19-2057; Rev 0; 5/01 MXL1543 Evaluation Kit Features ♦ Programmable Transceiver Supports V.28 (RS-232) V.11 (RS-449/V.36, EIA530, EIA530-A, X.21) V.35 The MXL1543, MXL1544, and MXL1344A chipset supports V.28 (RS-232), V.11(RS-449/V.36, EIA530, EIA530A, X.21), and V.35 protocols. NET1, NET2, TBR-1, and TBR-2 compliance has been certified by TUV Telecom Services, Inc. Internal charge pumps allow this kit to operate off a single +5V supply. The MXL1543 EV kit was designed to take advantage of the chipset’s flow-through pinout. This kit includes a 40pin header (logic signals), a female DB25 connector (protocol signals), three SMA connectors (high-speed logic signals), and scope probe connectors for measuring the high-speed data signals (logic and protocol signals). ♦ Certified TBR-1 and TBR-2 Compliant The MXL1543 EV kit can evaluate the MAX3175 and is used in place of the MXL1544. Contact Maxim to order samples of the MAX3175CAI. No further changes are required to the board to evaluate the MAX3175. ♦ True Fail-Safe Receiver Inputs ♦ Certified NET1 and NET2 Compliant ♦ Programmable Cable Termination (MXL1344A) ♦ Fully Assembled and Tested Ordering Information PART TEMP. RANGE IC PACKAGE 0°C to +70°C 28 SSOP (2), 24 SSOP MXL1543EVKIT Component List DESIGNATION QTY DESCRIPTION C1, C2, C5, C9–C13 8 1µF, 10V ceramic capacitors (0805) TDK C2012X5R1A105M C3, C4 2 4.7µF, 10V ceramic capacitors (1206) TDK C3216X5R1A475M C6, C7, C8 3 100pF ceramic capacitors (0603) C14, C15 2 0.1µF ceramic capacitors (0603) C16 1 0.1µF ceramic capacitor (0805) C17 1 47µF, 16V tantalum capacitor (D case) AVX TPSD476M016R0200 R1, R2, R3 3 49.9Ω ±1% resistors (0805) R4–R19 16 1.5kΩ ±5% resistors (0805) D1–D6 6 Red LED D7–D12 6 Green LED D13–16 4 Yellow LED U1 1 MXL1543CAI (28-pin SSOP) U2 1 MXL1544CAI (28-pin SSOP) U3 1 U4, U5 2 MXL1344ACAG (24-pin SSOP) Inverting LED drivers (20-pin SO) TI SN74HC240DW or Motorola MC74HC240ADW DESIGNATION QTY DESCRIPTION RXD/TXD, RXC/SCTE, TXC/ N/A, N/A /TXC, SCTE/RXC, TXD/RXD, RXDA/TXDA, RXDB/TXDB, RXCA/SCTEA, RXCB/SCTEB, TXCA/TXCA, TXCB/TXCB, SCTEA/RXCA, SCTEB/RXCB, TXDA/RXDA, TXDB/RXDB 16 Scope probe connectors (top mount, 3.5mm ground cylinder) Tektronix 131-4244-00 (qty 100) 131-5031-00 (qty 25) J1 1 40-pin header (2x20) 0.1in center J2 1 DB25 right-angle female connector AMP AMP0012 747846-4 J3, J4, J5 3 SMA connectors (PC edge mount) EFJohnson 142-0701-801 ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A General Description The MXL1543 evaluation kit (EV kit) combines Maxim’s multiprotocol clock/data transceiver (MXL1543), control transceiver (MXL1544), and cable terminator (MXL1344A) chips. This chipset forms a complete software-selectable multiprotocol data terminal equipment (DTE) or data communications equipment (DCE) interface port. Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A MXL1543 Evaluation Kit Component List (continued) DESIGNATION QTY including all the labels for the LEDs, follow the same label format. The board label format is the top label corresponds to DCE mode and the bottom label corresponds to DTE mode. DESCRIPTION JU1–JU7 7 3-pin headers JU8–JU17 10 2-pin headers None 17 Shunts None 1 MXL1543 EV kit PC board None 1 MXL1543 EV kit data sheet None 1 MXL1543 data sheet None 1 MXL1544/MAX3175 data sheet None 1 MXL1344A data sheet 3) The green LEDs are attached to the receiver logic outputs of the MXL1543 and MXL1544. The LEDs light when the receiver logic outputs are a logic high. Verify that all green LEDs light up when no signals are attached to the DB25 connector. Note: The receivers have the true fail-safe feature allowing zero volts differential voltage to be a valid state that forces the receiver outputs high. Quick Start The MXL1543 EV kit is extremely flexible and has several settings for both the ICs as well as the board. The ICs have been put into no cable mode as the default mode. In no cable mode, the user is able to program the desired protocol with an external controller connected to the 40-pin header. The default mode settings are shown in Tables 1, 2, and 3. By default, the SMA connectors (J3, J4, and J5) are terminated with 50Ω and the MXL1544’s transmitter input lines are all tied low. 1) Connect a single +5V, 5% power supply between VCC and GND located at the lower-left corner of the MXL1543 EV kit board. 2) The yellow LEDs indicate the protocol mode of the chipset. The LEDs light when the corresponding signal is a logic high. Verify that all yellow LEDs light up, indicating no cable mode. All board labels, 4) The red LEDs are attached to the transmitter logic inputs of the MXL1543 and MXL1544. The LEDs light when the transmitter logic inputs are a logic high. Verify that none of the red LEDs light up when no signals are connected to the 40-pin header. Detailed Description The MXL1543 EV kit was designed to take advantage of the chipset’s flow-through pinout. The logic signals have all been routed to the 40-pin header located on the left side of the EV kit board and the protocol signals have all been routed to the female DB25 connector located on the right side of the board. Various connectors have been added to the MXL1543 EV kit to aid in taking quality measurements. Leave JU17 unconnected when measuring the supply current of the chipset to eliminate the LED current. However, the supply current measurements still include the unloaded supply current of the LED driver ICs (up to Table 1. MXL1543 Default Mode MODE M2 M1 M0 DCE/DTE T1 T2 T3* R1* R2 R3 No Cable 1 1 1 1 Z Z Z Z Z Z Z = High impedance. *T3 and R1 share a single IC pin. Table 2. MXL1544/MAX3175 Default Mode MODE No Cable M2 M1 M0 DCE/DTE T1 T2 T3* R1* R2 R3 T4 R4 1 1 1 1 Z Z Z Z Z Z Z Z Z = High impedance. *T3 and R1 share a single IC pin. Table 3. MXL1344A Default Mode MODE No Cable 2 M2 M1 M0 DCE/DTE R1 R2 R3 R4 R5 R6 INVERT 1 1 1 1 V.11 V.11 V.11 V.11 V.11 V.11 0 _______________________________________________________________________________________ MXL1543 Evaluation Kit MODE Not Used (Default V.11) M2 M1 M0 DCE/ DTE T1 T2 T3* R1* R2 R3 0 0 0 0 V.11 V.11 Z V.11 V.11 V.11 RS530A 0 0 1 0 V.11 V.11 Z V.11 V.11 V.11 RS530 0 1 0 0 V.11 V.11 Z V.11 V.11 V.11 X.21 0 1 1 0 V.11 V.11 Z V.11 V.11 V.11 V.35 V.35 1 0 0 0 V.35 V.35 Z V.35 V.35 RS449/V.36 1 0 1 0 V.11 V.11 Z V.11 V.11 V.11 V.28/RS-232 1 1 0 0 V.28 V.28 Z V.28 V.28 V.28 No Cable 1 1 1 0 Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 1 V.11 V.11 V.11 Z V.11 V.11 RS530A 0 0 1 1 V.11 V.11 V.11 Z V.11 V.11 RS530 0 1 0 1 V.11 V.11 V.11 Z V.11 V.11 X.21 0 1 1 1 V.11 V.11 V.11 Z V.11 V.11 V.35 1 0 0 1 V.35 V.35 V.35 Z V.35 V.35 RS449/V.36 1 0 1 1 V.11 V.11 V.11 Z V.11 V.11 V.28/RS-232 1 1 0 1 V.28 V.28 V.28 Z V.28 V.28 No Cable 1 1 1 1 Z Z Z Z Z Z Z = High impedance. *T3 and R1 share a single IC pin. 160µA at +70°C). Scope probe connectors have been added to measure the high-speed signals of the transmitter inputs/outputs and receiver inputs/outputs of the MXL1543. The scope probe connectors located on the left side of the board are connected to the logic input and output signals. The scope probe connectors located on the right side of the board are connected to the protocol input and output signals. Three SMA connectors have also been provided for driving the high-speed transmitter inputs of the MXL1543. The row of 16 LEDs across the top of the board are logic indicators. The red LEDs indicate the state of the transmitter inputs of the MXL1543 and MXL1544. The green LEDs indicate the state of the receiver outputs of the MXL1543 and MXL1544. The yellow LEDs indicate the state of the protocol and the protocol termination modes. The LEDs light up when their corresponding signals are a logic high. Configuration The following is a step-by-step procedure to aid in configuring the MXL1543 EV kit. The MXL1543 EV kit is extremely flexible and has several settings for both the ICs, as well as the board. The logic signals have all been routed to the 40-pin header on the left side of the board. The protocol signals have all been routed to the female DB25 connector on the right side of the board. The chipset protocol modes can be configured to support V.28 (RS-232), V.11 (RS-449/V.36, EIA530, EIA530A, X.21), and V.35 protocols. All chipset logic inputs, LED power, and shield ground connection are jumper selectable. The board includes SMA connectors (J3, J4, and J5) with optional 50Ω termination. The board settings will be separated in the following sections: chipset protocol modes, clock/data transmitter input settings, control transmitter input settings, SMA termination, and power/ground: 1) Connect a single +5V 5% power supply between VCC and GND located at the lower-left corner of the MXL1543 EV kit board. 2) Chipset protocol modes: Select the desired chipset protocol mode using the MXL1543, MXL1544, and MXL1344A selection mode tables (Tables 4, 5, and 6). Connect the _______________________________________________________________________________________ 3 Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A Table 4. MXL1543 Mode Selection Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A MXL1543 Evaluation Kit Table 5. MXL1544/MAX3175 Mode Selection M2 M1 M0 DCE/ DTE INVERT T1 T2 T3* R1* R2 R3 T4* R4* Not Used (Default V.11) 0 0 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 RS-530A 0 0 1 0 0 V.11 V.10 Z V.11 V.10 V.11 Z V.10 RS-530 0 1 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 X.21 0 1 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.35 1 0 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 RS-449/V.36 1 0 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.28/RS-232 1 1 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 No Cable 1 1 1 0 0 Z Z Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z RS-530A 0 0 1 0 1 V.11 V.10 Z V.11 V.10 V.11 V.10 Z RS-530 0 1 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z X.21 0 1 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z PROTOCOL V.35 1 0 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z RS-449/V.36 1 0 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.28/RS-232 1 1 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z No Cable 1 1 1 0 1 Z Z Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable Not Used (Default V.11) RS-530A 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 V.11 V.11 V.11 V.28 V.11 V.28 Z V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.28 V.11 V.28 Z Z Z Z Z Z Z Z V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.28 V.11 V.28 Z V.10 V.10 V.10 V.28 V.10 V.28 Z Z Z Z Z Z Z Z 0 0 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 0 0 1 1 1 V.11 V.10 V.11 Z V.10 V.11 Z V.10 RS-530 0 1 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 X.21 0 1 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.35 1 0 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 RS-449/V.36 1 0 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.28/RS-232 1 1 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 No Cable 1 1 1 1 1 Z Z Z Z Z Z Z Z Z = High impedance. *T3 and R1, and T4 and R4 share IC pins. 4 _______________________________________________________________________________________ MXL1543 Evaluation Kit DCE/DTE M2 M1 M0 R1 R2 R3 R4 R5 R6 Not Used (Default V.11) MODE 0 0 0 0 Z Z Z Z Z Z RS530A 0 0 0 1 Z Z Z V.11 V.11 V.11 RS530 0 0 1 0 Z Z Z V.11 V.11 V.11 X.21 0 0 1 1 Z Z Z V.11 V.11 V.11 V.35 0 1 0 0 V.35 V.35 Z V.35 V.35 V.35 RS449/V.36 0 1 0 1 Z Z Z V.11 V.11 V.11 V.28/RS232 0 1 1 0 Z Z Z Z Z Z No Cable 0 1 1 1 V.11 V.11 V.11 V.11 V.11 V.11 Not Used (Default V.11) 1 0 0 0 Z Z Z Z Z Z RS530A 1 0 0 1 Z Z Z Z V.11 V.11 RS530 1 0 1 0 Z Z Z Z V.11 V.11 X.21 1 0 1 1 Z Z Z Z V.11 V.11 V.35 1 1 0 0 V.35 V.35 V.35 Z V.35 V.35 RS449/V.36 1 1 0 1 Z Z Z Z V.11 V.11 V.28/RS232 1 1 1 0 Z Z Z Z Z Z No Cable 1 1 1 1 V.11 V.11 V.11 V.11 V.11 V.11 Z = High impedance. jumpers to the corresponding state depending on whether the mode lines are controlled by an external controller or pin strapped to a known state using Tables 7 and 8. INVERT jumper defaults to logic low. 3) Clock/data transmitter input settings: Connect the clock/data jumpers to the corresponding state using Table 9. Force the inputs of all unused transmitters low so their corresponding LED indicators are off. 4) Control transmitter input settings: Connect the control jumpers to the corresponding state using Table 10. Force the inputs of all unused transmitters low so their corresponding LED indicators are off. 5) SMA termination: Connect the termination jumpers, depending on whether the signal source needs to be terminated with 50Ω, to the corresponding state using Table 11. Leave unused transmitter input lines terminated so the line is pulled down in a known state. When using SMA termination, avoid connecting JU1, JU2, and JU3 to VCC. 6) Power/ground: Connect the power and ground jumpers according to the desired operation using Table 12. Leave JU17 unconnected (open) when measuring the supply current of the chipset. _______________________________________________________________________________________ 5 Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A Table 6. MXL1344A Termination Mode Selection Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A MXL1543 Evaluation Kit Table 7. Chipset Protocol Mode Jumper Settings JUMPER SIGNAL (BUS) JU13 DCE/DTE JU14 JU15 JU16 M2 M1 M0 STATE FUNCTION Open* Logic high (internal pullup in IC). DCE/DTE line can be driven by a signal applied to J1-30 (40-pin header). Closed Logic low. Open* Logic high (internal pullup in IC). M2 line can be driven by a signal applied to J1-32 (40-pin header). Closed Logic low. Open* Logic high (internal pullup in IC). M1 line can be driven by a signal applied to J1-34 (40-pin header). Closed Logic low. Open* Logic high (internal pullup in IC). M0 line can be driven by a signal applied to J1-36 (40-pin header). Closed Logic low. *Default jumper setting. Table 8. Invert Mode Jumper Settings JUMPER SIGNAL JU12 INVERT STATE Open Closed* FUNCTION Logic high (internal pullup in IC). INVERT can be driven by a signal applied to J1-38 (40-pin header). Logic low. *Default jumper setting. Table 9. Clock/Data Transmitter Input Jumper Settings JUMPER DCE/DTE JU1 RXD/TXD STATE 1-2 Logic high. 2-3 Logic low. Open* JU2 RXC/SCTE TXC/ N/A Apply signal to SMA connector J5. 1-2 Logic high. 2-3 Logic low. Open* JU3 FUNCTION Apply signal to SMA connector J4. 1-2 Logic high. 2-3 Logic low. Open* Apply signal to SMA connector J3. *Default jumper setting. 6 _______________________________________________________________________________________ MXL1543 Evaluation Kit Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A Table 10. Control Transmitter Input Jumper Settings JUMPER JU4 DCE/DTE CTS/RTS STATE Logic high. 2-3* Logic low. Open JU5 DSR/DTR DCD/ N/A Logic high. 2-3* Logic low. LL/ N/A Apply signal to J1-16 (40-pin header). 1-2 Logic high. 2-3* Logic low. Open JU7 Apply signal to J1-14 (40-pin header). 1-2 Open JU6 FUNCTION 1-2 Apply signal to J1-18 (40-pin header). 1-2 Logic high. 2-3* Logic low. Open Apply signal to J1-26 (40-pin header). *Default jumper setting. Table 11. Termination Settings JUMPER DCE/DTE JU8 RXD/TXD JU9 RXC/SCTE JU10 TXC/ N/A STATE Open Closed* Open Closed* Open Closed* FUNCTION Unterminated Terminated with 50Ω Unterminated Terminated with 50Ω Unterminated Terminated with 50Ω *Default jumper setting. Table 12. Power/Ground Jumper Settings JUMPER NAME JU11 SHIELD JU17 LED ANODE STATE Open Closed* Open Closed* FUNCTION DB25 cable shield disconnected from signal ground. DB25 cable shield shorted to signal ground. LED anode is floating. LED anode is connected to VCC. *Default jumper setting. _______________________________________________________________________________________ 7 Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A MXL1543 Evaluation Kit 1 TP1 VCC C1 1µF C3 4.7µF 4 J1-2 1 2 JU1 JU8 R1 49.9Ω R2 49.9Ω J1-4 VCC JU9 J1-6 3 JU10 VCC 1 2 JU3 VCC C2+ 28 5 C2VEE 26 T1IN RXD TXD RXC/SCTE J4 6 GND 25 C2 1µF TP2 C4 47µF T2IN RXC SCTE TXC/N/A J3 3 U1 MXL1543 27 RXD/TXD J5 3 1 2 JU2 R3 49.9Ω C5 1µF VCC CL- 2 CL+ 3 VDD 7 TXC N/A T10UTA T10UTB T20UTA 8 R1OUT T20UTB T30UTA/R1INA T30UTB/R1INB 9 R2INA R2OUT R2INB R3INA 10 R3INB R3OUT 11 M0 12 M1 13 M2 14 DCE/DTE N/A/TXC J1-8 N/A TXC SCTE/RXC SCTE RXC TXD/RXD J1-10 J1-12 T3IN TXD RXD 24 RXDA/TXDA 23 22 21 20 19 18 17 16 15 RXDA TXDA VCC 1 VCC 1 2 JU4 J1-14 J1-16 J1-18 VCC J1-26 VCC 1 2 JU5 VCC 1 2 JU6 C10 1µF C9 1µF VCC 2 V CTS/RTS 3 DD T1IN 3 DSR/DTR 4 U2 T2IN 3 DCD/N/A 5 N/A/DCD 6 DTR/DSR 7 RTS/CTS 8 LL/N/A 9 N/A/LL 10 J1-28 11 12 13 J1-34 J1-32 14 J1-30 DCE/DTE 3 J1-20 J1-22 J1-24 1 2 JU7 3 J1-36 VEE 28 MXL1544 MAX3175 T3IN R1OUT R2OUT R3OUT T4IN R4OUT M0 M1 M2 DCE/DTE GND T1OUTA T1OUTB T2OUTA T2OUTB T3OUTA/R1INA T3OUTB/R1INB R2INA R2INB R3INA R3INB T4OUTA/R4INA INVERT 27 C11 1µF 26 25 24 23 22 21 20 19 18 17 16 J2-4 J2-19 J2-20 J2-23 J2-8 J2-10 J2-6 J2-22 J2-5 J2-13 J2-18 15 J1-38 JU12 M2 M1 M0 JU16 JU15 JU14 JU13 Figure 1a. MXL1543 EV Kit Schematic (Sheet 1 of 3) 8 _______________________________________________________________________________________ MXL1543 Evaluation Kit + GND C17 47µF 16V C16 0.1µF C13 1µF 2 C12 1µF GND GND R3C R2C VCC 13 U3 LATCH 21 MXL1344 VEE R1A R1B R2A R2B R3A R3B R4A R4B R5A R5B R6A R6B DCE/DTE M2 M1 M0 14 R1C VCC VCC Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A C6 C8 C7 100pF 100pF 100pF 3 8 11 12 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 RXDB/TXDB RXCA/SCTEA RXCB/SCTEB TXCA/TXCA TXCB/TXCB SCTEA/RXCA SCTEB/RXCB TXDA/RXDA TXDB/RXDB RXDB TXDB RXCA SCTEA RXCB SCTEB TXCA TXCA TXCB TXCB SCTEA RXCA SCTEB RXCB TXDA RXDA J2-2 J2-14 J2-24 J2-11 J2-15 J2-12 J2-17 J2-9 J2-3 J2-16 J2-1 JU11 J2-7 J2-25 J2-21 TXDB RXDB J1-1 J1-23 J1-3 J1-25 J1-5 J1-27 J1-7 J1-29 J1-9 J1-31 J1-11 J1-33 J1-13 J1-35 J1-15 J1-37 J1-17 J1-39 J1-19 J1-40 J1-21 Figure 1a. MXL1543 EV Kit Schematic (Sheet 2 of 3) ________________________________________________________________________________________________ 9 Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A MXL1543 Evaluation Kit VCC VCC RXD/TXD RXC/SCTE 20 2 C14 0.1µF 4 JU17 D1 18 TXC/N/A LEDVCC 6 R4 1.5kΩ D2 R5 1.5kΩ D3 R6 1.5kΩ D4 R7 1.5kΩ D5 R8 1.5kΩ D6 R9 1.5kΩ D7 R10 1.5kΩ D8 16 CTS/RTS 8 14 U4 74HC240DW 12 DSR/DTR DCD/N/A N/A/TXC TXD/RXD 11 9 13 7 15 5 17 3 R11 1.5kΩ 1, 10, 19 VCC SCTE/RXC N/A/DCD 20 2 C15 0.1µF 4 D9 18 DTR/DSR 6 R12 1.5kΩ D10 R13 1.5kΩ D11 R14 1.5kΩ D12 R15 1.5kΩ D13 R16 1.5kΩ D14 R17 1.5kΩ D15 R18 1.5kΩ D16 16 RTS/CTS 8 14 U5 74HC240DW DCE/DTE M2 M1 M0 11 12 9 13 7 15 5 17 3 1, 10, 19 R19 1.5kΩ Figure 1b. MXL1543 EV Kit Schematic (Sheet 3 of 3) 10 ______________________________________________________________________________________ MXL1543 Evaluation Kit 1.0" Figure 2. MXL1543 EV Kit Component Placement Guide— Component Side Figure 3. MXL1543 EV Kit PC Board Layout—Component Side 1.0" Figure 4. MXL1543 EV Kit PC Board Layout—Inner Layer 2 (GND) ______________________________________________________________________________________ 11 Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A 1.0" Evaluates: MXL1543/MXL1544/MAX3175/MXL1344A MXL1543 Evaluation Kit 1.0" 1.0" Figure 5. MXL1543 EV Kit PC Board Layout—Inner Layer 3 (VCC) Figure 6. MXL1543 EV Kit PC Board Layout—Solder Side Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.