ETC RM4136D/883

www.fairchildsemi.com
RC4136
General Performance Quad 741
Operational Amplifier
Features
•
•
•
•
•
•
•
•
Unity gain bandwidth – 3 MHz
Short circuit protection
No frequency compensation required
No latch-up
Large common mode and differential voltage ranges
Low power consumption
Parameter tracking over temperature range
Gain and phase match between amplifiers
Description
The RC4136 is made up of four 741 type independent high
gain operational amplifiers internally compensated and constructed on a single silicon chip using the planar epitaxial
process.
of the RC4136 quad amplifier in all 741 operational amplifier applications providing the highest possible packaging
density.
This amplifier meets or exceeds all specifications for 741
type amplifiers. Excellent channel separation allows the use
The specially designed low noise input transistors allow the
RC4136 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners.
Block Diagram
Pin Assignments
–Input (A)
+Input (A)
A
+
D
+
Output (A)
Output (C)
+
B
+
–Input (B)
+Input (D)
Output (D)
Output (B)
+Input (B)
–Input (D)
C
–Input (A)
+Input (A)
Output (A)
Output (B)
+Input (B)
–Input (B)
–VS
1
14
2
13
3
12
4
11
5
10
6
9
7
8
–Input (D)
+Input (D)
Output (D)
+VS
Output (C)
+Input (C)
–Input (C)
+Input (C)
65-4136-02
–Input (C)
65-4136-01
Rev. 1.0.0
PRODUCT SPECIFICATION
RC4136
Absolute Maximum Ratings
(beyond which the device may be damaged)1
Parameter
Min
Max
Units
RC4136
±18
V
RM4136
±22
V
Input Voltage
±30
V
Differential Input Voltage
30
V
SOIC
300
mW
PDIP
468
mW
Supply Voltage
Typ
2
Output Short Circuit
Duration3
PDTA < 50°C
Indefinite
CerDIP
Operating Temperature
1042
mW
RC4136
0
70
°C
RM4136
-55
125
°C
-65
150
°C
125
°C
CerDIP
175
°C
DIP
300
°C
SOIC
260
°C
Storage Temperature
Junction Temperature
Lead Soldering Temperature
(60 seconds)
SOIC, PDIP
Notes:
1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if
Operating Conditions are not exceeded.
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground, typically 45 mA.
Operating Conditions
Parameter
qJC
Thermal resistance
qJA
Thermal resistance
For TA > 50°C Derate at
2
Min
Typ
Max
Units
60
°C/W
SOIC
200
°C/W
PDIP
160
°C/W
CerDIP
120
°C/W
SOIC
5.0
mW/°C
RC4136
PRODUCT SPECIFICATION
Electrical Characteristics
(VS = ±15V and TA = +25˚C, unless otherwise noted)
RM4136
Parameters
Test Conditions
Input Offset Voltage
RS £ 10kW
RC4136
Typ
Max
0.5
Input Offset Current
Input Bias Current
Input Resistance
Min
Min
Typ
Max
Units
5.0
0.5
6.0
mV
5.0
200
5.0
200
nA
40
500
40
500
nA
0.3
5.0
0.3
5.0
MW
Large Signal Voltage Gain
RL ³ 2kW, VOUT = ±10V
50
300
20
300
V/mV
Output Voltage Swing
RL ³ 10kW
±12
±14
±12
±14
V
RL ³ 2kW
±10
±13
±10
±13
±12
±14
±12
±14
V
Input Voltage Range
Common Mode Rejection
Ratio
RS £ 10kW
70
100
70
100
dB
Power Supply Rejection
Ratio
RS £ 10kW
76
100
76
100
dB
Power Consumption
RL = ¥ , All Outputs
210
Rise Time
VIN = 20mV, RL = 2kW
0.13
0.13
mS
Overshoot
CL £ 100pF
5.0
5.0
%
3.0
3.0
MHz
340
210
340
mW
Transient Response
Unity Gain Bandwidth
Slew Rate
RL ³ 2kW
1.5
1.0
V/mS
Channel Separation
F = 1.0kHz, RS =1kW
90
90
dB
Electrical Characteristics
(RM = -55°C £ TA £ = 125°, RC = 0°C £ TA £ = 70°, VS = ± 15V)
RM4136
Parameters
Test Conditions
Input Offset Voltage
RS £ 10kW
Min
Typ
RC4136
Max
Min
Typ
Max
Units
6.0
7.5
mV
Input Offset Current
500
300
nA
Input Bias Current
1500
800
nA
Large Signal Voltage Gain
RL ³ 2kW, VOUT = ±10V
25
15
V/mV
Output Voltage Swing
RL ³ 2kW
±10
±10
V
Power Consumption
240
400
240
400
mW
3
PRODUCT SPECIFICATION
RC4136
Electrical Characteristics Comparison
(VS = ±15V and TA +25˚C unless otherwise noted)
Parameter
RC4136 (Typ.)
RC741 (Typ.)
LM324 (Typ.)
Units
Input Offset Voltage
0.5
2.0
2.0
mV
Input Offset Current
5.0
10
5.0
nA
Input Bias Current
40
80
55
nA
Input Resistance
5.0
2.0
Large Signal Voltage Gain (RL = 2kW)
MW
300
200
100
V/mV
Output Voltage Swing (RL= 2kW)
±13V
±13V
|+VS – 1.2V| to
–VS
V
Input Voltage Range
±14V
±13V
|+VS – 1.5V| to
–VS
V
Common Mode Rejection Ratio
100
90
85
dB
Power Supply Rejection Ratio
100
90
100
dB
Rise Time
0.13
0.3
mS
Overshoot
5.0
5.0
%
Unity Gain Bandwidth
3.0
0.8
0.8
Slew Rate
1.0
0.5
0.5
Input Noise Voltage Density (F= 1kHz)
10
22.5
nV/ÖHz
Short Circuit Current
±45
±25
mA
Transient Response
4
MHz
V/mS
RC4136
PRODUCT SPECIFICATION
Typical Performance Characteristics
25
100
VS =
20
15V
IOS (nA)
65-4136-03
40
20
0
0
+10
+20
+30
+40
+50
+60
15V
15
10
5
0
+70
0
+10
+20
TA (¡C)
+40
+50
+60
+70
TA (¡C)
Figure 1. Input Bias Current vs. Temperature
Figure 2. Input Offset Current vs. Temperature
15
15
10
T A = +25 C
10
T A = +25 C
5
VOUT (V)
5
0
-5
65-4136-05
VCM (V)
+30
-10
-15
±4
±6
±8
±10
±12
±14
±16
0
-5
RL = 2 k W
-10
-15
±4
±18
65-4136-06
IB (nA)
60
VS =
65-4136-04
80
±6
±8
±10
±12
±14
±16
±18
+VS/-VS (V)
±VS (V)
Figure 3. Input Common Mode Voltage Range
vs. Supply Voltage
Figure 4. Output Voltage vs. Supply Voltage
800K
240
VS =
15V
VS = 15V
RL = 2 k W
200K
0
0
+10
+20
+30
+40
+50
+60
TA (¡C)
Figure 5. Open Loop Gain vs. Temperature
+70
200
180
65-4136-08
400K
PC (mW)
220
65-4136-07
AVOL (V/mV)
600K
160
0
+10
+20
+30
+40
+50
+60
+70
TA (¡C)
Figure 6. Power Consumption vs. Temperature
5
PRODUCT SPECIFICATION
RC4136
Typical Performance Characteristics (continued)
120
40
36
32
28
24
20
16
12
8
4
0
100
VOUT P-P (V)
60
40
65-4136-09
20
0
-20
1
10
100
1K
10K 100K
1M
10M
VS = 15V
T A = +25 C
RL = 2 k W
1K
10K
F (Hz)
10
TA = +25¡C
VS = 15V
TA = +25 C
IQ (mA)
8
1.0
6
4
65-4136-12
28
26
24
22
20
18
16
14
12
10
8
0.1
2
0
10
0
±3
±6
±9
±12
±15
±18
+VS/-VS (V)
RL (kW)
Figure 9. Output Voltage Swing vs. Load Resistance
Figure 10. Quiescent Current vs. Supply Voltage
28
10
8
6
4
2
0
-2
-4
-6
-8
-10
24
VS = 15V
TA = +25 C
20
VOUT (mV)
Output
Input
65-4136-13
VOUT (V)
1M
Figure 8. Output Voltage Swing vs. Frequency
65-4136-11
VOUT P-P (V)
Figure 7. Open Loop Gain vs. Frequency
0
10
20
30
Time (µS)
40
Figure 11. Follower Large Signal Pulse Response
6
100K
F (Hz)
16
12
VS = 15V
T A = +25 C
RL = 2 k W
C L = 100 pF
90%
8
4
65-4136-14
AVOL (dB)
80
65-4136-10
100
10% Rise Time
0
0
0.25
0.50
0.75
1.00
1.25
Time (µS)
Figure 12. Transient Response Output Voltage vs. Time
RC4136
PRODUCT SPECIFICATION
Typical Performance Characteristics (continued)
0.6
100
0.5
THD (%)
120
80
60
0.4
0.3
VS = 15V
TA = +25 C
100
1K
10K
65-4136-16
0
10
65-4136-15
20
VOUT = 1 VRMS
VS = 30V
0.2
40
0.1
0
10
100K
100
1K
10K
100K
F (Hz)
F (Hz)
Figure 13. Channel Separation vs. Frequency
0.6
Figure 14. Total Harmonic Distortion vs. Frequency
VS = 15V
R L = 2K
A V = 40 dB
f = 1 kHz
RS = 1k W
0.5
THD (%)
0.4
0.3
0.2
65-4136-17
CS (dB)
140
0.1
0
1
2
3
4
5
6
7
8
9
10
VOUT (V RMS )
Figure 15. Total Harmonic Distortion vs. Output Voltage
7
PRODUCT SPECIFICATION
RC4136
RC4136 Versus LM324
Although the LM324 is an excellent device for single-supply
applications where ground sensing is important, it is a poor
substitute for four 741s in split supply circuits. The simplified input circuit of the RC4136 exhibits much lower noise
than that of the LM324 and exhibits no crossover distortion
as compared with the LM324 (see Figure 16). The LM324
shows significant crossover distortion and pulse delay in
attempting to handle a large signal input pulse.
324
4136
F = 10 kHz
VOUT = 8 VP-P
F = 50 kHz
V OUT = 8 V P-P
RL = 2 k W
AV= 1
VS = 5V
65-4136-18
120
741
324
1K
10K
100K
4136
80
4136
741
60
40
1M
Figure 17. Output Voltage Swing vs. Frequency
65-4136-20
20
F (Hz)
8
100
VS = 15V
T A = +25 C
R L = 2 kW
AVOL (dB)
40
36
32
28
24
20
16
12
8
4
0
100
65-4136-19
VOUT P-P (V)
Figure 16. Comparative Crossover Distortion
0
-20
1
10
100
1K
10K 100K
1M
F (Hz)
Figure 18. Open Loop Gain vs. Frequency
10M
RC4136
PRODUCT SPECIFICATION
RC4136 Versus LM324 (continued)
+8
16
4136
+2
Outputs
0
324
-2
Input
65-4136-21
-4
-6
-8
30
0
40
60
0 C = T A < +70 C
12
+VCM (V)
VOUT (V)
+4
14
Vs = 10V
RL = 2 kW
80
10
741
8
4136
6
4
65-4136-22
+6
2
0
±5
±10
Time (µS)
±20
±15
+VS/-VS (V)
Figure 19. Follower Large Signal Pulse Response
Output Voltage vs. Time
Figure 20. Input Common Mode Voltage Range
vs. Supply Voltage
Typical Applications
+Vs
910K
+Vs
+Vs
1
1
2
4136A
100W
3
4136A
100K
3
2
VOUT
91K
5K
100K
AV = 10
65-0520
+VIN
Figure 21. Lamp Driver
Figure 22. Power Amplifier
VIN
1
VIN
2 4136A
2
10K
3
65-0523
VOUT
65-0519
Figure 23. Voltage Follower
+VREF
1 4136A
3
VOUT
10M
65-0522
Figure 24. Comparator with Hysteresis
9
PRODUCT SPECIFICATION
RC4136
Typical Applications (continued)
+Vs
VIN
0.01µF
16K
100K
VOUT
0.001µF
1
16K
1
0.01µF
2
4136A
3
4136A
3
VoUT
2
+Vs
100K
100K
1
0
100K
100K
100K
65-0527
65-0521
Figure 25. DC Coupled 1kHz Lowpass Active Filter
VIN
Figure 26. Squarewave Oscillator
0.01 µF
390K
120K
0.01 µF
+Vs
1
620K
620W
VoUT
390K +Vs
4136A
3
39K
6
2
4
4136B
5
10 µF
100K
100K
+Vs
65-0526
Figure 27. 1kHz Bandpass Active Filter
1M
100K
+Vs
+Vs
1
VIN
2 4136A
3
10K
VIN
VoUT
+Vs
100K
100K
1
2 4136A
3
VoUT
10K
100K
0.1 µF
10 µF
100K
+Vs
10 µF
10K
100K
10K
65-0525
65-0524
Figure 28. AC Coupled Non-Inverting Amplifier
10
Figure 29. AC Coupled Inverting Amplifier
RC4136
PRODUCT SPECIFICATION
Typical Applications (continued)
0.05 µF
R
100K
100K
1
+VC*
51K
2
4136A
51K
3
6
5
4
Output 1
V+/210K
51K
R/2
50K
4136B
Output 2
10K
65-0528
* Wide control voltage range: 0V < Vc < 2(+Vs -1.5V)
Figure 30. Voltage Control Oscillator (VCO)
2.5K
Cal
20K
1%
20K
1%
DC
Output
20K
1%
4.7 µF
AC
Input
20K
1%
10K
1%
4.7 µF
D1
FD666
1
2
4136A
D2
FD666
4.7 µF
6
3
5
4136B
4
5.1K
10K
65-0531
Figure 31. Full-Wave Rectifier and Averaging Filter
R2
30K
10K
1
4136A
3
2
1K
Trim R, such that
R3
15K
R1
R3
=
R2
2R4
6
C1
5
R4
7.5K
741
Output
4136B
4
100
R4
7.5K
10
0.0001
C2
1 µF
65-0529
Figure 32. Notch Filter Using the RC4136 as a Gyrator
65-0530
Input
C1 ( mF)
R1
30K
0.001
0.001
0.01
1.0
Center Frequency (Hz)
Figure 33. Notch Frequency vs. C1
11
PRODUCT SPECIFICATION
RC4136
Typical Applications (continued)
2
V IN
1
V4
4136A
3
VIN < V4
Q1
5
6 4136B
V3
4
V3 < VIN < V4
Q2
9
8
V2
4136C
10
V2 < V IN < V3
Q3
13
V1
14
4136D
12
V IN < V1
65-0532
Figure 34. Multiple Aperture Window Discriminator
(-)
2
1 4136A
3
R1
45K
1%
R3
10K
1%
Inputs
(+)
5
6
4136B
4136C
VOUT
* Matching determines CMRR
10
Av =
R5*
10K
0.1%
4
R1 = R4
R2 = R5
R6 = R7
R4
45K
1%
8
9
R6*
100K
0.1%
R2
10K
0.1%
R6
( 1 + 2R1 )
R2
R3
R7*
100K
0.1%
65-0533
Figure 35. Differential Input Instrumentation Amplifier with High Common Mode Rejection
12
RC4136
PRODUCT SPECIFICATION
Typical Applications (continued)
+15V
10K
10K
VIN1
D4
IN457
Q1*
10K
10K
1
2
1K
3
4136A
6
D1
1N457
10K
4
4136B
5
VoUT =
(VIN1) (VIN2)
VIN3
10K
Q4*
Q2*
V IN2 10K
Q3*
1K
10
9
10K
14
8
12
4136C
1K
D2
1N457
10K
4136D
VIN3
13
D3
1N457
10K
65-0534
*Matched Transistors
Figure 36. Analog Multiplier/Divider
DC-1Hz N
Out
3.3M
49.9K
0.082
µF
100K
49.9W
1.0 µF
2
DUT
100K
49.9W
499K
Compensate
as Required
1 4136A
499K
3
60 dB Wideband
Amplifier
78.7K
10 µF 1 Hz
499W
1 µF
1000 µF
0.1 µF
0.01 µF
1 kHz
10 µF
1 Hz
3.16K 1 Hz
3.16K
499K
10K
Spot Noise
Out
1 µF
8
10
6
31.6K
4136C
4
9
4136B
0.1 µF
5
100K
1mV = 1nV/ Hz
RMS
499W
0.01 µF
1 kHz
499K
Stepped 10 dB
Attenuator
1 kHz
Selectable Frequency
Constant Q Filter
65-0535
Figure 37. Spot Noise Measurement Test Circuit
13
RC4136
PRODUCT SPECIFICATION
Simplified Schematic Diagram
+Vs
(11)
R1
8.7K
Q10
Q5
Q6
Q14
(1,6,8,14)
-Input
Q13
Q2
Q1
R6
50
R8
100
Output
(3,4,10,12)
Q12
+Input
D1
(2,5,9,13)
R7
50
R5
50K
Q15
Q7
Q8
15 pF
Q9
Q3
Q4
Q11
R9
15K
R2
5K
C1
30 pF
R3
5K
Z1
5.5V
R4
50K
-Vs
(7)
65-0495
14
RC4136
PRODUCT SPECIFICATION
Mechanical Dimensions
14-Lead Ceramic DIP Package
Inches
Symbol
Min.
A
b1
b2
c1
D
E
e
eA
L
Q
s1
a
Millimeters
Max.
—
.200
.014
.023
.045
.065
.008
.015
—
.785
.220
.310
.100 BSC
.300 BSC
.125
.200
.015
.060
.005
—
90¡
105¡
Min.
Notes:
Notes
Max.
—
5.08
.36
.58
1.14
1.65
.20
.38
—
19.94
5.59
7.87
2.54 BSC
7.62 BSC
3.18
5.08
.38
1.52
.13
—
90¡
105¡
1. Index area: a notch or a pin one identification mark shall be located
adjacent to pin one. The manufacturer's identification shall not be
used as pin one identification mark.
8
2
2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads
number 1, 7, 8 and 14 only.
8
4
3. Dimension "Q" shall be measured from the seating plane to the base
plane.
4
5, 9
7
4. This dimension allows for off-center lid, meniscus and glass overrun.
3
6
5. The basic pin spacing is .100 (2.54mm) between centerlines. Each
pin centerline shall be located within ±.010 (.25mm) of its exact
longitudinal position relative to pins 1 and 14.
6. Applies to all four corners (leads number 1, 7, 8, and 14).
7. "eA" shall be measured at the center of the lead bends or at the
centerline of the leads when "a" is 90¡.
8. All leads – Increase maximum limit by .003 (.08mm) measured at the
center of the flat, when lead finish applied.
9. Twelve spaces.
D
7
1
8
14
NOTE 1
E
s1
eA
e
A
Q
L
b2
a
c1
b1
15
PRODUCT SPECIFICATION
RC4136
Mechanical Dimensions (continued)
14-Lead Plastic DIP Package
Inches
Symbol
Millimeters
Min.
Max.
Min.
Max.
A
A1
A2
—
.015
.115
.210
—
.195
—
.38
2.93
5.33
—
4.95
B
B1
C
D
D1
E
E1
e
eB
.014
.022
.045
.070
.008
.015
.725
.795
.005
—
.300
.325
.240
.280
.100 BSC
—
.430
.115
.200
14
L
N
.36
.56
1.14
1.78
.20
.38
18.42
20.19
.13
—
7.62
8.26
6.10
7.11
2.54 BSC
—
10.92
2.92
5.08
14
Notes:
Notes
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions
shall not exceed .010 inch (0.25mm).
3. Terminal numbers are shown for reference only.
4. "C" dimension does not include solder finish thickness.
5. Symbol "N" is the maximum number of terminals.
4
2
2
5
D
7
1
8
14
E1
D1
E
e
A
A1
C
L
B1
16
B
eB
RC4136
PRODUCT SPECIFICATION
Mechanical Dimensions (continued)
14-Lead SOIC Package
Inches
Symbol
Min.
A
A1
B
C
D
E
e
H
h
L
N
a
ccc
Millimeters
Max.
Min.
Max.
.053
.069
.004
.010
.013
.020
.008
.010
.336
.345
.150
.158
.050 BSC
.228
.244
1.35
1.75
0.10
0.25
0.33
0.51
0.19
0.25
8.54
8.76
3.81
4.01
1.27 BSC
5.79
6.20
.010
.016
0.25
0.40
.020
.050
14
0.50
1.27
14
0¡
8¡
0¡
8¡
—
.004
—
0.10
14
Notes:
Notes
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
2. "D" and "E" do not include mold flash. Mold flash or protrusions
shall not exceed .010 inch (0.25mm).
3. "L" is the length of terminal for soldering to a substrate.
4. Terminal numbers are shown for reference only.
5
2
2
5. "C" dimension does not include solder finish thickness.
6. Symbol "N" is the maximum number of terminals.
3
6
8
E
1
H
7
h x 45¡
D
C
A1
A
e
B
SEATING
PLANE
–C–
LEAD COPLANARITY
a
L
ccc C
17
PRODUCT SPECIFICATION
RC4136
Ordering Information
Product Number
Temperature Range
Screening
Package
Package Marking
RC4136N
0° to 70°C
Commercial
14 Pin Plastic DIP
RC4136N
RC4136M
0° to 70°C
Commercial
14 Pin Narrow SOIC
RC4136M
RM4136D
-55°C to +125°C
RM4136D/8831
-55°C to +125°C
14 Pin Ceramic DIP
Military
14 Pin Ceramic DIP
Note:
1. /883 denotes MIL-STD-883, Par. 1.2.1 compliant device.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
5/20/98 0.0m 001
Stock#DS30004136
Ó 1998 Fairchild Semiconductor Corporation