Dual, Low Power, Precision Rail-to-Rail Output Op Amp AD8622 PIN CONFIGURATIONS Very low offset voltage 125 μV maximum Supply current: 215 μA/amp typical Input bias current: 200 pA maximum Low input offset voltage drift: 1.2 μV/°C maximum Very low voltage noise: 11 nV/√Hz Operating temperature: −40°C to +125°C Rail-to-rail output swing Unity gain stable ±2.5 V to ±15 V operation OUT A 1 –IN A 2 AD8622 +IN A 3 TOP VIEW V– 4 (Not to Scale) 8 V+ 7 OUT B 6 –IN B 5 +IN B 07527-001 FEATURES OUT A 1 –IN A 2 +IN A 3 8 AD8622 V+ 7 TOP VIEW (Not to Scale) OUT B 6 –IN B 5 +IN B V– 4 07527-002 Figure 1. 8-Lead Narrow-Body SOIC Figure 2. 8-Lead MSOP APPLICATIONS Portable precision instrumentation Laser diode control loops Strain gage amplifiers Medical instrumentation Thermocouple amplifiers GENERAL DESCRIPTION Table 1. Low Power Op Amps The AD8622 is a dual, precision rail-to-rail output operational amplifier with a low supply current of only 350 μA maximum over temperature and supply voltages. It also offers ultralow offset, drift, and voltage noise combined with very low input bias current over the full operating temperature range. Supply 40 V 36 V 12 V to 16 V 5V Single OP97 OP297 OP196 AD8663 OP296 AD8667 AD8603 Dual Quad OP497 OP777 OP1177 OP727 OP2177 AD706 OP747 OP4177 AD704 OP496 AD8669 AD8609 With typical offset voltage of only 10 μV, offset drift of 0.5 μV/°C, and noise of only 0.2 μV p-p (0.1 Hz to 10 Hz), it is perfectly suited for applications where large error sources cannot be tolerated. Many systems can take advantage of the low noise, dc precision, and rail-to-rail output swing provided by the AD8622 to maximize the signal-to-noise ratio and dynamic range for low power operation. The AD8622 is specified for the extended industrial temperature range of −40°C to +125°C and is available in lead-free SOIC and MSOP packages. AD8607 Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2009 Analog Devices, Inc. All rights reserved. AD8622 TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................5 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................6 Pin Configurations ........................................................................... 1 Applications Information .............................................................. 15 General Description ......................................................................... 1 Input Protection ......................................................................... 15 Revision History ............................................................................... 2 Phase Reversal ............................................................................ 15 Specifications..................................................................................... 3 Micropower Instrumentation Amplifier ................................. 15 Electrical Characteristics—±15 V Operation ........................... 3 Hall Sensor Signal Conditioning .............................................. 16 Electrical Characteristics—±2.5 V Operation .......................... 4 Simplified Schematic ...................................................................... 17 Absolute Maximum Ratings............................................................ 5 Outline Dimensions ....................................................................... 18 Thermal Resistance ...................................................................... 5 Ordering Guide .......................................................................... 18 REVISION HISTORY 7/09—Revision 0: Initial Version Rev. 0 | Page 2 of 20 AD8622 SPECIFICATIONS ELECTRICAL CHARACTERISTICS—±15 V OPERATION VS = ±15 V, VCM = 0 V, TA = +25°C, unless otherwise specified. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Typ Max Unit 10 125 230 1.2 200 500 200 500 +13.8 μV μV μV/°C pA pA pA pA V dB dB dB dB GΩ TΩ pF pF 0.5 45 −40°C ≤ TA ≤ +125°C 35 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Open-Loop Gain AVO Input Resistance, Differential Mode Input Resistance, Common Mode Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Uncorrelated Current Noise Density Correlated Current Noise Density VCM = −13.8 V to +13.8 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ, VO = −13.5 V to +13.5 V −40°C ≤ TA ≤ +125°C −13.8 125 112 125 120 RINDM RINCM CINDM CINCM VOH VOL ISC ZOUT PSRR ISY 135 137 1 1 5.5 3 RL = 100 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 10 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 100 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 10 kΩ to ground −40°C ≤ TA ≤ +125°C 14.94 14.84 14.86 14.75 14.89 −14.97 −14.89 −14.94 −14.92 −14.90 −14.80 ±40 1.5 f = 1 kHz, AV = 1 VS = ±2.0 V to ±18.0 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C 14.97 125 120 145 215 250 350 V V V V V V V V mA Ω dB dB μA μA SR GBP ΦM RL = 10 kΩ, AV = 1 CL = 35 pF, AV = 1 CL = 35 pF, AV = 1 0.48 600 72 V/μs kHz Degrees en p-p en in in f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz f = 1 kHz 0.2 11 0.15 0.06 μV p-p nV/√Hz pA/√Hz pA/√Hz Rev. 0 | Page 3 of 20 AD8622 ELECTRICAL CHARACTERISTICS—±2.5 V OPERATION VS = ±2.5 V, VCM = 0 V, TA = +25°C, unless otherwise specified. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Typ Max Unit 10 125 230 1.2 200 400 200 300 +1.3 μV μV μV/°C pA pA pA pA V dB dB dB dB GΩ TΩ pF pF 0.5 30 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Open-Loop Gain AVO Input Resistance, Differential Mode Input Resistance, Common Mode Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Uncorrelated Current Noise Density Correlated Current Noise Density 25 −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C VCM = −1.3 V to +1.3 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ, VO = −2.0 V to +2.0 V −40°C ≤ TA ≤ +125°C −1.3 110 107 118 109 RINDM RINDM CINDM CINCM VOH VOL ISC ZOUT PSRR ISY 120 135 1 1 5.5 3 RL = 100 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 10 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 100 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 10 kΩ to ground −40°C ≤ TA ≤ +125°C 2.45 2.41 2.40 2.36 2.45 −2.49 −2.45 −2.45 −2.41 −2.40 −2.36 ±30 2 f = 1 kHz, AV = 1 VS = ±2.0 V to ±18.0 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C 2.49 125 120 145 175 225 310 V V V V V V V V mA Ω dB dB μA μA SR GBP ΦM RL = 10 kΩ, AV = 1 CL = 35 pF, AV = 1 CL = 35 pF, AV = 1 0.28 580 72 V/μs kHz Degrees en p-p en in in f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz f = 1 kHz 0.2 12 0.15 0.07 μV p-p nV/√Hz pA/√Hz pA/√Hz Rev. 0 | Page 4 of 20 AD8622 ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Supply Voltage Input Voltage Input Current1 Differential Input Voltage2 Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating ± 18 V ±V supply ±10 mA ±10 V Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C 1 The input pins have clamp diodes to the power supply pins. The input current should be limited to 10 mA or less whenever input signals exceed the power supply rail by 0.5 V. 2 Differential input voltage is limited to 10 V or the supply voltage, whichever is less. THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 4-layer board. Table 5. Thermal Resistance Package Type 8-Lead SOIC_N (R-8) 8-Lead MSOP (RM-8) ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. 0 | Page 5 of 20 θJA 158 185 θJC 43 53 Unit °C/W °C/W AD8622 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 60 60 VSY = ±15V VCM = 0V VSY = ±2.5V VCM = 0V 50 NUMBER OF AMPLIFIERS 40 30 20 40 30 20 –60 –40 –20 0 20 VOS (µV) 40 60 80 0 –100 –80 07527-063 0 –100 –80 100 Figure 3. Input Offset Voltage Distribution –60 –40 –20 0 20 VOS (µV) 80 100 60 VSY = ±15V –40°C ≤ TA ≤ +125°C VSY = ±2.5V –40°C ≤ TA ≤ +125°C 50 NUMBER OF AMPLIFIERS 50 NUMBER OF AMPLIFIERS 60 Figure 6. Input Offset Voltage Distribution 60 40 30 20 40 30 20 10 10 0 0.2 0.4 0.6 0.8 TCVOS (µV/°C) 1.0 1.2 0 07527-064 0 40 07527-065 10 10 0 0.2 Figure 4. Input Offset Voltage Drift Distribution 0.4 0.6 0.8 TCVOS (µV/°C) 1.0 1.2 07527-066 NUMBER OF AMPLIFIERS 50 Figure 7. Input Offset Voltage Drift Distribution 50 50 VSY = ±15V 40 40 30 VSY = ±2.5V –40°C 30 20 20 +25°C –10 10 +25°C 0 –10 +85°C +85°C –20 –20 +125°C –30 –30 –40 –40 –50 0 5 10 15 VCM (V) 20 25 30 –50 –2.5 +125°C –1.5 –0.5 0.5 1.5 VCM (V) Figure 5. Input Offset Voltage vs. Common-Mode Voltage Figure 8. Input Offset Voltage vs. Common-Mode Voltage Rev. 0 | Page 6 of 20 2.5 07527-007 VOS (µV) 0 07527-004 VOS (µV) –40°C 10 AD8622 40 40 VSY = ±15V VSY = ±2.5V IB+ 30 20 20 0 0 IB (pA) IB (pA) 10 IB– IB+ –20 –10 IB– –40 –20 –25 0 25 50 75 100 125 TEMPERATURE (°C) –80 –50 07527-008 –40 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 9. Input Bias Current vs. Temperature 07527-011 –60 –30 Figure 12. Input Bias Current vs. Temperature 60 50 VSY = ±15V VSY = ±2.5V 25 40 0 –25 IB (pA) IB (pA) 20 0 –50 –75 –20 –100 –40 5 10 15 20 25 30 VCM (V) –150 1 2 3 4 5 VCM (V) Figure 10. Input Bias Current vs. Common-Mode Voltage Figure 13. Input Bias Current vs. Common-Mode Voltage 100k 100k 10k 1k VCC – VOH 100 VOL – VEE 10 1 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 VSY = ±2.5V 10k 1k VCC – VOH 100 10 1 0.001 Figure 11. Output Voltage to Supply Rail vs. Load Current VOL – VEE 0.01 0.1 1 LOAD CURRENT (mA) 10 Figure 14. Output Voltage to Supply Rail vs. Load Current Rev. 0 | Page 7 of 20 100 07527-013 OUTPUT VOLTAGE TO SUPPLY RAIL (mV) VSY = ±15V 07527-010 OUTPUT VOLTAGE TO SUPPLY RAIL (mV) 0 07527-012 0 07527-009 –60 –125 AD8622 0.06 VCC – VOH 0.10 0.08 0.06 VOL – VEE 0.04 0.02 –25 0 25 50 TEMPERATURE (°C) 75 100 125 VCC – VOH 0.04 0.03 0.02 VOL – VEE 0.01 0 –50 07527-014 Figure 15. Output Voltage to Supply Rail vs. Temperature 25 50 TEMPERATURE (°C) 75 100 125 100 100 80 80 60 60 60 60 40 40 40 40 GAIN 20 20 0 GAIN (dB) VSY = ±15V RL = 10kΩ PHASE 80 100k FREQUENCY (Hz) –40 10M 1M GAIN 0 –20 –40 1k Figure 16. Open-Loop Gain and Phase vs. Frequency AV = 100 40 AV = 100 30 GAIN (dB) AV = 10 AV = 1 0 20 10 –10 –20 –20 –30 –30 10k 100k FREQUENCY (Hz) 1M 10M –40 100 07527-016 1k Figure 17. Closed-Loop Gain vs. Frequency AV = 10 AV = 1 0 –10 –40 100 –40 10M 1M VSY = ±2.5V RL = 10kΩ 50 30 10 100k FREQUENCY (Hz) 60 VSY = ±15V RL = 10kΩ 50 20 10k Figure 19. Open-Loop Gain and Phase vs. Frequency 60 40 20 –20 07527-015 10k 80 PHASE 0 –20 –40 1k 100 VSY = ±2.5V RL = 10kΩ 20 0 –20 GAIN (dB) GAIN (dB) 0 Figure 18. Output Voltage to Supply Rail vs. Temperature PHASE (Degrees) 100 –25 1k 10k 100k FREQUENCY (Hz) 1M Figure 20. Closed-Loop Gain vs. Frequency Rev. 0 | Page 8 of 20 10M 07527-019 0 –50 0.05 PHASE (Degrees) 0.12 VSY = ±2.5V RL = 10kΩ 07527-018 0.14 07527-017 VSY = ±15V RL = 10kΩ OUTPUT VOLTAGE TO SUPPLY RAIL (V) OUTPUT VOLTAGE TO SUPPLY RAIL (V) 0.16 AD8622 10k 10k VSY = ±15V AV = 10 AV = 10 100 AV = 1 10 100 10 1 10k FREQUENCY (Hz) 100k 1M 0.1 100 Figure 21. Output Impedance vs. Frequency 120 80 80 CMRR (dB) 100 60 40 20 20 0 10 07527-021 1M Figure 22. CMRR vs. Frequency 120 VSY = ±2.5V 100 120 VSY = ±15V 100k 1M VSY = ±2.5V 100 PSRR+ PSRR+ 80 60 PSRR– 60 40 40 20 20 1k 10k FREQUENCY (Hz) 100k 1M 0 10 07527-022 100 Figure 23. PSRR vs. Frequency PSRR– 100 1k 10k FREQUENCY (Hz) Figure 26. PSRR vs. Frequency Rev. 0 | Page 9 of 20 100k 1M 07527-025 PSRR (dB) 80 PSRR (dB) 1k 10k FREQUENCY (Hz) Figure 25. CMRR vs. Frequency 100 0 10 1M 60 40 100k 100k 120 100 1k 10k FREQUENCY (Hz) 10k FREQUENCY (Hz) Figure 24. Output Impedance vs. Frequency VSY = ±15V 100 1k 07527-024 1k 07527-020 0.1 100 CMRR (dB) AV = 1 07527-023 1 0 10 AV = 100 1k AV = 100 ZOUT (Ω) ZOUT (Ω) 1k VSY = ±2.5V AD8622 50 50 40 35 OS– 25 OS+ 20 OS– 30 20 15 15 10 10 5 5 0.1 1 CAPACITANCE (nF) 10 100 0 0.01 07527-026 0 0.01 OS+ 25 Figure 27. Small-Signal Overshoot vs. Load Capacitance 0.1 1 CAPACITANCE (nF) 10 100 Figure 30. Small-Signal Overshoot vs. Load Capacitance VSY = ±2.5V AV = 1 RL = 10kΩ CL = 100pF TIME (40µs/DIV) 07527-027 VOLTAGE (5V/DIV) VOLTAGE (500mV/DIV) VSY = ±15V AV = 1 RL = 10kΩ CL = 100pF TIME (40µs/DIV) Figure 28. Large-Signal Transient Response Figure 31. Large-Signal Transient Response TIME (10µs/DIV) 07527-028 VOLTAGE (50mV/DIV) VSY = ±2.5V AV = 1 RL = 10kΩ CL = 100pF VOLTAGE (50mV/DIV) VSY = ±15V AV = 1 RL = 10kΩ CL = 100pF TIME (10µs/DIV) Figure 29. Small-Signal Transient Response Figure 32. Small-Signal Transient Response Rev. 0 | Page 10 of 20 07527-029 30 OVERSHOOT (%) 35 OVERSHOOT (%) VSY = ±2.5V AV = 1 RL = 10kΩ 07527-030 40 45 07527-031 45 VSY = ±15V AV = 1 RL = 10kΩ AD8622 0.4 INPUT INPUT OUTPUT VOLTAGE (V) INPUT VOLTAGE (V) 0 OUTPUT 0 0 OUTPUT 0 –1 –20 –2 07527-032 –10 TIME (20µs/DIV) –3 TIME (20µs/DIV) Figure 33. Negative Overload Recovery Figure 36. Negative Overload Recovery 0.2 OUTPUT VOLTAGE (V) –0.2 INPUT VOLTAGE (V) INPUT 0 20 10 OUTPUT –0.2 INPUT VOLTAGE (V) 0 3 2 OUTPUT 0 VSY = ±15V AV = –100 RL = 10kΩ 07527-033 –20 TIME (20µs/DIV) 0 –1 TIME (20µs/DIV) Figure 34. Positive Overload Recovery Figure 37. Positive Overload Recovery 12 12 VSY = ±15V AV = –1 VSY = ±15V AV = +1 10 8 8 0.1% OUTPUT STEP (V) 10 0.01% 6 4 0.1% 0.01% 6 4 2 5 10 15 20 25 SETTLING TIME (µs) 30 35 0 07527-034 0 Figure 35. Output Step vs. Settling Time 0 5 10 15 20 25 SETTLING TIME (µs) Figure 38. Output Step vs. Settling Time Rev. 0 | Page 11 of 20 30 35 07527-037 2 0 1 VSY = ±2.5V AV = –100 RL = 10kΩ –10 OUTPUT VOLTAGE (V) INPUT 07527-036 0.2 OUTPUT STEP (V) VSY = ±2.5V AV = –100 RL = 10kΩ 0.2 INPUT VOLTAGE (V) 0.2 OUTPUT VOLTAGE (V) VSY = ±15V AV = –100 RL = 10kΩ 07527-035 0.4 AD8622 100 100 VSY = ±2.5V 10 100 1k FREQUENCY (Hz) 1 1 CURRENT NOISE DENSITY (pA/ Hz) UNCORRELATED RS1 = 0Ω CORRELATED RS1 = RS2 1 10 100 1k FREQUENCY (Hz) VSY = ±2.5V RS2 UNCORRELATED RS1 = 0Ω CORRELATED RS1 = RS2 0.1 0.01 07527-056 CURRENT NOISE DENSITY (pA/ Hz) RS2 0.01 RS1 VSY = ±15V 0.1 1k Figure 42. Voltage Noise Density vs. Frequency 1 RS1 100 FREQUENCY (Hz) Figure 39. Voltage Noise Density vs. Frequency 1 10 1 10 1k 100 FREQUENCY (Hz) Figure 40. Current Noise Density vs. Frequency Figure 43. Current Noise Density vs. Frequency VSY = ±15V TIME (1s/DIV) 07527-040 INPUT NOISE VOLTAGE (50nV/DIV) INPUT NOISE VOLTAGE (50nV/DIV) VSY = ±2.5V TIME (1s/DIV) Figure 41. 0.1 Hz to 10 Hz Noise Figure 44. 0.1 Hz to 10 Hz Noise Rev. 0 | Page 12 of 20 07527-057 1 07527-043 1 10 07527-042 VOLTAGE NOISE DENSITY (nV/ Hz) 10 07527-039 VOLTAGE NOISE DENSITY (nV Hz) VSY = ±15V AD8622 0.35 0.35 0.30 +125°C 0.30 +85°C 0.25 0.25 +25°C ISY (mA) ISY (mA) 0.20 0.15 –40°C 0.10 VSY = ±15V 0.20 VSY = ±2.5V 0.15 0.05 0 2 4 6 8 10 VSY (±V) 12 14 16 18 0.05 –50 07527-044 –25 Figure 45. Supply Current vs. Supply Voltage 0 25 50 75 TEMPERATURE (°C) 100 Figure 48. Supply Current vs. Temperature 1 1 VSY = ±2.5V f = 1kHz RL = 10kΩ VSY = ±15V f = 1kHz RL = 10kΩ 0.1 THD + N (%) 0.01 0.01 0.001 0.001 0.01 0.1 AMPLITUDE (V rms) 1 10 0.0001 0.001 07527-046 0.0001 0.001 0.01 0.1 AMPLITUDE (V rms) 1 10 Figure 49. THD + Noise vs. Amplitude Figure 46. THD + Noise vs. Amplitude 0.1 VSY = ±15V RL = 10kΩ VIN = 300mV rms VSY = ±2.5V RL = 10kΩ VIN = 300mV rms 0.01 THD + N (%) THD + N (%) 0.01 0.001 100 1k FREQUENCY (Hz) 10k 100k 07527-050 0.0001 10 0.001 Figure 47. THD + Noise vs. Frequency 0.0001 10 100 1k FREQUENCY (Hz) 10k Figure 50. THD + Noise vs. Frequency Rev. 0 | Page 13 of 20 100k 07527-051 THD + N (%) 0.1 0.1 125 07527-049 –0.05 07527-045 0.10 0 AD8622 0 100kΩ 1kΩ RL –40 –60 –80 –100 –120 –140 10 VSY = ±2.5V TO ±15V RL = 10kΩ 100 1k FREQUENCY (Hz) 10k 100k 07527-048 CHANNEL SEPARATION (dB) –20 Figure 51. Channel Separation vs. Frequency Rev. 0 | Page 14 of 20 AD8622 APPLICATIONS INFORMATION INPUT PROTECTION VIN The maximum differential input voltage that can be applied to the AD8622 is determined by the internal diodes connected across its inputs and series resistors at each input. These internal diodes and series resistors limit the maximum differential input voltage to ±10 V and are needed to prevent base-emitter junction breakdown from occurring in the input stage of the AD8622 when very large differential voltages are applied. In addition, the internal resistors limit the currents that flow through the diodes. However, in applications where large differential voltages can be inadvertently applied to the device, large currents may still flow through these diodes. In such a case, external resistors must be placed at both inputs of the op amp to limit the input currents to ±10 mA (see Figure 52). VSY = ±15V 07527-053 VOLTAGE (5V/DIV) VOUT TIME (200µs/DIV) Figure 53. No Phase Reversal MICROPOWER INSTRUMENTATION AMPLIFIER The AD8622 is a dual, high precision, rail-to-rail output op amp operating at just 215 μA quiescent current per amplifier. Its ultralow offset, offset drift, and voltage noise, combined with its very low bias current and high common-mode rejection ratio (CMRR), are ideally suited for high accuracy and micropower instrumentation amplifier. 2 500Ω 1/2 AD8622 3 500Ω 07527-055 R2 1 Figure 52. Input Protection PHASE REVERSAL An undesired phenomenon, phase reversal (also known as phase inversion) occurs in many op amps when one or both of the inputs are driven beyond the specified input voltage range (IVR), in effect reversing the polarity of the output. In some cases, phase reversal can induce lockups and even cause equipment damage as well as self destruction. The AD8622 amplifiers have been carefully designed to prevent output phase reversal when both inputs are maintained within the specified input voltage range. In addition, even if one or both inputs exceed the input voltage range but remain within the supply rails, the output still does not phase reverse. Figure 53 shows the input/output waveforms of the AD8622 configured as a unity-gain buffer with a supply voltage of ±15 V. Figure 54 shows the classic 2-op-amp instrumentation amplifier with four resistors using the AD8622. The key to high CMRR for this instrumentation amplifier are resistors that are well matched from both the resistive ratio and the relative drift. For true difference amplification, matching of the resistor ratio is very important, where R3/R4 = R1/R2. Assuming perfectly matched resistors, the gain of the circuit is 1 + R2/R1, which is approximately 100. Tighter matching of two op amps in one package, like the AD8622, offers a significant boost in performance over the classical 3-op-amp configuration. Overall, the circuit only requires about 430 μA of supply current. R3 10.1kΩ R4 1MΩ – 1/2 AD8622 V1 R2 1MΩ +15V R1 10.1kΩ +15V – 1/2 AD8622 + –15V V2 VO + NOTES –15V 1. VO = 100(V2 – V1) 2. TYPICAL: 0.01mV < |V2 – V1| < 149.7mV 3. TYPICAL: –14.97V < VO < +14.97V 4. USE MATCHED RESISTORS. 07527-054 R1 Figure 54. Micropower Instrumentation Amplifier Rev. 0 | Page 15 of 20 AD8622 The ADR121 is a precision micropower 2.5 V voltage reference. A precision voltage reference is required to hold a constant current so that the Hall voltage only depends on the intensity of the magnetic field. Using the 4.12k:98.8k resistive divider, the bias voltage of the Hall element is reduced to 100 mV, leading to only 250 μA of power consumption. The 3-op-amp in-amp configuration of the AD8622 then increases the sensitivity to 55 mV/mT. Using the AD8622 to amplify the sensor signal can reduce power while also achieving higher sensitivity. The total current consumed is just 1.2 mA, resulting in 21× improvement in sensitivity/power. HALL SENSOR SIGNAL CONDITIONING The AD8622 is also highly suitable for high accuracy, low power signal conditioning circuits. One such use is in Hall sensor signal conditioning (see Figure 55). The magnetic sensitivity of a Hall element is proportional to the bias voltage applied across it. With 1 V bias voltage, the Hall element consumes about 2.5 mA of supply current and has a sensitivity of 5.5 mV/mT typical. To reduce power consumption, bias voltage must be reduced, but at the risk of lower sensitivity. The only way to achieve higher sensitivity is by introducing a gain using a precision micropower amplifier. The AD8622, with all its features, is well suited to amplify the sensitivity of the Hall element. VSY VSY C1 1µF TO 10µF HALL ELEMENT 1/2 – VSY ADR121 –2.5V VSY 4.12kΩ C2 0.1µF C3 + 0.1µF TO 10µF + 98.8kΩ 1/2 400Ω ×4 9.9kΩ AD8622 9.9kΩ 9.9kΩ 9.9kΩ 9.9kΩ 200Ω AD8622 VSY – – – 1/2 AD8622 + VOUT = 2.5V + 55mV × MAGNETIC FIELD (mT) mT 1/2 AD8622 + NOTES 1. USE MATCHED RESISTORS FOR IN-AMP. 2. FOR INFORMATION ON C1, C2, AND C3, REFER TO ADR121 DATA SHEET. Figure 55. Hall Sensor Signal Conditioning Rev. 0 | Page 16 of 20 9.9kΩ 07527-052 + AD8622 SIMPLIFIED SCHEMATIC V+ R3 R2 R1 Q11 Q10 C1 Q4 –IN x 500Ω 500Ω Q1 D1 INPUT BIAS CANCELLATION CIRCUITRY Q6 Q5 Q8 OUT x Q2 D2 Q7 D3 V– Figure 56. Simplified Schematic Rev. 0 | Page 17 of 20 Q9 D4 Q12 07527-062 +IN x VB2 VB1 Q3 AD8622 OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 0.65 BSC 0.95 0.85 0.75 1.10 MAX 0.15 0.00 0.38 0.22 COPLANARITY 0.10 0.80 0.60 0.40 8° 0° 0.23 0.08 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 57. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 8 1 5 6.20 (0.2441) 5.80 (0.2284) 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 012407-A 4.00 (0.1574) 3.80 (0.1497) Figure 58. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model AD8622ARMZ 1 AD8622ARMZ-REEL1 AD8622ARMZ-R71 AD8622ARZ1 AD8622ARZ-REEL1 AD8622ARZ-REEL71 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N Z = RoHS Compliant Part. Rev. 0 | Page 18 of 20 Package Option RM-8 RM-8 RM-8 R-8 R-8 R-8 Branding A1P A1P A1P AD8622 NOTES Rev. 0 | Page 19 of 20 AD8622 NOTES ©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07527-0-7/09(0) Rev. 0 | Page 20 of 20