 (automotive grade level)
912AI
Tube or Tape & Reel
912BI
912IY
912AIY
TS912
Absolute Maximum Ratings and Operating Conditions
2
Absolute Maximum Ratings and Operating
Conditions
Table 1.
Key parameters and their absolute maximum ratings
Symbol
Parameter
(1)
VCC
Supply voltage
Vid
Differential Input Voltage (2)
(3)
Value
Unit
18
VCC
±18
Vid
-0.3 to 18
Vi
Vi
Input Voltage
Iin
Current on Inputs
±50
Iin
Io
Current on Outputs
±130
Io
Toper
Operating Free Air Temperature Range
TS912I/AI/BI
-40 to + 125
Toper
Tstg
Storage Temperature
-65 to +150
Tstg
150
Tj
85
125
°C/W
Tj
Maximum Junction Temperature
(4)
Rthja
Thermal Resistance Junction to Ambient
DIP8
SO-8
Rthjc
Thermal Resistance Junction to Case
DIP8
SO-8
41
40
°C/W
HBM: Human Body Model(5)
3
kV
200
V
1500
kV
ESD
MM: Machine
Model(6)
CDM: Charged Device Model
1. All voltages values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all
amplifiers. These values are typical.
5. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
6. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external
series resistor (internal resistor < 5Ω), into pin to pin of device.
Table 2.
Operating conditions
Symbol
Parameter
VCC
Supply voltage
Vicm
Common Mode Input Voltage Range
Value
Unit
2.7 to 16
V
VCC- -0.2 to VCC+
+0.2
V
3/19
Typical Application Information
TS912
3
Typical Application Information
Figure 1.
Schematic diagram (1/2 TS912)
VCC
Non-inverting
Input
Internal
Vref
Inverting
Input
Output
VCC
4/19
Electrical Characteristics
4
Electrical Characteristics
Table 3.
VCC+ = 3V, Vcc- = 0V, RL, CL connected to V CC/2, Tamb = 25°C (unless otherwise
specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
10
5
2
12
7
3
mV
Vio
Input Offset Voltage (Vic = Vo = VCC/2)TS912
TS912A
TS912B
Tmin. ≤ Tamb ≤ Tmax.TS912
TS912A
TS912B
∆Vio
Input Offset Voltage Drift
5
Iio
Input Offset Current (1)
Tmin. ≤ Tamb ≤ Tmax.
1
100
200
pA
Iib
Input Bias Current 1)
Tmin. ≤ Tamb ≤ Tmax.
1
150
300
pA
ICC
Supply Current (per amplifier, A VCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
200
300
400
µA
CMR
Common Mode Rejection Ratio
Vic = 0 to 3V, Vo = 1.5V
SVR
Supply Voltage Rejection Ratio (VCC+ = 2.7 to 3.3V, Vo = VCC/2)
Avd
Large Signal Voltage Gain (RL = 10kΩ, Vo = 1.2V to 1.8V)
Tmin. ≤ Tamb ≤ Tmax.
VOH
High Level Output Voltage (Vid = 1V)
RL = 100kΩ
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Tmin. ≤ Tamb ≤ Tmax.RL = 10kΩ
RL = 600Ω
VOL
Io
5/19
TS912
70
dB
50
80
dB
3
2
10
2.95
2.9
2.3
V/mV
2.96
2.6
2
V
2.8
2.1
Low Level Output Voltage (Vid = -1V)
RL = 100kΩ
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Tmin. ≤ Tamb ≤ Tmax.RL = 10kΩ
RL = 600Ω
Output Short Circuit Current (V id = ±1V)
Source (V o = VCC-)
Sink (V o = VCC+)
µV/°C
30
300
900
50
70
400
mV
100
600
20
20
40
40
mA
GBP
Gain Bandwidth Product
(A VCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
0.8
MHz
SR+
Slew Rate
(A VCL = 1, RL = 10kΩ, CL = 100pF, Vi = 1.3V to 1.7V)
0.4
V/µs
SR-
Slew Rate
(A VCL = 1, RL = 10kΩ, CL = 100pF, Vi = 1.3V to 1.7V)
0.3
V/µs
Electrical Characteristics
Table 3.
TS912
VCC+ = 3V, Vcc- = 0V, RL, CL connected to V CC/2, Tamb = 25°C (unless otherwise
specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
φm
Phase Margin
30
Degrees
en
Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz)
30
nV/√Hz
1. Maximum values including unavoidable inaccuracies of the industrial test
Table 4.
VCC+ = 5V, Vcc- = 0V, R L, CL connected to V CC/2, Tamb = 25°C (unless
otherwise specified)
Symbol
Vio
Input Offset Voltage (Vic = Vo = V CC/2)TS912
TS912A
TS912B
Tmin. ≤ Tamb ≤ T max.TS912
TS912A
TS912B
∆Vio
Input Offset Voltage Drift
Min.
Input Offset Current
Tmin. ≤ Tamb ≤ T max.
Iib
Input Bias Current 1)
Tmin. ≤ Tamb ≤ T max.
ICC
Supply Current (per amplifier, A VCL = 1, no load)
Tmin. ≤ Tamb ≤ T max.
Typ.
Max.
Unit
10
5
2
12
7
3
mV
µV/°C
5
(1)
Iio
1
100
200
pA
1
150
300
pA
230
350
450
µA
CMR
Common Mode Rejection Ratio
Vic = 1.5 to 3.5V, V o = 2.5V
60
85
dB
SVR
Supply Voltage Rejection Ratio (V CC+ = 3 to 5V, V o = VCC/2)
55
80
dB
Avd
Large Signal Voltage Gain (R L = 10kΩ, Vo = 1.5V to 3.5V)
Tmin. ≤ Tamb ≤ T max.
10
7
40
VOH
High Level Output Voltage (Vid = 1V)
RL = 100kΩ
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Tmin. ≤ Tamb ≤ T max.RL = 10kΩ
RL = 600Ω
VOL
Io
GBP
6/19
Parameter
4.95
4.9
4.25
Gain Bandwidth Product
(A VCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
4.95
4.55
3.7
V
4.8
4.1
Low Level Output Voltage (V id = -1V)
RL = 100kΩ
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Tmin. ≤ Tamb ≤ T max.RL = 10kΩ
RL = 600Ω
Output Short Circuit Current (V id = ±1V)
Source (V o = VCC -)
Sink (Vo = VCC+)
V/mV
40
350
1400
50
100
500
mV
150
750
45
45
65
65
mA
1
MHz
Electrical Characteristics
Table 4.
TS912
VCC+ = 5V, Vcc- = 0V, R L, CL connected to V CC/2, Tamb = 25°C (unless
otherwise specified)
Symbol
Parameter
Min.
SR+
Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi = 1V to 4V)
0.8
SR-
Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi = 1V to 4V)
0.6
V/µs
en
Equivalent Input Noise Voltage (R s = 100Ω, f = 1kHz)
30
nV/√Hz
120
dB
30
Degrees
VO1/V O2 Channel Separation (f = 1kHz)
φm
Phase Margin
Typ.
Max.
Unit
1. Maximum values including unavoidable inaccuracies of the industrial test
Table 5.
VCC+ = 10V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless
otherwise specified)
Symbol
7/19
Parameter
Vio
Input Offset Voltage (Vic = Vo = VCC/2)TS912
TS912A
TS912B
Tmin. ≤ Tamb ≤ Tmax.TS912
TS912A
TS912B
∆Vio
Input Offset Voltage Drift
Min.
Input Offset Current
Tmin. ≤ Tamb ≤ Tmax.
Iib
Input Bias Current 1)
Tmin. ≤ Tamb ≤ Tmax.
ICC
Supply Current (per amplifier, A VCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
CMR
Common Mode Rejection Ratio
Vic = 3 to 7V, Vo = 5V
Vic = 0 to 10V, Vo = 5V
SVR
Max.
Unit
10
5
2
12
7
3
mV
µV/°C
5
(1)
Iio
Typ.
1
100
200
pA
1
150
300
pA
400
600
700
µA
60
50
90
75
dB
Supply Voltage Rejection Ratio (VCC + = 5 to 10V, Vo =
VCC/2)
60
90
dB
Avd
Large Signal Voltage Gain (RL = 10kΩ, Vo = 2.5V to 7.5V)
Tmin. ≤ Tamb ≤ Tmax.
15
10
50
VOH
High Level Output Voltage (Vid = 1V)
RL = 100kΩ
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Tmin. ≤ Tamb ≤ Tmax.RL = 10kΩ
RL = 600Ω
9.95
9.85
9
9.8
8.8
9.95
9.35
7.8
V/mV
V
Electrical Characteristics
Table 5.
VCC+ = 10V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless
otherwise specified)
Symbol
VOL
Io
TS912
Parameter
Low Level Output Voltage (Vid = -1V)
RL = 100kΩ
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Tmin. ≤ Tamb ≤ Tmax.RL = 10kΩ
RL = 600Ω
Output Short Circuit Current (V id = ±1V)
Source (V o = VCC-)
Sink (V o = VCC+)
Typ.
50
650
2300
Max.
Unit
50
150
800
mV
150
900
45
50
65
75
mA
GBP
Gain Bandwidth Product
(A VCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
1.4
MHz
SR+
Slew Rate
(A VCL = 1, RL = 10kΩ, CL = 100pF, Vi = 2.5V to 7.5V)
1.3
V/µs
SR-
Slew Rate
(A VCL = 1, RL = 10kΩ, CL = 100pF, Vi = 2.5V to 7.5V)
0.8
φm
Phase Margin
40
Degrees
en
Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz)
30
nV/√Hz
Total Harmonic Distortion (A VCL = 1, RL = 10kΩ, CL = 100pF,
Vo = 4.75V to 5.25V, f = 1kHz)
0.02
%
Input Capacitance
1.5
pF
THD
Cin
1. Maximum values including unavoidable inaccuracies of the industrial test
8/19
Min.
Electrical Characteristics
Figure 2.
TS912
Supply current (each amplifier)
vs. supply voltage
Figure 3.
5
Tamb = 25°C
A VCL = 1
V O = VCC / 2
500
OUTPUT VOLTAGE, VOH (V)
SUPPLY CURRENT, I CC ( m A)
600
400
300
200
100
0
High level output voltage vs. high
level output current
4
8
12
2
VCC = +3V
1
-70
SUPPLY VOLTAGE, V CC (V)
Figure 4.
Low level output voltage vs. low
level output current
Figure 5.
T amb = 25 ° C
V id = -100mV
VCC = +3V
2
VCC = +5V
1
0
-14
0
14
28
42
56
70
V CC = 10V
V i = 5V
No load
10
1
25
50
75
100
125
TEMPERATURE, T amb ( °C)
High level output voltage vs. high
level output current
Figure 7.
Low level output voltage vs. low
level output current
T amb = 25° C
Vid = 100mV
16
OUTPUT VOLTAGE, VOL (V)
10
20
OUTPUT VOLTAGE, VOH (V)
-28
Input bias current vs. temperature
OUTPUT CURRENT, I OL (mA)
Figure 6.
-42
100
INPUT BIAS CURRENT, I ib (pA)
OUTPUT VOLTAGE, V OL (V)
3
-56
OUTPUT CURRENT, I OH (mA)
5
4
VCC = +5V
3
0
16
T amb = 25 °C
V id = 100mV
4
VCC = +16V
12
VCC = +10V
8
4
8
T amb = 25 ° C
V id = -100mV
6
V CC = 16V
4
V CC = 10V
2
0
-70
-56
-42
-28
-14
OUTPUT CURRENT, IOH (mA)
9/19
0
0
14
28
42
56
70
OUTPUT CURRENT, I OL (mA)
Electrical Characteristics
GAIN
GAIN (dB)
40
30
PHASE
20
Phase
Margin
Tamb = 25°C
VCC = 10V
R L = 10k W
C L = 100pF
A VCL = 100
10
0
0
45
90
135
Gain
Bandwidth
Product
180
-10
10
2
10
3
4
5
6
10
10
10
FREQUENCY, f (Hz)
10
7
1000
600
200
0
40
30
8
12
30
16
Tamb = 25°C
R L = 600W
C L = 100pF
1000
600
200
4
8
12
SUPPLY VOLTAGE, VCC (V)
10/19
16
10
2
16
10
3
0
Phase
Margin
Tamb = 25°C
V CC = 10V
R L = 600W
C L = 100pF
A VCL = 100
20
10
135
Gain
Bandwidth
Product
4
5
10
10
10
FREQUENCY, f (Hz)
90
180
6
10
7
Figure 13. Phase margin vs. supply voltage
PHASE MARGIN, fm (Degrees)
GAIN BANDW. PROD., GBP (kHz)
Figure 12. Gain bandwidth product vs. supply
voltage
0
12
45
PHASE
SUPPLY VOLTAGE, VCC (V)
1400
8
GAIN
0
10
20
1800
4
40
GAIN (dB)
PHASE MARGIN, f m (Degrees)
1400
50
Tamb = 25°C
R L = 10kW
C L = 100pF
4
Tamb = 25°C
R L = 10kW
C L = 100pF
Figure 11. Gain and phase vs. frequency
60
0
1800
SUPPLY VOLTAGE, VCC (V)
Figure 10. Phase margin vs. supply voltage
50
Gain bandwidth product vs. supply
voltage
PHASE (Degrees)
50
Figure 9.
GAIN BANDW. PROD., GBP (kHz)
Gain and phase vs. frequency
PHASE (Degrees)
Figure 8.
TS912
60
Tamb = 25°C
R L = 600W
C L = 100pF
50
40
30
20
0
4
8
12
SUPPLY VOLTAGE, VCC (V)
16
Electrical Characteristics
TS912
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
Figure 14. Input voltage noise vs. frequency
150
VCC = 10V
Tamb = 25°C
RS = 100W
100
50
0
10
100
1000
FREQUENCY (Hz)
11/19
10000
Macromodels
TS912
5
Macromodels
5.1
Important note concerning this macromodel
Please consider following remarks before using this macromodel.
– All models are a trade-off between accuracy and complexity (i.e. simulation
time).
– Macromodels are not a substitute to breadboarding; rather, they confirm the
validity of a design approach and help to select surrounding component
values.
– A macromodel emulates the NOMINAL performance of a TYPICAL device
within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply
voltage, etc.). Thus the macromodel is often not as exhaustive as the
datasheet, its goal is to illustrate the main parameters of the product.
– Data issued from macromodels used outside of its specified conditions
(Vcc, Temperature, etc.) or even worse: outside of the device operating
conditions (Vcc, Vicm, etc.) are not reliable in any way.
In Section 5.2 and Section 5.4, the electrical characteristics resulting from the use
of these macromodels are presented.
5.2
Electrical characteristics from macromodelization
Table 6.
Electrical characteristics resulting from macromodel simulation at V CC+ = 3V, V CC- =
0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Unit
0
mV
Avd
RL = 10kΩ
10
V/mV
ICC
No load, per operator
200
µA
-0.2 to 3.2
V
Vicm
5.3
Value
VOH
RL = 10kΩ
2.96
V
VOL
RL = 10kΩ
30
mV
Isink
VO = 3V
40
mA
Isource
VO = 0V
40
mA
GBP
RL = 10kΩ, C L = 100pF
0.8
MHz
SR
RL = 10kΩ, C L = 100pF
0.3
V/µs
Macromodel code
Applies to: TS912 (VCC = 3V)
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
12/19
Macromodels
TS912
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS912_3 1 3 2 4 5 (analog)
*****************************************************
*****
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 1.271505E+01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.125860E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.000000E+00
FCN 5 4 VOFN 5.000000E+00
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.750000E+02
FIN 5 19 VOFN 2.750000E+02
RG1 19 5 1.916825E+05
RG2 19 4 1.916825E+05
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 1.3E+03
HZTN 5 30 VOFN 1.3E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 150
HONM 21 27 VOUT 3800
VINM 5 27 150
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 75
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
HSCP 68 25 VSCP1 0.8E8
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
HSCN 24 69 VSCN1 0.8E+08
VSCTHP 60 61 0.0875
** VSCTHP = le seuil au dessus de vio * 500
** c.a.d 275U-000U dus a l’offset
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
** VSCTHN = le seuil au dessous de vio * 2000
13/19
Macromodels
TS912
** c.a.d -375U-000U dus a l’offset
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
5.4
Electrical characteristics from macromodelization
Table 7.
Electrical characteristics resulting from macromodel simulation at V CC+ = 5V, V CC- =
0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Unit
0
mV
Avd
RL = 10kΩ
50
V/mV
ICC
No load, per operator
230
µA
-0.2 to 5.2
V
Vicm
5.5
Value
VOH
RL = 10kΩ
4.95
V
VOL
RL = 10kΩ
40
mV
Isink
VO = 5V
65
mA
Isource
VO = 0V
65
mA
GBP
RL = 10kΩ, C L = 100pF
1
MHz
SR
RL = 10kΩ, C L = 100pF
0.8
V/µs
Macromodel code
Applies to: TS912 (VCC = 5V)
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TS912_5 1 3 2 4 5 (analog)
*****************************************************
*****
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.322092E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.498970E-08
DINN 17 13 MDTH 400E-12
14/19
Macromodels
TS912
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.750000E+00
FCN 5 4 VOFN 5.750000E+00
ISTB0 5 4 500N
* AMPLIFYING STAGE
FIP 5 19 VOFP 4.400000E+02
FIN 5 19 VOFN 4.400000E+02
RG1 19 5 4.904961E+05
RG2 19 4 4.904961E+05
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 1.8E+03
HZTN 5 30 VOFN 1.8E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 230
HONM 21 27 VOUT 3800
VINM 5 27 230
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 82
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
HSCP 68 25 VSCP1 0.8E+08
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
HSCN 24 69 VSCN1 0.8E+08
VSCTHP 60 61 0.0875
** VSCTHP = le seuil au dessus de vio * 500
** c.a.d 275U-000U dus a l’offset
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
** VSCTHN = le seuil au dessous de vio * 2000
** c.a.d -375U-000U dus a l’offset
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
15/19
Package Mechanical Data
6
TS912
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in
ECOPACK ® packages. These packages have a Lead-free second level
interconnect. The category of second level interconnect is marked on the package
and on the inner box label, in compliance with JEDEC Standard JESD97. The
maximum ratings related to soldering conditions are also marked on the inner box
label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
6.1
DIP-8 Package
Plastic DIP-8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
A
TYP
MAX.
MIN.
3.3
0.7
B
1.39
1.65
0.055
B1
0.91
1.04
0.036
b1
0.028
0.5
0.38
0.065
0.041
0.020
0.5
D
0.015
0.020
9.8
0.386
E
8.8
0.346
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
7.1
I
4.8
L
Z
0.280
0.189
3.3
0.44
MAX.
0.130
a1
b
TYP.
0.130
1.6
0.017
0.063
P001F
16/19
Package Mechanical Data
6.2
TS912
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
0.053
0.069
A
1.35
1.75
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
17/19
Revision History
TS912
7
Revision History
Table 8.
Document revision history
Date
Revision
Dec. 2001
1
First Release
July 2005
2
1 - PPAP references inserted in the datasheet see Table : on page 1
2 - ESD protection inserted in Table l: Key parameters and their absolute
maximum ratings on page 2
Oct. 2005
3
The following changes were made in this revision:
– Some errors in the Order Codes table was corrected on page 1.
– Reorganization of Chapter 5: Macromodels on page 12.
Feb. 2006
4
– Parameters added in Table 1. on page 3 (Tj, ESD, Rthja, Rthjc).
18/19
Changes
TS912
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
19/19