STMICROELECTRONICS TSH94

TSH94
High speed low power quad operational amplifier
with standby position
Features
■
Two separate standby functions: low
consumption and high impedance outputs
■
Low supply current: 4.5mA
■
High speed: 150MHz - 110V/µs
■
Unity gain stability
■
Low offset voltage: 3mV
■
Low noise 4.2 nV/√Hz
■
Low cost
■
Specified for 600Ω and 150Ω loads
■
High video performance:
– Differential gain: 0.03%
– Differential phase: 0.07°
– Gain flatness: 6MHz, 0.1dB max @ 10dB
gain
■
D
SO-16
(Plastic micropackage)
Pin connections
(top view)
High audio performance
Output 1
1
Inverting Input 1
2
-
-
15 Inverting Input 4
Non-inverting Input 1
3
+
+
14 Non-inverting Input 4
+
4
Non-inverting Input 2
5
+
+
12 Non-inverting Input 3
Inverting Input 2
6
-
-
11 Inverting Input 3
Output 2
7
VCC
Description
The TSH94 is a quad low power high frequency
op-amp, designed for high quality video signal
processing. The device offers an excellent speed
consumption ratio with 4.5mA per amplifier for
150MHz bandwidth.
16 Output 4
Standby 1 8
13 VCC -
10 Output 3
9
Standby 2
High slew rate and low noise also make it suitable
for high quality audio applications.
The TSH94 offers 2 separate complementary
STANDBY functions:
■
STANDBY 1 acting on the n° 2 operator
■
STANDBY 2 acting on the n° 3 operator
These functions reduce the consumption of the
corresponding operator and put the output in a
high impedance state.
November 2007
Rev 3
1/19
www.st.com
19
Schematic diagram
1
TSH94
Schematic diagram
Figure 1.
Schematic diagram
V CC+
stdby
stdby
non inverting
input
Internal
Vref
inverting
input
output
Cc
stdby
stdby
VCC-
2/19
TSH94
2
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vi
Parameter
Value
Unit
14
V
±5
V
-0.3 to 12
V
Supply voltage (1)
Differential input voltage
Input voltage
(2)
(3)
Toper
Operating free-air temperature range
-40 to +125
°C
Tstg
Storage temperature range
-65 to +150
°C
1.5
2
200
kV
kV
V
ESD
CDM: charged device model
HBM: human body model(5)
MM: machine model(6)
(4)
1. All voltage values, except differential voltage are with respect to network ground terminal
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V
4. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
6. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of
connected pin combinations while the other pins are floating
Table 2.
Operating conditions
Symbol
VCC
Vicm
Parameter
Supply voltage
Common mode input voltage range
VCC-
Value
Unit
7 to 12
V
+2 to
VCC+ -1
V
3/19
Electrical characteristics
TSH94
3
Electrical characteristics
Table 3.
VCC+ = 5V, VCC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25°C
(unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
3
5
mV
Vio
Input offset voltage Vic = Vo = 0V
Tmin ≤ Tamb ≤ Tmax
Iio
Input offset current
Tmin ≤ Tamb ≤ Tmax
1
2
5
μA
Iib
Input bias current
Tmin ≤ Tamb ≤ Tmax
5
15
20
μA
ICC
Supply current (per amplifier, no load)
Tmin ≤ Tamb ≤ Tmax
4.5
6
8
mA
CMR
Common mode rejection ratio Vic = -3V to +4V, Vo = 0V
Tmin ≤ Tamb ≤ Tmax
80
70
100
SVR
Supply voltage rejection ratio VCC = ±5V to ±3V
Tmin ≤ Tamb ≤ Tmax
60
50
75
Avd
Large signal voltage gain RL = 10kΩ, Vo = ±2.5V
Tmin ≤ Tamb ≤ Tmax
57
54
70
VOH
High level output voltage Vid = 1V
RL = 600Ω
RL = 150Ω
RL = 150Ω
Tmin ≤ Tamb ≤ Tmax.
3
2.5
2.4
3.5
3
VOL
Low level output voltage Vid = 11V
RL = 600Ω
RL = 150Ω
RL = 150Ω
Tmin ≤ Tamb ≤ Tmax.
Io
Output short-circuit current Vid = ±1V
Source
Sink
Source
Tmin ≤ Tamb ≤ Tmax.
Sink
20
20
15
15
36
40
Gain bandwidth product
AVCL = 100, RL = 600Ω, CL = 15pF, f = 7.5MHz
90
150
GBP
fT
-3.5
-2.8
Transition frequency
dB
dB
dB
V
-3
-2.5
-2.4
V
mA
MHz
90
MHz
SR
Slew rate
Vin = -2 to +2V, AVCL = +1, RL = 600Ω, CL = 15pF
en
Equivalent input voltage noise Rs = 50Ω, f = 1kHz
4.2
nV/√Hz
φm
Phase margin AVM = +1
35
Degrees
65
dB
VO1/VO2 Channel separation f = 1MHz to 10MHz
Gf
THD
4/19
70
Gain flatness f = DC to 6MHz, AVCL = 10dB
Total harmonic distortion f = 1kHz, Vo = ±2.5V, RL = 600Ω
V/μs
110
0.1
0.01
dB
%
TSH94
Electrical characteristics
VCC+ = 5V, VCC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25°C
(unless otherwise specified) (continued)
Table 3.
Symbol
Parameter
Min.
Typ.
Max.
Unit
ΔG
Differential gain f = 3.58MHz, AVCL = +2, RL = 150Ω
0.03
%
Δϕ
Differential phase f = 3.58MHz, AVCL = +2, RL = 150Ω
0.07
Degree
Standby mode
VCC+ = 5V, VCC- = -5V, Tamb = 25°C (unless otherwise specified)
Table 4.
Symbol
VSTBY
Parameter
Min.
Pin 8/9 threshold voltage for STANDBY mode
Typ.
Max.
VCC+ -2.2 VCC+ -1.6 VCC+ -1.0
Total consumption
Standby 1 & 2 = 0
ICC-STBY
Standby 1 & 2 = 1
Standby 1 = 1, Standby 2 = 0
13.7
13.7
9.4
Unit
V
mA
Isol
Input/output isolation (f = 1MHz to 10MHz)
70
dB
ton
Time from standby mode to active mode
200
ns
toff
Time from active mode to standby mode
200
ns
ID
Standby driving current
2
pA
IOL
Output leakage current
20
pA
IIL
Input leakage current
20
pA
Table 5.
Standby control pin status
Logic input
Status
Standby 1
Standby 2
Op-amp 2
Op-amp 3
Op-amps 1 & 4
0
0
Enable
Standby
Enable
0
1
Enable
Enable
Enable
1
0
Standby
Standby
Enable
1
1
Standby
Enable
Enable
5/19
Electrical characteristics
Figure 2.
TSH94
Standby position
VCC
standby
VCC
To put the device in standby, just apply a logic level on the standby MOS input. Because
ground is a virtual level for the device, the threshold voltage is to VCC+ (VCC+- 1.6V typ, see
Table 4).
6/19
TSH94
Electrical characteristics
Figure 3.
Closed loop frequency response
Figure 4.
Gain flatness and phase shift
versus frequency
Figure 5.
Open loop frequency response and Figure 6.
phase shift
Static open loop voltage gain
Figure 7.
Audio bandwidth frequency
response and phase shift (TSH94
vs standard 15MHz audio op-amp)
Large signal follower response
Figure 8.
7/19
Electrical characteristics
Figure 9.
Small signal follower response
TSH94
Figure 10. Crosstalk isolation versus
frequency (SO-16 package)
Figure 11. Crosstalk isolation versus
frequency (SO-16 package)
Figure 12. Input/output isolation in standby
mode (SO-16 package)
Figure 13. Standby switching
Figure 14. Signal multiplexing (see Figure 18)
8/19
TSH94
Electrical characteristics
Figure 15. Common input impedance versus
frequency
Figure 16. Differential input impedance versus
frequency
4.5
120
4.0
100
3.5
Zin-com (MW)
Zin-diff (kW)
3.0
2.5
2.0
80
60
40
1.5
1.0
20
0.5
1k
10k
100k
1M
10M
100M
Frequency (Hz)
1k
10k
100k
1M
10M
100M
Frequency (Hz)
Figure 17. Input offset voltage drift versus
temperature
9/19
Application information
4
Application information
Figure 18. Signal multiplexing
Figure 19. Sample and hold
10/19
TSH94
TSH94
Application information
Figure 20. Video line transceiver with remote control
Printed circuit layout recommendations
As for any high frequency device, a few rules must be observed when designing the PCB to
get the best performance from this high-speed op-amp.
Some recommendations are listed below, from the most important to the least important:
●
By-pass each power supply lead to ground with a 10μF capacitor and a 10nF ceramic
capacitor very close to the device.
●
To provide low inductance and low resistance common return, use a ground plane or
common point return for power and signal.
●
Make sure all leads are wide and as short as possible, especially for op-amp inputs.
This is to decrease parasitic capacitance and inductance.
●
Use small resistor values to decrease the time constant with parasitic capacitance.
●
Choose component sizes as small as possible (SMD).
●
On the output, keep the capacitor load as low as possible to avoid oscillation which
would degrade the circuit stability. You can also add a serial resistor in order to
minimise the effect of the capacitor load.
11/19
Macromodel information
5
Macromodel information
5.1
TSH94I without standby
TSH94
The macromodel information provided in this section applies to TSH94I (model without
standby).
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TSH94 1 3 2 4 5 (analog)
********************************************************
.MODEL MDTH D IS=1E-8 KF=1.809064E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E-01
RIN 15 16 2.600000E-01
RIS 11 15 3.645298E-01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 1314DC 0
IPOL 13 5 1.000000E-03
CPS 11 15 2.986990E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 2.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
FCP 4 5 VOFP 3.500000E+00
FCN 5 4 VOFN 3.500000E+00
FIBP 2 5 VOFP 1.000000E-02
FIBN 5 1 VOFN 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.530000E+02
FIN 5 19 VOFN 2.530000E+02
RG1 19 5 3.160721E+03
RG2 19 4 3.160721E+03
CC 19 5 2.00000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 1.504000E+03
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 1.400000E+03
12/19
TSH94
Macromodel information
VINM 5 27 5.000000E+01
***********************
RZP1 5 80 1E+06
RZP2 4 80 1E+06
GZP 5 82 19 80 2.5E-05
RZP2H 83 4 10000
RZP1H 83 82 80000
RZP2B 84 5 10000
RZP1B 82 84 80000
LZPH 4 83 3.535e-02
LZPB 84 5 3.535e-02
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 3 35
COUT 3 5 30.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.361965E+00
DON 24 19 MDTH 400E-12
VON 24 5 2.361965E+00
.ENDS
Table 6.
Electrical characteristics with VCC = ±5V, Tamb = 25°C (unless otherwise
specified)
Symbol
Conditions
Vio
Unit
0
mV
Avd
RL = 600Ω
3.2
V/mV
ICC
No load / amp
5.2
mA
-3 to 4
V
Vicm
5.2
Value
VOH
RL = 600Ω
+3.6
V
VOL
RL = 600Ω
-3.6
V
Isink
Vo = 0V
40
mA
Isource
Vo = 0V
40
mA
GBP
RL = 600Ω, CL = 15pF
147
MHz
SR
RL = 600Ω, CL = 15pF
110
V/μs
φm
RL = 600Ω, CL = 15pF
42
Degrees
TSH94I with standby
The macromodel information provided in this section applies to TSH94I (model with
standby).
*
*
*
*
*
1
2
3
4
5
INVERTING INPUT
NON-INVERTING INPUT
OUTPUT
POSITIVE POWER SUPPLY
NEGATIVE POWER SUPPLY
13/19
Macromodel information
* 6 STANDBY
.SUBCKT TSH94 1 3 2 4 5 6 (analog)
********************************************************
**************** switch *******************
.SUBCKT SWITCH20 10 IN OUT COM
.MODEL DIDEAL D N=0.1 IS=1E-08
DP IN 1 DIDEAL 400E-12
DN OUT 2 DIDEAL 400E-12
EP 1 OUT COM 10 2
EN 2 IN COM 10 2
RFUIT1 IN 1 1E+09
RFUIT2 OUT 2 1E+09
RCOM COM 0 1E+12
.ENDS SWITCH
**************** inverter *****************
.SUBCKT INV 20 10 IN OUT
.MODEL DIDEAL D N=0.1 IS=1E-08
RP1 20 15 1E+09
RN1 15 10 1E+09
RIN IN 10 1E+12
RIP IN 20 1E+12
DPINV OUT 20 DIDEAL 400E-12
DNINV 10 OUT DIDEAL 400E-12
GINV 0 OUT IN 15 -6.7E-7
CINV 0 OUT 210f
.ENDS INV
***************** AOP **********************
.MODEL MDTH D IS=1E-8 KF=1.809064E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E-01
RIN 15 16 2.600000E-01
RIS 11 15 3.645298E-01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 1314DC 0
FPOL 13 5 VSTB 1E+03
CPS 11 15 2.986990E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 2.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
FCP 4 5 VOFP 3.500000E+00
FCN 5 4 VOFN 3.500000E+00
ISTB0 4 5 130UA
FIBP 2 5 VOFP 1.000000E-02
FIBN 5 1 VOFN 1.000000E-02
14/19
TSH94
TSH94
Macromodel information
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.530000E+02
FIN 5 19 VOFN 2.530000E+02
RG1 19 120 3.160721E+03
XCOM1 4 0 120 5 COM SWITCH
RG2 19 121 3.160721E+03
XCOM2 4 0 4 121 COM SWITCH
CC 19 5 2.00000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 1.504000E+03
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 1.400000E+03
VINM 5 27 5.000000E+01
*********** ZP **********
RZP1 5 80 1E+06
RZP2 4 80 1E+06
GZP 5 82 19 80 2.5E-05
RZP2H 83 4 10000
RZP1H 83 82 80000
RZP2B 84 5 10000
RZP1B 82 84 80000
LZPH 4 83 3.535e-02
LZPB 84 5 3.535e-02
**************************
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 103 35
COUT 103 5 30.000000E-12
XCOM 4 0 103 3 COM SWITCH
DOP 19 25 MDTH 400E-12
VOP 4 25 2.361965E+00
DON 24 19 MDTH 400E-12
VON 24 5 2.361965E+00
********** STAND BY ********
RMI1 4 111 1E+7
RMI2 0 111 2E+7
RONOFF 6 60 1K
CONOGG 60 0 10p
RSTBIN 60 0 1E+12
ESTBIN 106 0 6 0 1
ESTBREF 106 107 111 0 1
DSTB1 107 108 MDTH 400E-12
VSTB 108 109 0
ISTB 109 0 1U
RSTB 109 110 1
DSTB2 0 110 MDTH 400E-12
XINV 4 0 6 COM INV
.ENDS
15/19
Package information
6
TSH94
Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
16/19
TSH94
Package information
Figure 21. SO-16 package mechanical drawing (16-pin plastic micropackage)
Table 7.
SO-16 package mechanical data
Millimeters
Inches
Dim.
Min.
Typ.
Max.
Min.
Typ.
Max.
A
1.75
0.069
a1
0.25
0.01
a2
1.25
b
0.31
0.51
0.012
0.02
b1
0.17
0.25
0.007
0.010
C
0.049
0.5
0.020
c1
45° (typ.)
D
9.8
10
0.386
0.394
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
8.89
0.350
F
3.8
4.0
0.150
0.157
G
4.6
5.3
0.181
0.209
L
0.4
1.27
0.016
0.050
M
S
0.62
0.024
8° (max.)
17/19
Ordering information
7
TSH94
Ordering information
Table 8.
Order codes
Temperature
range
Part number
Package
Packing
Marking
SO-16
Tube or
Tape & reel
TSH94I
SO-16
(Automotive grade)
Tube or
Tape & reel
TSH94Y
TSH94ID
TSH94IDT
-40°C to +125°C
TSH94IYD
TSH94IYDT(1)
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are on-going.
8
Revision history
Table 9.
Document revision history
Date
Revision
5-Oct-2000
1
Initial release.
6-Jun-2007
2
Table 8: Order codes updated and moved to Section 7: Ordering
information. Automotive grade order codes added.
Format update.
3
Corrected unit in feature list on cover page from 110V/ms to 110V/µs.
Added ESD parameters in Table 1: Absolute maximum ratings
(AMR).
Updated footnote in Table 8: Order codes.
27-Nov-2007
18/19
Changes
TSH94
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
19/19