ETC DG212B

DG211B/212B
Improved Quad CMOS Analog Switches
Features
Benefits
Applications
22-V Supply Voltage Rating
TTL and CMOS Compatible Logic
Low On-Resistance—rDS(on): 50 Low Leakage—ID(on): 20 pA
Single Supply Operation Possible
Extended Temperature Range
Fast Switching—tON: 120 ns
Low Charge Injection—Q: 1 pC
Wide Analog Signal Range
Simple Logic Interface
Higher Accuracy
Minimum Transients
Reduced Power Consumption
Superior to DG211/212
Space Savings (TSSOP)
Industrial Instrumentation
Test Equipment
Communications Systems
Disk Drives
Computer Peripherals
Portable Instruments
Sample-and-Hold Circuits
Description
The DG211B/212B analog switches are highly improved
versions of the industry-standard DG211/212. These devices
are fabricated in Siliconix’ proprietary silicon gate CMOS
process, resulting in lower on-resistance, lower leakage,
higher speed, and lower power consumption.
These quad single-pole single-throw switches are designed for
a wide variety of applications in telecommunications,
instrumentation, process control, computer peripherals, etc.
An improved charge injection compensation design
minimizes switching transients. The DG211B and DG212B
can handle up to 22 V, and have an improved continuous
current rating of 30 mA. An epitaxial layer prevents latchup.
All devices feature true bi-directional performance in the on
condition, and will block signals to the supply levels in the
off condition.
The DG211B is a normally closed switch and the DG212B
is a normally open switch. (See Truth Table.)
Functional Block Diagram and Pin Configuration
DG211B
Dual-In-Line, SOIC and TSSOP
IN1
1
16
IN2
D1
2
15
D2
S1
3
14
S2
0
ON
OFF
1
OFF
ON
V–
4
13
V+
GND
5
12
VL
S4
6
11
S3
D4
7
10
D3
IN4
8
9
IN3
Logic “0” 0.8 V
Logic “1” 2.4 V
Top View
Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70040.
Siliconix
S-52896—Rev. F, 14-Jul-97
1
DG211B/212B
Ordering Information
Temp Range
Package
Part Number
DG211BDJ
16-Pin Plastic DIP
DG212BDJ
DG211BDY
–40 to 85_C
16-Pin Narrow SOIC
DG212BDY
DG211BDQ
16-Pin TSSOP
DG212BDQ
Absolute Maximum Ratings
Voltages Referenced to V–
V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 V
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 V
Digital Inputsa VS, VD . . . . . . . . . . . . . . . . . . . (V–) –2 V to (V+) +2 V
or 30 mA, whichever occurs first
Current, Any Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Peak Current, S or D
(Pulsed at 1 ms, 10% duty cycle max) . . . . . . . . . . . . . . . . . . . . 100 mA
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65 to 125_C
Power Dissipation (Package)b
16-Pin Plastic DIPc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 mW
16-Pin Narrow SOIC and TSSOPd . . . . . . . . . . . . . . . . . . . . . . 640 mW
Notes:
a. Signals on SX, DX, or INX exceeding V+ or V– will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6.5 mW/_C above 75_C
d. Derate 7.6 mW/_C above 75_C
Schematic Diagram (Typical Channel)
V+
SX
VL
Level
Shift/
Drive
INX
V–
V+
DX
GND
V–
Figure 1.
2
Siliconix
S-52896—Rev. F, 14-Jul-97
DG211B/212B
Specifications
Test Conditions
Unless Otherwise Specified
Parameter
Symbol
V = 15 V,
V V–
V = –15
15 V
V+
VL = 5 V, VIN = 2.4 V, 0.8 Ve
D Suffix
–40 to 85_C
Tempa
Minc
Full
Typb
Maxc
Unit
V
Analog Switch
Analog Signal Ranged
Drain-Source On-Resistance
rDS(on) Match
VANALOG
rDS(on)
VD = 10 V,, IS = 1 mA
DrDS(on)
Room
Full
45
Room
2
Source Off Leakage Current
IS(off)
VS = 14 V, VD = 14 V
Room
Full
0.01
Drain Off Leakage Current
ID(off)
VD = 14 V, VS = 14 V
Room
Full
0.01
Drain On Leakage Current
ID(on)
VS = VD = 14 V
Room
Full
0.02
W
nA
Digital Control
Input Voltage High
VINH
Full
Input Voltage Low
VINL
Full
Input Current
Input Capacitance
IINH or IINL
VINH or VINL
CIN
Full
V
–
Room
mA
5
pF
Dynamic Characteristics
Turn-On Time
tON
Turn-Off Time
tOFF
Charge Injection
Q
VS = 2 V
See Fi
S
Figure 2
Room
300
Room
200
CL = 1000 pF, Vg= 0 V, Rg = 0 W
Room
1
Room
5
Room
5
Source-Off Capacitance
CS(off)
Drain-Off Capacitance
CD(off)
Channel On Capacitance
CD(on)
VD = VS = 0 V, f = 1 MHz
Room
16
Off Isolation
OIRR
Room
90
Channel-to-Channel Crosstalk
XTALK
CL = 15 pF,
p , RL = 50 W
VS = 1 VRMS, f = 100 kHz
kH
Room
95
VS = 0 V
V, f = 1 MHz
ns
pC
pF
dB
Power Supply
Room
Full
Positive Supply Current
I+
Negative Supply Current
I–
Room
Full
Logic Supply Current
IL
Room
Full
VOP
Full
VIN = 0 or 5 V
Power Supply Range for
Continuous Operation
Siliconix
S-52896—Rev. F, 14-Jul-97
10
mA
V
3
DG211B/212B
Specifications for Single Supply
Test Conditions
Unless Otherwise Specified
Parameter
V = 12 V,
V V–
V =0V
V+
VL = 5 V, VIN = 2.4 V, 0.8 Ve
Symbol
D Suffix
–40 to 85_C
Tempa
Minc
Full
Typb
Maxc
Unit
V
W
Analog Switch
Analog Signal Ranged
VANALOG
Drain-Source On-Resistance
Room
Full
90
rDS(on)
VD = 3 V, 8 V, IS = 1 mA
Turn-On Time
tON
Room
Turn-Off Time
tOFF
VS = 8 V
See Fi
S
Figure 2
Room
CL = 1 nF, Vgen= 6 V, Rgen = 0 W
Room
Dynamic Characteristics
Charge Injection
Q
ns
4
pC
Power Supply
Room
Full
Positive Supply Current
I+
Negative Supply Current
I–
Room
Full
Logic Supply Current
IL
Room
Full
VOP
Full
VIN = 0 or 5 V
Power Supply Range for
Continuous Operation
10
mA
V
Notes:
a. Room = 25_C, Full = as determined by the operating temperature suffix.
b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. VIN = input voltage to perform proper function.
Typical Characteristics
rDS(on) vs. VD and Power Supply Voltages
100
rDS(on) – Drain-Source On-Resistance ( W )
rDS(on) – Drain-Source On-Resistance ( W )
110
100
90
5 V
80
70
10 V
60
15 V
50
40
20 V
30
20
10
–20 –16 –12 –8
–4
0
4
8
VD – Drain Voltage (V)
4
12
16
20
90
rDS(on) vs. VD and Temperature
V+ = 15 V
V– = –15 V
80
70
60
125_C
50
85_C
40
25_C
30
–55_C
20
10
0
–15
–10
–5
0
5
10
15
VD – Drain Voltage (V)
Siliconix
S-52896—Rev. F, 14-Jul-97
DG211B/212B
Typical Characteristics (Cont’d)
rDS(on) vs. VD and Single Power Supply Voltages
Leakage Currents vs. Analog Voltage
225
40
V+ = 5 V
V+ = 22 V
V– = –22 V
TA = 25_C
30
200
175
150
I S, I D – Current (pA)
rDS(on) – Drain-Source On-Resistance ( )
250
7V
125
10 V
100
12 V
15 V
75
20
ID(on)
10
IS(off), ID(off)
0
–10
–20
50
–30
25
–40
–20
0
0
2
4
6
8
10
12
14
16
–15
VD – Drain Voltage (V)
–5
0
5
10
15
20
VANALOG – Analog Voltage (V)
Leakage Current vs. Temperature
30
1 nA
V+ = 15 V
V– = –15 V
VS, VD = 14 V
QS, QD – Charge Injection vs. Analog Voltage
20
Q – Charge (pC)
I S, I D – Current
–10
100 pA
IS(off), ID(off)
10 pA
10
V+ = 15 V
V– = –15 V
0
V+ = 12 V
V– = 0 V
–10
–20
1 pA
–55 –35
–15
5
25
45
65
85
–30
–15
105 125
–10
–5
0
5
10
15
VANALOG – Analog Voltage (V)
Temperature (_C)
Off Isolation vs. Frequency
120
V+ = +15 V
V– = –15 V
110
OIRR (dB)
100
90
RL = 50 80
70
60
50
40
10 k
100 k
1M
10 M
f – Frequency (Hz)
Siliconix
S-52896—Rev. F, 14-Jul-97
5
DG211B/212B
Test Circuits
+15 V
V+
D
S
VS = +2 V
3V
Logic
Input
VO
tr <20 ns
tf <20 ns
50%
0V
tOFF
IN
GND
CL
35 pF
RL
1 kW
3V
V–
90%
Switch
Output
–15 V
VO = VS
VO
tON
RL
RL + rDS(on)
Figure 2. Switching Time
C
+15 V
+15 V
C
V+
S1
VS
V+
S
VS
VO
D
D1
Rg = 50 W
50 W
IN1
Rg = 50 W
0V, 2.4 V
RL
IN
0V, 2.4 V
S2
NC
GND
V–
C
RL
IN2
0V, 2.4 V
GND
XTALK Isolation = 20 log
VS
VO
Figure 3. Off Isolation
–15 V
Figure 4. Channel-to-Channel Crosstalk
DVO
VO
V+
S
D
IN
Vg
3V
GND
C
VS
VO
+15 V
Rg
V–
C = RF bypass
–15 V
Off Isolation = 20 log
VO
D2
V–
–15 V
VO
CL
1000 pF
INX
ON
OFF
ON
DVO = measured voltage error due to charge injection
The charge injection in coulombs is Q = CL x DVO
Figure 5. Charge Injection
6
Siliconix
S-52896—Rev. F, 14-Jul-97
DG211B/212B
Applications
+5V
+15 V
VL
V+
Logic Input
Low = Sample
High = Hold
1 kW
+15 V
DG211B
+15 V
–15 V
–
LM101A
VIN
J202
2N4400
+
5 MW
200 W
50 pF
5.1 MW
VOUT
1000 pF
V–
J507
J500
30 pF
–15 V
= 25 ms
= 1 ms
= 5 mV
= 5 mV/s
Aquisition Time
Aperature Time
Sample to Hold Offset
Droop Rate
–15 V
Figure 6. Sample-and-Hold
+15 V
160
V1
C4
TTL
Control
fC3
Select
fC2
Select
fC1
Select
150 pF
120
C3
Voltage Gain – dB
fC4
Select
1500 pF
C2
0.015 mF
C1
0.15 mF
80
40
fC1
fC2
fC3
fC4
fL1
0
V–
fL2
fL3
fL4
DG211B GND
–40
1
–15 V
10
100
1k
10 k
R3 = 1 MW
+15 V
–15 V
–
R1 = 10 kW
LM101A
+
R2 = 10 kW
VOUT
AL (Voltage Gain Below Break Frequency) =
1
fC (Break Frequency) = 2pR C
3 X
fL (Unity Gain Frequency) =
30 pF
100 k
1M
Frequency – Hz
Max Attenuation =
rDS(on)
10 kW
R3
R1 = 100 (40 dB)
1
2pR1CX
–47 dB
Figure 7. Active Low Pass Filter with Digitally Selected Break Frequency
Siliconix
S-52896—Rev. F, 14-Jul-97
7
DG211B/212B
Applications (Cont’d)
VIN1
+5 V
+15 V
VL
V+
30 pF
+15 V
+
LM101A
–
VIN2
+15 V
DG419
–15 V
DG212B
RF1
18 k
RF2
9.9 k
RF3
100 k
RG1
2 k
RG2
100 RG3
100 CH
GND
V–
–15 V
Gain =
RF + RG
RG
Gain 1 (x1)
Gain 2 (x10)
Gain 3 (x100)
Gain 4 (x1000)
V–
GND
Logic High = Switch On
–15 V
Figure 8. A Precision Amplifier with Digitally Programable Input and Gains
8
Siliconix
S-52896—Rev. F, 14-Jul-97