DG211B/212B Improved Quad CMOS Analog Switches Features Benefits Applications 22-V Supply Voltage Rating TTL and CMOS Compatible Logic Low On-Resistance—rDS(on): 50 Low Leakage—ID(on): 20 pA Single Supply Operation Possible Extended Temperature Range Fast Switching—tON: 120 ns Low Charge Injection—Q: 1 pC Wide Analog Signal Range Simple Logic Interface Higher Accuracy Minimum Transients Reduced Power Consumption Superior to DG211/212 Space Savings (TSSOP) Industrial Instrumentation Test Equipment Communications Systems Disk Drives Computer Peripherals Portable Instruments Sample-and-Hold Circuits Description The DG211B/212B analog switches are highly improved versions of the industry-standard DG211/212. These devices are fabricated in Siliconix’ proprietary silicon gate CMOS process, resulting in lower on-resistance, lower leakage, higher speed, and lower power consumption. These quad single-pole single-throw switches are designed for a wide variety of applications in telecommunications, instrumentation, process control, computer peripherals, etc. An improved charge injection compensation design minimizes switching transients. The DG211B and DG212B can handle up to 22 V, and have an improved continuous current rating of 30 mA. An epitaxial layer prevents latchup. All devices feature true bi-directional performance in the on condition, and will block signals to the supply levels in the off condition. The DG211B is a normally closed switch and the DG212B is a normally open switch. (See Truth Table.) Functional Block Diagram and Pin Configuration DG211B Dual-In-Line, SOIC and TSSOP IN1 1 16 IN2 D1 2 15 D2 S1 3 14 S2 0 ON OFF 1 OFF ON V– 4 13 V+ GND 5 12 VL S4 6 11 S3 D4 7 10 D3 IN4 8 9 IN3 Logic “0” 0.8 V Logic “1” 2.4 V Top View Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70040. Siliconix S-52896—Rev. F, 14-Jul-97 1 DG211B/212B Ordering Information Temp Range Package Part Number DG211BDJ 16-Pin Plastic DIP DG212BDJ DG211BDY –40 to 85_C 16-Pin Narrow SOIC DG212BDY DG211BDQ 16-Pin TSSOP DG212BDQ Absolute Maximum Ratings Voltages Referenced to V– V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 V GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 V Digital Inputsa VS, VD . . . . . . . . . . . . . . . . . . . (V–) –2 V to (V+) +2 V or 30 mA, whichever occurs first Current, Any Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA Peak Current, S or D (Pulsed at 1 ms, 10% duty cycle max) . . . . . . . . . . . . . . . . . . . . 100 mA Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65 to 125_C Power Dissipation (Package)b 16-Pin Plastic DIPc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 mW 16-Pin Narrow SOIC and TSSOPd . . . . . . . . . . . . . . . . . . . . . . 640 mW Notes: a. Signals on SX, DX, or INX exceeding V+ or V– will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC Board. c. Derate 6.5 mW/_C above 75_C d. Derate 7.6 mW/_C above 75_C Schematic Diagram (Typical Channel) V+ SX VL Level Shift/ Drive INX V– V+ DX GND V– Figure 1. 2 Siliconix S-52896—Rev. F, 14-Jul-97 DG211B/212B Specifications Test Conditions Unless Otherwise Specified Parameter Symbol V = 15 V, V V– V = –15 15 V V+ VL = 5 V, VIN = 2.4 V, 0.8 Ve D Suffix –40 to 85_C Tempa Minc Full Typb Maxc Unit V Analog Switch Analog Signal Ranged Drain-Source On-Resistance rDS(on) Match VANALOG rDS(on) VD = 10 V,, IS = 1 mA DrDS(on) Room Full 45 Room 2 Source Off Leakage Current IS(off) VS = 14 V, VD = 14 V Room Full 0.01 Drain Off Leakage Current ID(off) VD = 14 V, VS = 14 V Room Full 0.01 Drain On Leakage Current ID(on) VS = VD = 14 V Room Full 0.02 W nA Digital Control Input Voltage High VINH Full Input Voltage Low VINL Full Input Current Input Capacitance IINH or IINL VINH or VINL CIN Full V – Room mA 5 pF Dynamic Characteristics Turn-On Time tON Turn-Off Time tOFF Charge Injection Q VS = 2 V See Fi S Figure 2 Room 300 Room 200 CL = 1000 pF, Vg= 0 V, Rg = 0 W Room 1 Room 5 Room 5 Source-Off Capacitance CS(off) Drain-Off Capacitance CD(off) Channel On Capacitance CD(on) VD = VS = 0 V, f = 1 MHz Room 16 Off Isolation OIRR Room 90 Channel-to-Channel Crosstalk XTALK CL = 15 pF, p , RL = 50 W VS = 1 VRMS, f = 100 kHz kH Room 95 VS = 0 V V, f = 1 MHz ns pC pF dB Power Supply Room Full Positive Supply Current I+ Negative Supply Current I– Room Full Logic Supply Current IL Room Full VOP Full VIN = 0 or 5 V Power Supply Range for Continuous Operation Siliconix S-52896—Rev. F, 14-Jul-97 10 mA V 3 DG211B/212B Specifications for Single Supply Test Conditions Unless Otherwise Specified Parameter V = 12 V, V V– V =0V V+ VL = 5 V, VIN = 2.4 V, 0.8 Ve Symbol D Suffix –40 to 85_C Tempa Minc Full Typb Maxc Unit V W Analog Switch Analog Signal Ranged VANALOG Drain-Source On-Resistance Room Full 90 rDS(on) VD = 3 V, 8 V, IS = 1 mA Turn-On Time tON Room Turn-Off Time tOFF VS = 8 V See Fi S Figure 2 Room CL = 1 nF, Vgen= 6 V, Rgen = 0 W Room Dynamic Characteristics Charge Injection Q ns 4 pC Power Supply Room Full Positive Supply Current I+ Negative Supply Current I– Room Full Logic Supply Current IL Room Full VOP Full VIN = 0 or 5 V Power Supply Range for Continuous Operation 10 mA V Notes: a. Room = 25_C, Full = as determined by the operating temperature suffix. b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. d. Guaranteed by design, not subject to production test. e. VIN = input voltage to perform proper function. Typical Characteristics rDS(on) vs. VD and Power Supply Voltages 100 rDS(on) – Drain-Source On-Resistance ( W ) rDS(on) – Drain-Source On-Resistance ( W ) 110 100 90 5 V 80 70 10 V 60 15 V 50 40 20 V 30 20 10 –20 –16 –12 –8 –4 0 4 8 VD – Drain Voltage (V) 4 12 16 20 90 rDS(on) vs. VD and Temperature V+ = 15 V V– = –15 V 80 70 60 125_C 50 85_C 40 25_C 30 –55_C 20 10 0 –15 –10 –5 0 5 10 15 VD – Drain Voltage (V) Siliconix S-52896—Rev. F, 14-Jul-97 DG211B/212B Typical Characteristics (Cont’d) rDS(on) vs. VD and Single Power Supply Voltages Leakage Currents vs. Analog Voltage 225 40 V+ = 5 V V+ = 22 V V– = –22 V TA = 25_C 30 200 175 150 I S, I D – Current (pA) rDS(on) – Drain-Source On-Resistance ( ) 250 7V 125 10 V 100 12 V 15 V 75 20 ID(on) 10 IS(off), ID(off) 0 –10 –20 50 –30 25 –40 –20 0 0 2 4 6 8 10 12 14 16 –15 VD – Drain Voltage (V) –5 0 5 10 15 20 VANALOG – Analog Voltage (V) Leakage Current vs. Temperature 30 1 nA V+ = 15 V V– = –15 V VS, VD = 14 V QS, QD – Charge Injection vs. Analog Voltage 20 Q – Charge (pC) I S, I D – Current –10 100 pA IS(off), ID(off) 10 pA 10 V+ = 15 V V– = –15 V 0 V+ = 12 V V– = 0 V –10 –20 1 pA –55 –35 –15 5 25 45 65 85 –30 –15 105 125 –10 –5 0 5 10 15 VANALOG – Analog Voltage (V) Temperature (_C) Off Isolation vs. Frequency 120 V+ = +15 V V– = –15 V 110 OIRR (dB) 100 90 RL = 50 80 70 60 50 40 10 k 100 k 1M 10 M f – Frequency (Hz) Siliconix S-52896—Rev. F, 14-Jul-97 5 DG211B/212B Test Circuits +15 V V+ D S VS = +2 V 3V Logic Input VO tr <20 ns tf <20 ns 50% 0V tOFF IN GND CL 35 pF RL 1 kW 3V V– 90% Switch Output –15 V VO = VS VO tON RL RL + rDS(on) Figure 2. Switching Time C +15 V +15 V C V+ S1 VS V+ S VS VO D D1 Rg = 50 W 50 W IN1 Rg = 50 W 0V, 2.4 V RL IN 0V, 2.4 V S2 NC GND V– C RL IN2 0V, 2.4 V GND XTALK Isolation = 20 log VS VO Figure 3. Off Isolation –15 V Figure 4. Channel-to-Channel Crosstalk DVO VO V+ S D IN Vg 3V GND C VS VO +15 V Rg V– C = RF bypass –15 V Off Isolation = 20 log VO D2 V– –15 V VO CL 1000 pF INX ON OFF ON DVO = measured voltage error due to charge injection The charge injection in coulombs is Q = CL x DVO Figure 5. Charge Injection 6 Siliconix S-52896—Rev. F, 14-Jul-97 DG211B/212B Applications +5V +15 V VL V+ Logic Input Low = Sample High = Hold 1 kW +15 V DG211B +15 V –15 V – LM101A VIN J202 2N4400 + 5 MW 200 W 50 pF 5.1 MW VOUT 1000 pF V– J507 J500 30 pF –15 V = 25 ms = 1 ms = 5 mV = 5 mV/s Aquisition Time Aperature Time Sample to Hold Offset Droop Rate –15 V Figure 6. Sample-and-Hold +15 V 160 V1 C4 TTL Control fC3 Select fC2 Select fC1 Select 150 pF 120 C3 Voltage Gain – dB fC4 Select 1500 pF C2 0.015 mF C1 0.15 mF 80 40 fC1 fC2 fC3 fC4 fL1 0 V– fL2 fL3 fL4 DG211B GND –40 1 –15 V 10 100 1k 10 k R3 = 1 MW +15 V –15 V – R1 = 10 kW LM101A + R2 = 10 kW VOUT AL (Voltage Gain Below Break Frequency) = 1 fC (Break Frequency) = 2pR C 3 X fL (Unity Gain Frequency) = 30 pF 100 k 1M Frequency – Hz Max Attenuation = rDS(on) 10 kW R3 R1 = 100 (40 dB) 1 2pR1CX –47 dB Figure 7. Active Low Pass Filter with Digitally Selected Break Frequency Siliconix S-52896—Rev. F, 14-Jul-97 7 DG211B/212B Applications (Cont’d) VIN1 +5 V +15 V VL V+ 30 pF +15 V + LM101A – VIN2 +15 V DG419 –15 V DG212B RF1 18 k RF2 9.9 k RF3 100 k RG1 2 k RG2 100 RG3 100 CH GND V– –15 V Gain = RF + RG RG Gain 1 (x1) Gain 2 (x10) Gain 3 (x100) Gain 4 (x1000) V– GND Logic High = Switch On –15 V Figure 8. A Precision Amplifier with Digitally Programable Input and Gains 8 Siliconix S-52896—Rev. F, 14-Jul-97