TSH94 High speed low power quad operational amplifier with standby position Features ■ Two separate standby functions: low consumption and high impedance outputs ■ Low supply current: 4.5mA ■ High speed: 150MHz - 110V/µs ■ Unity gain stability ■ Low offset voltage: 3mV ■ Low noise 4.2 nV/√Hz ■ Low cost ■ Specified for 600Ω and 150Ω loads ■ High video performance: – Differential gain: 0.03% – Differential phase: 0.07° – Gain flatness: 6MHz, 0.1dB max @ 10dB gain ■ D SO-16 (Plastic micropackage) Pin connections (top view) High audio performance Output 1 1 Inverting Input 1 2 - - 15 Inverting Input 4 Non-inverting Input 1 3 + + 14 Non-inverting Input 4 + 4 Non-inverting Input 2 5 + + 12 Non-inverting Input 3 Inverting Input 2 6 - - 11 Inverting Input 3 Output 2 7 VCC Description The TSH94 is a quad low power high frequency op-amp, designed for high quality video signal processing. The device offers an excellent speed consumption ratio with 4.5mA per amplifier for 150MHz bandwidth. 16 Output 4 Standby 1 8 13 VCC - 10 Output 3 9 Standby 2 High slew rate and low noise also make it suitable for high quality audio applications. The TSH94 offers 2 separate complementary STANDBY functions: ■ STANDBY 1 acting on the n° 2 operator ■ STANDBY 2 acting on the n° 3 operator These functions reduce the consumption of the corresponding operator and put the output in a high impedance state. November 2007 Rev 3 1/19 www.st.com 19 Schematic diagram 1 TSH94 Schematic diagram Figure 1. Schematic diagram V CC+ stdby stdby non inverting input Internal Vref inverting input output Cc stdby stdby VCC- 2/19 TSH94 2 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol VCC Vid Vi Parameter Value Unit 14 V ±5 V -0.3 to 12 V Supply voltage (1) Differential input voltage Input voltage (2) (3) Toper Operating free-air temperature range -40 to +125 °C Tstg Storage temperature range -65 to +150 °C 1.5 2 200 kV kV V ESD CDM: charged device model HBM: human body model(5) MM: machine model(6) (4) 1. All voltage values, except differential voltage are with respect to network ground terminal 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V 4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 6. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating Table 2. Operating conditions Symbol VCC Vicm Parameter Supply voltage Common mode input voltage range VCC- Value Unit 7 to 12 V +2 to VCC+ -1 V 3/19 Electrical characteristics TSH94 3 Electrical characteristics Table 3. VCC+ = 5V, VCC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit 3 5 mV Vio Input offset voltage Vic = Vo = 0V Tmin ≤ Tamb ≤ Tmax Iio Input offset current Tmin ≤ Tamb ≤ Tmax 1 2 5 μA Iib Input bias current Tmin ≤ Tamb ≤ Tmax 5 15 20 μA ICC Supply current (per amplifier, no load) Tmin ≤ Tamb ≤ Tmax 4.5 6 8 mA CMR Common mode rejection ratio Vic = -3V to +4V, Vo = 0V Tmin ≤ Tamb ≤ Tmax 80 70 100 SVR Supply voltage rejection ratio VCC = ±5V to ±3V Tmin ≤ Tamb ≤ Tmax 60 50 75 Avd Large signal voltage gain RL = 10kΩ, Vo = ±2.5V Tmin ≤ Tamb ≤ Tmax 57 54 70 VOH High level output voltage Vid = 1V RL = 600Ω RL = 150Ω RL = 150Ω Tmin ≤ Tamb ≤ Tmax. 3 2.5 2.4 3.5 3 VOL Low level output voltage Vid = 11V RL = 600Ω RL = 150Ω RL = 150Ω Tmin ≤ Tamb ≤ Tmax. Io Output short-circuit current Vid = ±1V Source Sink Source Tmin ≤ Tamb ≤ Tmax. Sink 20 20 15 15 36 40 Gain bandwidth product AVCL = 100, RL = 600Ω, CL = 15pF, f = 7.5MHz 90 150 GBP fT -3.5 -2.8 Transition frequency dB dB dB V -3 -2.5 -2.4 V mA MHz 90 MHz SR Slew rate Vin = -2 to +2V, AVCL = +1, RL = 600Ω, CL = 15pF en Equivalent input voltage noise Rs = 50Ω, f = 1kHz 4.2 nV/√Hz φm Phase margin AVM = +1 35 Degrees 65 dB VO1/VO2 Channel separation f = 1MHz to 10MHz Gf THD 4/19 70 Gain flatness f = DC to 6MHz, AVCL = 10dB Total harmonic distortion f = 1kHz, Vo = ±2.5V, RL = 600Ω V/μs 110 0.1 0.01 dB % TSH94 Electrical characteristics VCC+ = 5V, VCC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25°C (unless otherwise specified) (continued) Table 3. Symbol Parameter Min. Typ. Max. Unit ΔG Differential gain f = 3.58MHz, AVCL = +2, RL = 150Ω 0.03 % Δϕ Differential phase f = 3.58MHz, AVCL = +2, RL = 150Ω 0.07 Degree Standby mode VCC+ = 5V, VCC- = -5V, Tamb = 25°C (unless otherwise specified) Table 4. Symbol VSTBY Parameter Min. Pin 8/9 threshold voltage for STANDBY mode Typ. Max. VCC+ -2.2 VCC+ -1.6 VCC+ -1.0 Total consumption Standby 1 & 2 = 0 ICC-STBY Standby 1 & 2 = 1 Standby 1 = 1, Standby 2 = 0 13.7 13.7 9.4 Unit V mA Isol Input/output isolation (f = 1MHz to 10MHz) 70 dB ton Time from standby mode to active mode 200 ns toff Time from active mode to standby mode 200 ns ID Standby driving current 2 pA IOL Output leakage current 20 pA IIL Input leakage current 20 pA Table 5. Standby control pin status Logic input Status Standby 1 Standby 2 Op-amp 2 Op-amp 3 Op-amps 1 & 4 0 0 Enable Standby Enable 0 1 Enable Enable Enable 1 0 Standby Standby Enable 1 1 Standby Enable Enable 5/19 Electrical characteristics Figure 2. TSH94 Standby position VCC standby VCC To put the device in standby, just apply a logic level on the standby MOS input. Because ground is a virtual level for the device, the threshold voltage is to VCC+ (VCC+- 1.6V typ, see Table 4). 6/19 TSH94 Electrical characteristics Figure 3. Closed loop frequency response Figure 4. Gain flatness and phase shift versus frequency Figure 5. Open loop frequency response and Figure 6. phase shift Static open loop voltage gain Figure 7. Audio bandwidth frequency response and phase shift (TSH94 vs standard 15MHz audio op-amp) Large signal follower response Figure 8. 7/19 Electrical characteristics Figure 9. Small signal follower response TSH94 Figure 10. Crosstalk isolation versus frequency (SO-16 package) Figure 11. Crosstalk isolation versus frequency (SO-16 package) Figure 12. Input/output isolation in standby mode (SO-16 package) Figure 13. Standby switching Figure 14. Signal multiplexing (see Figure 18) 8/19 TSH94 Electrical characteristics Figure 15. Common input impedance versus frequency Figure 16. Differential input impedance versus frequency 4.5 120 4.0 100 3.5 Zin-com (MW) Zin-diff (kW) 3.0 2.5 2.0 80 60 40 1.5 1.0 20 0.5 1k 10k 100k 1M 10M 100M Frequency (Hz) 1k 10k 100k 1M 10M 100M Frequency (Hz) Figure 17. Input offset voltage drift versus temperature 9/19 Application information 4 Application information Figure 18. Signal multiplexing Figure 19. Sample and hold 10/19 TSH94 TSH94 Application information Figure 20. Video line transceiver with remote control Printed circuit layout recommendations As for any high frequency device, a few rules must be observed when designing the PCB to get the best performance from this high-speed op-amp. Some recommendations are listed below, from the most important to the least important: ● By-pass each power supply lead to ground with a 10μF capacitor and a 10nF ceramic capacitor very close to the device. ● To provide low inductance and low resistance common return, use a ground plane or common point return for power and signal. ● Make sure all leads are wide and as short as possible, especially for op-amp inputs. This is to decrease parasitic capacitance and inductance. ● Use small resistor values to decrease the time constant with parasitic capacitance. ● Choose component sizes as small as possible (SMD). ● On the output, keep the capacitor load as low as possible to avoid oscillation which would degrade the circuit stability. You can also add a serial resistor in order to minimise the effect of the capacitor load. 11/19 Macromodel information 5 Macromodel information 5.1 TSH94I without standby TSH94 The macromodel information provided in this section applies to TSH94I (model without standby). ** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TSH94 1 3 2 4 5 (analog) ******************************************************** .MODEL MDTH D IS=1E-8 KF=1.809064E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E-01 RIN 15 16 2.600000E-01 RIS 11 15 3.645298E-01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 1314DC 0 IPOL 13 5 1.000000E-03 CPS 11 15 2.986990E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 2.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00 FCP 4 5 VOFP 3.500000E+00 FCN 5 4 VOFN 3.500000E+00 FIBP 2 5 VOFP 1.000000E-02 FIBN 5 1 VOFN 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 2.530000E+02 FIN 5 19 VOFN 2.530000E+02 RG1 19 5 3.160721E+03 RG2 19 4 3.160721E+03 CC 19 5 2.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 1.504000E+03 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 1.400000E+03 12/19 TSH94 Macromodel information VINM 5 27 5.000000E+01 *********************** RZP1 5 80 1E+06 RZP2 4 80 1E+06 GZP 5 82 19 80 2.5E-05 RZP2H 83 4 10000 RZP1H 83 82 80000 RZP2B 84 5 10000 RZP1B 82 84 80000 LZPH 4 83 3.535e-02 LZPB 84 5 3.535e-02 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 35 COUT 3 5 30.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.361965E+00 DON 24 19 MDTH 400E-12 VON 24 5 2.361965E+00 .ENDS Table 6. Electrical characteristics with VCC = ±5V, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Unit 0 mV Avd RL = 600Ω 3.2 V/mV ICC No load / amp 5.2 mA -3 to 4 V Vicm 5.2 Value VOH RL = 600Ω +3.6 V VOL RL = 600Ω -3.6 V Isink Vo = 0V 40 mA Isource Vo = 0V 40 mA GBP RL = 600Ω, CL = 15pF 147 MHz SR RL = 600Ω, CL = 15pF 110 V/μs φm RL = 600Ω, CL = 15pF 42 Degrees TSH94I with standby The macromodel information provided in this section applies to TSH94I (model with standby). * * * * * 1 2 3 4 5 INVERTING INPUT NON-INVERTING INPUT OUTPUT POSITIVE POWER SUPPLY NEGATIVE POWER SUPPLY 13/19 Macromodel information * 6 STANDBY .SUBCKT TSH94 1 3 2 4 5 6 (analog) ******************************************************** **************** switch ******************* .SUBCKT SWITCH20 10 IN OUT COM .MODEL DIDEAL D N=0.1 IS=1E-08 DP IN 1 DIDEAL 400E-12 DN OUT 2 DIDEAL 400E-12 EP 1 OUT COM 10 2 EN 2 IN COM 10 2 RFUIT1 IN 1 1E+09 RFUIT2 OUT 2 1E+09 RCOM COM 0 1E+12 .ENDS SWITCH **************** inverter ***************** .SUBCKT INV 20 10 IN OUT .MODEL DIDEAL D N=0.1 IS=1E-08 RP1 20 15 1E+09 RN1 15 10 1E+09 RIN IN 10 1E+12 RIP IN 20 1E+12 DPINV OUT 20 DIDEAL 400E-12 DNINV 10 OUT DIDEAL 400E-12 GINV 0 OUT IN 15 -6.7E-7 CINV 0 OUT 210f .ENDS INV ***************** AOP ********************** .MODEL MDTH D IS=1E-8 KF=1.809064E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E-01 RIN 15 16 2.600000E-01 RIS 11 15 3.645298E-01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 1314DC 0 FPOL 13 5 VSTB 1E+03 CPS 11 15 2.986990E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 2.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00 FCP 4 5 VOFP 3.500000E+00 FCN 5 4 VOFN 3.500000E+00 ISTB0 4 5 130UA FIBP 2 5 VOFP 1.000000E-02 FIBN 5 1 VOFN 1.000000E-02 14/19 TSH94 TSH94 Macromodel information * AMPLIFYING STAGE FIP 5 19 VOFP 2.530000E+02 FIN 5 19 VOFN 2.530000E+02 RG1 19 120 3.160721E+03 XCOM1 4 0 120 5 COM SWITCH RG2 19 121 3.160721E+03 XCOM2 4 0 4 121 COM SWITCH CC 19 5 2.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 1.504000E+03 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 1.400000E+03 VINM 5 27 5.000000E+01 *********** ZP ********** RZP1 5 80 1E+06 RZP2 4 80 1E+06 GZP 5 82 19 80 2.5E-05 RZP2H 83 4 10000 RZP1H 83 82 80000 RZP2B 84 5 10000 RZP1B 82 84 80000 LZPH 4 83 3.535e-02 LZPB 84 5 3.535e-02 ************************** EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 103 35 COUT 103 5 30.000000E-12 XCOM 4 0 103 3 COM SWITCH DOP 19 25 MDTH 400E-12 VOP 4 25 2.361965E+00 DON 24 19 MDTH 400E-12 VON 24 5 2.361965E+00 ********** STAND BY ******** RMI1 4 111 1E+7 RMI2 0 111 2E+7 RONOFF 6 60 1K CONOGG 60 0 10p RSTBIN 60 0 1E+12 ESTBIN 106 0 6 0 1 ESTBREF 106 107 111 0 1 DSTB1 107 108 MDTH 400E-12 VSTB 108 109 0 ISTB 109 0 1U RSTB 109 110 1 DSTB2 0 110 MDTH 400E-12 XINV 4 0 6 COM INV .ENDS 15/19 Package information 6 TSH94 Package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 16/19 TSH94 Package information Figure 21. SO-16 package mechanical drawing (16-pin plastic micropackage) Table 7. SO-16 package mechanical data Millimeters Inches Dim. Min. Typ. Max. Min. Typ. Max. A 1.75 0.069 a1 0.25 0.01 a2 1.25 b 0.31 0.51 0.012 0.02 b1 0.17 0.25 0.007 0.010 C 0.049 0.5 0.020 c1 45° (typ.) D 9.8 10 0.386 0.394 E 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 8.89 0.350 F 3.8 4.0 0.150 0.157 G 4.6 5.3 0.181 0.209 L 0.4 1.27 0.016 0.050 M S 0.62 0.024 8° (max.) 17/19 Ordering information 7 TSH94 Ordering information Table 8. Order codes Temperature range Part number Package Packing Marking SO-16 Tube or Tape & reel TSH94I SO-16 (Automotive grade) Tube or Tape & reel TSH94Y TSH94ID TSH94IDT -40°C to +125°C TSH94IYD TSH94IYDT(1) 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 8 Revision history Table 9. Document revision history Date Revision 5-Oct-2000 1 Initial release. 6-Jun-2007 2 Table 8: Order codes updated and moved to Section 7: Ordering information. Automotive grade order codes added. Format update. 3 Corrected unit in feature list on cover page from 110V/ms to 110V/µs. Added ESD parameters in Table 1: Absolute maximum ratings (AMR). Updated footnote in Table 8: Order codes. 27-Nov-2007 18/19 Changes TSH94 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19