ETC ISO1050

ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
独立的控制器局域网 (CAN) 收发器
查询样品: ISO1050, ISO1050L
特性
1
•
•
•
•
•
•
•
•
•
2
•
•
•
5000VRMS隔离 (ISO1050DW)
2500-VRMS隔离 (ISO1050DUB和ISO1050LDW)
故障安全输出
低回路延迟:150ns (典型值)
50kV/μs 典型静态抗扰度
符合或者超过 ISO11898 规格
–27V 至 40V 的总线故障保护
主超时功能
IEC 60747-5-2 (VDE 0884,修订版本2) & IEC
61010-1 已通过检验
UL 1577 双重保护已通过检验;更多细节请见管理
信息
IEC 60601-1(医疗用)和 CSA 已通过检验
5 KVRMS针对 EN/UL/CSA 60950-1 (ISO1050DW)
根据 TUV 认可的增强型隔离
•
•
具有5V容限的3.3输入
额定工作电压下典型值为25年使用寿命到特性(参
见应用报告SLLA197和Figure 15)
应用范围
•
•
•
•
•
•
•
CAN数据总线
工业自动化
– DeviceNet 数据总线
– CANopen数据总线
– CANKingdom数据总线
医疗扫描和成像
安防系统
电信基站状态和控制
加热,通风和空调环境系统(HVAC)
楼宇自动化
说明
ISO1050 是一款电镀隔离的隔离式 CAN 转发器,此转发器符合或者优于I SO11898 标准的技术规范。 此器件有被
一个硅二极管 (SiO2) 绝缘隔栅分开的逻辑输入和输出缓冲器,此绝缘隔栅为说明第一段中的 ISO1050DW 和 2500
VRMS用于 ISO1050DUB 和 ISO1050LDW。 与隔离式电源一起使用,此器件可防止数据总线或者其它电路上的噪
音电流进入本地接地并干扰和损坏敏感电路。
作为一个 CAN 转发器,此器件为总线和信令速度高达 1 兆比特每秒 (Mbps) 的 CAN 控制器分别提供差分发射能力
和差分接收能力。 设计运行在特别恶劣的环境中,此器件特有串线,过压,-27V 至 40V 的接地损失保护和过热关
断,以及 -12V 到 12V 的共模范围。
ISO1050 额定运行环境温度范围为 –55°C 至 105°C。
DW PACKAGE
GND1
GND1
1
2
16
15
Vcc2
GND2
3
4
5
6
7
8
14
13
12
nc
CANH
CANL
nc
11
10
9
RXD
TXD
GALVANIC ISOLATION
Vcc1
GND1
RXD
nc
nc
TXD
DUB PACKAGE
FUNCTION DIAGRAM
CANH
Vcc1
RXD
1
2
TXD
GND1
3
4
8
7
6
5
Vcc2
CANH
CANL
GND2
CANL
GND2
GND2
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
DeviceNet is a trademark of others.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2009–2011, Texas Instruments Incorporated
English Data Sheet: SLLS983
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
AVAILABLE OPTIONS
PRODUCT
RATED ISOLATION
PACKAGE
MARKED AS
ISO1050DUB
2500 VRMS
DUB-8
ISO1050
ORDERING NUMBER
ISO1050DUB (rail)
ISO1050DUBR (reel)
ISO1050LDW (1)
2500 VRMS (2)
DW-16
ISO1050L
ISO1050LDW (rail)
ISO1050LDWR (reel)
ISO1050DW
5000 VRMS
DW-16
ISO1050
ISO1050DW (rail)
ISO1050DWR (reel)
(1)
(2)
Product Preview
Certifiactions Pending
ABSOLUTE MAXIMUM RATINGS (1)
(2)
VALUE / UNIT
(3)
–0.5 V to 6 V
VCC1, VCC2
Supply voltage
VI
Voltage input (TXD)
–0.5 V to 6 V
VCANH or VCANH
Voltage range at any bus terminal (CANH, CANL)
–27 V to 40 V
IO
Receiver output current
ESD
±15 mA
Human Body Model
JEDEC Standard 22, Method A114-C.01
Charged Device Model
Machine Model
Bus pins and GND2
(4)
±4 kV
All pins
±4 kV
JEDEC Standard 22, Test Method C101
All pins
±1.5 kV
ANSI/ESDS5.2-1996
All pins
±200 V
Tstg
Storage temperature
–65°C to 150°C
TJ
Junction temperature
–55°C to 150°C
(1)
(2)
(3)
(4)
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
This isolator is suitable for basic isolation within the safety limiting data. Maintenance of the safety data must be ensured by means of
protective circuitry.
All input and output logic voltage values are measured with respect to the GND1 logic side ground. Differential bus-side voltages are
measured to the respective bus-side GND2 ground terminal.
Tested while connected between Vcc2 and GND2.
RECOMMENDED OPERATING CONDITIONS
MIN
VCC1
Supply voltage, controller side
VCC2
Supply voltage, bus side
VI or VIC
Voltage at bus pins (separately or common mode)
VIH
High-level input voltage
TXD
VIL
Low-level input voltage
TXD
VID
Differential input voltage
NOM
3
4.75
Driver
5
MAX
UNIT
5.5
V
5.25
V
–12 (1)
12
V
2
5.25
V
0
0.8
V
–7
7
V
–70
IOH
High-level output current
IOL
Low-level output current
TA
Ambient Temperature
–55
105
°C
TJ
Junction temperature (see THERMAL CHARACTERISTICS)
–55
125
°C
(1)
2
Receiver
mA
–4
Driver
70
Receiver
4
mA
The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.
Copyright © 2009–2011, Texas Instruments Incorporated
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
SUPPLY CURRENT
over recommended operating conditions (unless otherwise noted)
PARAMETER
ICC1
VCC1 Supply current
ICC2
VCC2 Supply current
(1)
TEST CONDITIONS
MIN TYP (1) MAX
VI = 0 V or VCC1 , VCC1 = 3.3V
1.8
2.8
VI = 0 V or VCC1 , VCC1 = 5V
2.3
3.6
Dominant
VI = 0 V, 60-Ω Load
52
73
Recessive
VI = VCC1
8
12
UNIT
mA
mA
All typical values are at 25°C with VCC1 = VCC2 = 5V.
DEVICE SWITCHING CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
tloop1
Total loop delay, driver input to receiver output, Recessive to
Dominant
See Figure 9
112
150
210
ns
tloop2
Total loop delay, driver input to receiver output, Dominant to
Recessive
See Figure 9
112
150
210
ns
DRIVER ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
VO(D)
Bus output voltage (Dominant)
VO(R)
Bus output voltage (Recessive)
VOD(D)
TEST CONDITIONS
CANH
CANL
Differential output voltage (Dominant)
MIN
TYP
MAX
2.9
3.5
4.5
0.8
1.2
1.5
See Figure 1 and Figure 2, VI = 2 V, RL= 60Ω
2
2.3
3
See Figure 1, Figure 2 and Figure 3, VI = 0 V,
RL = 60Ω
1.5
3
See Figure 1, Figure 2, and Figure 3 VI = 0 V,
RL = 45Ω, Vcc > 4.8V
1.4
3
See Figure 1 and Figure 2, VI = 3 V, RL = 60Ω
–0.12
0.012
–0.5
0.05
See Figure 1 and Figure 2, VI = 0 V, RL = 60Ω
VOD(R)
Differential output voltage (Recessive)
VOC(D)
Common-mode output voltage (Dominant)
VOC(pp)
Peak-to-peak common-mode output voltage
IIH
High-level input current, TXD input
VI at 2 V
IIL
Low-level input current, TXD input
VI at 0.8 V
IO(off)
Power-off TXD leakage current
VCC1, VCC2 at 0 V, TXD at 5 V
VI = 3 V, No Load
2.3
3
0.3
5
–5
See Figure 11, VCANH = –12 V, CANL Open
Short-circuit steady-state output current
CO
Output capacitance
See receiver input capacitance
CMTI
Common-mode transient immunity
See Figure 13, VI = VCC or 0 V
See Figure 11, VCANL =–12 V, CANH Open
V
See Figure 11, VCANL = 12 V, CANH Open
1
–0.5
71
25
V
μA
μA
–72
0.36
–1
V
μA
10
–105
See Figure 11, VCANH = 12 V, CANL Open
IOS(ss)
V
V
2
See Figure 8
UNIT
mA
105
50
kV/μs
DRIVER SWITCHING CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
tPLH
Propagation delay time, recessive-to-dominant output
tPHL
Propagation delay time, dominant-to-recessive output
tr
Differential output signal rise time
tf
Differential output signal fall time
tdom
Dominant time-out
Copyright © 2009–2011, Texas Instruments Incorporated
TEST CONDITIONS
See Figure 4
↓ CL=100 pF, See Figure 10
MIN
TYP
MAX
31
74
110
25
44
75
20
50
300
20
50
450
700
UNIT
ns
μs
3
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
RECEIVER ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
VIT+
Positive-going bus input threshold voltage
VIT–
Negative-going bus input threshold voltage
Vhys
Hysteresis voltage (VIT+ – VIT–)
VOH
High-level output voltage with Vcc = 5V
VOH
High-level output voltage with Vcc1 = 3.3V
VOL
Low-level output voltage
CI
TEST CONDITIONS
See Table 1
MIN
500
TYP (1)
MAX
UNIT
750
900
mV
650
mV
150
mV
IOH = –4 mA, See Figure 6
VCC – 0.8
4.6
IOH = –20 μA, See Figure 6
VCC – 0.1
5
IOL = 4 mA, See Figure 6
VCC – 0.8
3.1
IOL = 20 μA, See Figure 6
VCC – 0.1
3.3
V
V
IOL = 4 mA, See Figure 6
0.2
0.4
IOL = 20 μA, See Figure 6
0
0.1
Input capacitance to ground, (CANH or CANL)
TXD at 3 V, VI = 0.4 sin (4E6πt) + 2.5V
6
CID
Differential input capacitance
TXD at 3 V, VI = 0.4 sin (4E6πt)
RID
Differential input resistance
TXD at 3 V
30
RIN
Input resistance (CANH or CANL)
TXD at 3 V
15
RI(m)
Input resistance matching
(1 – [RIN (CANH) / RIN (CANL)]) × 100%
VCANH = VCANL
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 13
(1)
V
pF
3
pF
80
kΩ
30
40
kΩ
–3%
0%
3%
25
50
kV/μs
All typical values are at 25°C with VCC1 = VCC2 = 5V.
RECEIVER SWITCHING CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
tPLH
Propagation delay time, low-to-high-level output
tPHL
Propagation delay time, high-to-low-level output
tr
Output signal rise time
tf
Output signal fall time
tfs
Failsafe output delay time from bus-side power loss
4
TEST CONDITIONS
TXD at 3 V, See Figure 6
VCC1 at 5 V, See Figure 12
MIN
TYP
MAX
66
90
130
51
80
105
3
6
3
6
6
UNIT
ns
μs
Copyright © 2009–2011, Texas Instruments Incorporated
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
PARAMETER MEASUREMENT INFORMATION
Dominant
» 3.5 V
IO(CANH)
VO (CANH)
CANH
II
0 or
Vcc1
Recessive
TXD
GND1
VOD
CANL
RL
IO(CANL)
GND2
» 2.5 V
VO(CANH) + VO(CANL)
2
» 1.5 V
VOC
VO (CANL)
VI
VO(CANH)
VO(CANL )
GND1
GND2
Figure 1. Driver Voltage, Current and Test
Definitions
Figure 2. Bus Logic State Voltage Definitions
330 W ±1%
CANH
0V
TXD
VOD
60 W ±1%
+
_
CANL
-2 V < V test < 7 V
GND2
330 W ±1%
Figure 3. Driver VOD with Common-mode Loading Test Circuit
Vcc
VI
CANH
TXD
60 W ±1% VO
VI
t PLH
VO
(SEE NOTE A)
Vcc/2
0V
CL = 100 pF
± 20%
(SEE NOTE B)
CANL
Vcc/2
t PHL
VO(D)
90%
0.9V
0.5V
10%
tr
tf
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 125 kHz, 50% duty cycle,
tr ≤ 6 ns, tf ≤ 6 ns, ZO = 50Ω.
B.
CL includes instrumentation and fixture capacitance within ±20%.
VO(R)
Figure 4. Driver Test Circuit and Voltage Waveforms
CANH
VIC
=
VI(CANH) + VI(CANL)
2
IO
RXD
VID
CANL
VI(CANH)
VO
VI(CANL)
GND2
GND1
Figure 5. Receiver Voltage and Current Definitions
Copyright © 2009–2011, Texas Instruments Incorporated
5
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
PARAMETER MEASUREMENT INFORMATION (continued)
CANH
IO
3.5 V
RXD
V
I
2.4 V
2 V
CANL
1.5 V
t pHL
t pLH
VI
CL = 15 pF
± 20 %
(SEE NOTE B)
VO
(SEE NOTE A) 1 .5 V
0.3 Vcc 1
V
O
10 %
tf
tr
GND 2
V OH
90 %
0.7 Vcc 1
V OL
GND 1
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 125 kHz, 50% duty cycle,
tr ≤ 6 ns, tf ≤ 6 ns, ZO = 50Ω.
B.
CL includes instrumentation and fixture capacitance within ±20%.
Figure 6. Receiver Test Circuit and Voltage Waveforms
Table 1. Differential Input Voltage Threshold Test
INPUT
OUTPUT
VCANH
VCANL
|VID|
–11.1 V
–12 V
900 mV
L
R
12 V
11.1 V
900 mV
L
–6 V
–12 V
6V
L
12 V
6V
6V
L
–11.5 V
–12 V
500 mV
H
12 V
11.5 V
500 mV
H
–12 V
–6 V
–6 V
H
6V
12 V
–6 V
H
Open
Open
X
H
1 nF
VOL
VOH
CANH
RXD
CANL
15 pF
1 nF
TXD
+
VI
_
GND2
GND1
The waveforms of the applied transients are in accordance
with ISO 7637 part 1, test pulses 1, 2, 3a, and 3b.
Figure 7. Transient Over-Voltage Test Circuit
6
Copyright © 2009–2011, Texas Instruments Incorporated
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
27 W ±1 %
CANH
TXD
CANL
47 nF
VI
27 W ±1 %
V OC
± 20%
GND 1
=
V (CANH) + V (CANL)
O
O
2
GND 2
V
OC(pp)
V
OC
Figure 8. Peak-to-Peak Output Voltage Test Circuit and Waveform
CANH
VI
TXD
60 W ±1%
Vcc
TXD Input
CANL
50%
0V
tloop
2
RXD
RXD Output
+
VO
_
t loop1
50%
VOH
50%
VOL
15 pF ± 20%
GND1
Figure 9. tLOOP Test Circuit and Voltage Waveforms
Vcc
VI
CANH
TXD
RL= 60 W ± 1 %
CL
0V
VOD
V OD (D)
(see Note B )
(see Note A )
CANH
VOD
VI
900 mV
500 mV
t dom
GND 1
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 125 kHz, 50% duty cycle, tr ≤ 6
ns, tf ≤ 6 ns, ZO = 50Ω.
B.
CL includes instrumentation and fixture capacitance within ±20%.
0V
Figure 10. Dominant Timeout Test Circuit and Voltage Waveforms
Copyright © 2009–2011, Texas Instruments Incorporated
7
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
IOS (SS)
I OS (P)
I OS
15 s
CANH
TXD
0V
0 V or VCC 1
12 V
CANL
VI
-12 V or 12 V
VI
0V
GND2
or
10 ms
0V
VI
-12 V
Figure 11. Driver Short-Circuit Current Test Circuit and Waveforms
VI
VCC 2
CANH
0V
TXD
VCC2
CL
60 W ±1%
VI
VO
RXD
0V
t fs
CANL
+
VO
2.7 V
VOH
50%
VOL
15pF ± 20%
GND 1
NOTE: CL = 100pF
includes instrumentation
and fixture capacitance
within ± 20%.
Figure 12. Failsafe Delay Time Test Circuit and Voltage Waveforms
8
Copyright © 2009–2011, Texas Instruments Incorporated
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
C = 0.1 mF
± 1%
2.0 V
VCC 1
VCC2
CANH
C = 0.1 mF ±1%
GND2
GND1
TXD
60 W
S1
VOH or VOL
CANL
0.8 V
RXD
VOH or VOL
1 kW
GND 1
GND 2
CL = 15 pF
(includes probe and
jig capacitance)
V TEST
Figure 13. Common-Mode Transient Immunity Test Circuit
CANH
ISO1050
47nF
30 W
Spectrum Analyzer
6.2 kW
10 nF
30 W
TXD
500kbps
CANL
6.2 kW
Figure 14. Electromagnetic Emissions Measurement Setup
DEVICE INFORMATION
FUNCTION TABLE (1)
DRIVER
INPUTS
(1)
(2)
OUTPUTS
RECEIVER
BUS STATE
DIFFERENTIAL INPUTS
VID = CANH–CANL
OUTPUT
RXD
BUS STATE
L
DOMINANT
VID ≥ 0.9 V
L
DOMINANT
TXD
CANH
CANL
L (2)
H
H
Z
Z
RECESSIVE
0.5 V < VID < 0.9 V
?
?
Open
Z
Z
RECESSIVE
VID ≤ 0.5 V
H
RECESSIVE
X
Z
Z
RECESSIVE
Open
H
RECESSIVE
H = high level; L = low level; X = irrelevant; ? = indeterminate; Z = high impedance
Logic low pulses to prevent dominant time-out.
Copyright © 2009–2011, Texas Instruments Incorporated
9
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
ISOLATOR CHARACTERISTICS
www.ti.com.cn
(1) (2)
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
L(I01)
Minimum air gap (Clearance)
Shortest terminal to terminal distance through air
L(I02)
Minimum external tracking
(Creepage)
Shortest terminal to terminal distance across the
package surface
L(I01)
Minimum air gap (Clearance)
Shortest terminal to terminal distance through air
L(I02)
RIO
Minimum external tracking
(Creepage)
Shortest terminal to terminal distance across the
package surface
Minimum Internal Gap (Internal
Clearance)
Distance through the insulation
Isolation resistance
DUB-8
DW-16
TYP MAX
UNIT
6.1
mm
6.8
mm
8.34
mm
8.10
mm
0.014
mm
Input to output, VIO = 500 V, all pins on each side of the
barrier tied together creating a two-terminal device,
Tamb < 100°C
>1012
Input to output VIO = 500 V, 100°C ≤Tamb ≤Tamb max
>1011
Ω
Ω
CIO
Barrier capacitance
VI = 0.4 sin (4E6πt)
1.9
pF
CI
Input capacitance to ground
VI = 0.4 sin (4E6πt)
1.3
pF
(1)
(2)
Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on
the printed circuit board do not reduce this distance.
Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation
Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
INSULATION CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ISO1050DUB and ISO1050LDW
VIORM
Maximum working insulation
voltage per IEC
VPR
Input to output test voltage per IEC
VIOTM
Transient overvoltage per IEC
1200
ISO1050DW
VPR = 1.875 x VIORM, t = 1
sec (100% production)
Partial discharge < 5 pC
t = 60 sec (qualification)
t = 1 sec (100% production)
ISO1050DUB and ISO1050LDW
Isolation voltage per UL
ISO1050DW
RS
560
ISO1050DW
ISO1050DUB and ISO1050LDW
VISO
Isolation voltage per UL
UNIT
Vpeak
(1)
1050
Vpeak
2250
4000
t = 60 sec (qualification)
2500
t = 1 sec (100% production)
3000
t = 60 sec (qualification)
4243
t = 1 sec (100% production)
5092
VIO = 500 V at TS
> 109
Pollution Degree
(1)
SPECIFICATION
Vpeak
Vrms
Vrms
Ω
2
For applications that require DC working voltages between GND1 and GND2, please contact Texas Instruments for further details.
IEC 60664-1 RATINGS
PARAMETER
Basic isolation group
Installation classification
10
TEST CONDITIONS
Material group
SPECIFICATION
II
Rated mains voltage ≤ 150 Vrms
I–IV
Rated mains voltage ≤ 300 Vrms
I–III
Rated mains voltage ≤ 400 Vrms
I–II
Rated mains voltage ≤ 600 Vrms (ISO1050DW only)
I-II
Rated mains voltage ≤ 848 Vrms (ISO1050DW only)
I
Copyright © 2009–2011, Texas Instruments Incorporated
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
IEC SAFETY LIMITING VALUES
safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of
the IO can allow low resistance to ground or the supply and, without current limiting dissipate sufficient power to overheat the
die and damage the isolation barrier potentially leading to secondary system failures.
PARAMETER
TEST CONDITIONS
DUB-8
IS
Safety input, output, or supply current
DW-16
TS
MIN
TYP
MAX UNIT
θJA = 73.3 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C
310
θJA = 73.3 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C
474
θJA = 76 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C
299
θJA = 76 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C
457
Maximum case temperature
mA
mA
°C
150
The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum
ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the
application hardware determines the junction temperature. The assured junction-to-air thermal resistance in the
Thermal Characteristics table is that of a device installed on a High-K Test Board for Leaded Surface Mount
Packages. The power is the recommended maximum input voltage times the current. The junction temperature is
then the ambient temperature plus the power times the junction-to-air thermal resistance.
REGULATORY INFORMATION
VDE
TUV
CSA
UL
Certified according to DIN EN 60747-5-2
Certified according to EN/UL/CSA
60950-1
Approved under CSA Component
Acceptance Notice #5A
Recognized under 1577
(1)
Component Recognition
Program
Basic Insulation
Transient Overvoltage, 4000 VPK
Surge Voltage, 4000 VPK
Maximum Working Voltage, 1200 VPK
(ISO1050DW) and
560 VPK (ISO1050DUB)
ISO1050LDW certification is pending
ISO1050DW:
5000 VRMS Reinforced Insulation,
400 VRMS maximum working voltage
5000 VRMS Basic Insulation,
600 VRMS maximum working voltage
ISO1050DUB and ISO1050LDW:
2500 VRMS Reinforced Insulation,
400 VRMS maximum working voltage
2500 VRMS Basic Insulation,
600 VRMS maximum working voltage
5000 VRMS Reinforced Insulation
2 Means of Patient Protection at 125
VRMS per IEC 60601-1 (3rd Ed.)
Double Protection
ISO1050DUB: 2500 VRMS
ISO1050DW: 3500 VRMS,
4243 VRMS Single Protection
Certification pending
ISO1050LDW Certification
pending
File Number: 40016131
Certificate Number: U8V 11 09 77311
008
File Number: 220991
File Number: E181974
(1)
Production tested ≥ 3000 VRMS (ISO1050DUB and ISO1050LDW) and 5092 VRMS (ISO1050DW) for 1 second in accordance with UL
1577.
THERMAL INFORMATION (DUB-8 PACKAGE)
over recommended operating conditions (unless otherwise noted)
PARAMETER
(1)
MIN
TYP
MAX
UNIT
120
°C/W
High-K Thermal Resistance
73.3
°C/W
Low-K Thermal Resistance
10.2
°C/W
Junction-to-case thermal resistance Low-K Thermal Resistance
14.5
°C/W
θJA
Junction-to-air
θJB
Junction-to-board thermal
resistance
θJC
PD
Device power dissipation
Tj shutdown
Thermal shutdown temperature (2)
(1)
(2)
TEST CONDITIONS
Low-K Thermal Resistance
VCC1= 5.5V, VCC2= 5.25V, TA=105°C, RL= 60Ω,
TXD input is a 500kHz 50% duty-cycle square
wave
200
190
mW
°C
Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.
Extended operation in thermal shutdown may affect device reliability.
Copyright © 2009–2011, Texas Instruments Incorporated
11
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
LIFE EXPECTANCY vs WORKING VOLTAGE (ISO1050DW and ISO1050LDW)
Life Expectancy – Years
100
VIORM at 560 V
28 Years
10
0
120
250
500
750
880
1000
VIORM – Working Voltage – V
G001
Figure 15. Life Expectancy vs Working Voltage
12
Copyright © 2009–2011, Texas Instruments Incorporated
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
EQUIVALENT I/O SCHEMATICS
TXD Input
VCC1
RXD Output
VCC1
VCC1
VCC1
1 MW
8W
500 W
IN
OUT
13 W
CANL Input
CANH Input
Vcc2
Vcc2
10 kW
10 kW
20 kW
20 kW
Input
40 V
Input
10 kW
10 kW
40 V
CANH and CANL Outputs
Vcc2
CANH
CANL
40 V
Copyright © 2009–2011, Texas Instruments Incorporated
40 V
13
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
TYPICAL CHARACTERISTICS
RECESSIVE-TO-DOMINANT LOOP TIME
vs
FREE-AIR TEMPERATURE (across Vcc)
DOMINANT-TO-RECESSIVE LOOP TIME
vs
FREE-AIR TEMPERATURE (across Vcc)
163
200
159
180
VCC1 = 3 V,
VCC2 = 4.75 V
157
Loop Time - ns
Loop Time - ns
161
VCC1 = 3 V,
VCC2 = 4.75 V
190
VCC1 = 5 V,
VCC2 = 5 V
170
160
155
VCC1 = 5.5 V,
VCC2 = 5.25 V
153
151
149
150
140
-60
VCC1 = 5.5 V,
VCC2 = 5.25 V
-40
147
VCC1 = 5 V,
VCC2 = 5 V
145
-60
-20
0
20 40 60
80 100 120
TA - Free-Air Temperature - °C
-40
-20
0
20 40 60
80 100 120
TA - Free-Air Temperature - °C
Figure 16.
Figure 17.
SUPPLY CURRENT (RMS)
vs
SIGNALING RATE (kbps)
DRIVER OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
100
3.5
VO = CANH
3
VO - Output Voltage - V
ICC - Supply Current - mA
ICC2 = 5 V
10
ICC1 = 5 V
1
250
450
550
650
750
Signaling Rate - kbps
Figure 18.
14
850
2
1.5
ICC1 = 3.3 V
350
2.5
950
1
-60
VO = CANL
-40
-20
0
20 40 60
80 100 120
TA - Free-Air Temperature - °C
Figure 19.
Copyright © 2009–2011, Texas Instruments Incorporated
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
TYPICAL CHARACTERISTICS (continued)
EMISSIONS SPECTRUM TO 10 MHz
EMISSIONS SPECTRUM TO 50 MHz
Figure 20.
Figure 21.
Copyright © 2009–2011, Texas Instruments Incorporated
15
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
APPLICATION INFORMATION
DOMINANT TIME-OUT
A dominant time-out circuit in the ISO1050 prevents the driver from blocking network communications if a local
controller fault occurs. The time-out circuit is triggered by a falling edge on TXD. If no rising edge occurs on TXD
before the time-out of the circuits expires, the driver is disabled to prevent the local node from continuously
transmitting a Dominant bit. If a rising edge occurs on TXD, commanding a Recessive bit, the timer will be reset
and the driver will be re-enabled. The time-out value is set so that normal CAN communication will not cause the
Dominant time-out circuit to expire.
FAILSAFE
If the bus-side power supply Vcc2 is lower than about 2.7V, the power shutdown circuits in the ISO1050 will
disable the transceiver to prevent spurious transitions due to an unstable supply. If Vcc1 is still active when this
occurs, the receiver output will go to a failsafe HIGH value in about 6 microseconds.
THERMAL SHUTDOWN
The ISO1050 has an internal thermal shutdown circuit that turns off the driver outputs when the internal
temperature becomes too high for normal operation. This shutdown circuit prevents catastrophic failure due to
short-circuit faults on the bus lines. If the device cools sufficiently after thermal shutdown, it will automatically
re-enable, and may again rise in temperature if the bus fault is still present. Prolonged operation with thermal
shutdown conditions may affect device reliability.
BUS LOADING
In the CAN standard ISO 11898-2 the driver differential output is specified with a 60Ω load (must be greater than
1.5V) and with a fully-loaded bus (must be greater than 1.2V). The ISO1050 is specified to meet the 1.5V
requirement with a 60Ω load, and 1.4V with a 45Ω load. The differential input resistance of the ISO1050 is a
minimum of 30KΩ. If the 167 transceivers are in parallel on a bus, this is equivalent to a 180Ω differential load.
That transceiver load of 180Ω in parallel with the 60Ω (two 120Ω termination resistors) gives a total 45Ω.
Therefore, the ISO1050 supports over 167 transceivers on a single bus segment, with margin to the 1.2V CAN
requirement.
16
Copyright © 2009–2011, Texas Instruments Incorporated
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
www.ti.com.cn
REVISION HISTORY
Changes from Original (June 2009) to Revision A
Page
•
Added IEC60747-5-2 和 IEC61010-1 已认可的信息 ............................................................................................................. 1
•
Added 额定工作电压下典型值为25年使用寿命到特性 .......................................................................................................... 1
•
Added LIFE EXPECTANCY vs WORKING VOLTAGE section .......................................................................................... 12
Changes from Revision A (Sept 2009) to Revision B
Page
•
Changed DW 封装从预览到生产数据 ................................................................................................................................... 1
•
Added Insulation Characteristics and IEC 60664-1 Ratings tables .................................................................................... 10
•
Added IEC file number ........................................................................................................................................................ 11
•
Added DW-16 thermal information table ............................................................................................................................. 12
Changes from Revision B (June 2009) to Revision C
Page
•
Changed IEC 60747-5-2 特性着重号从:对 DW 封装的检验未决到:VDE 通过检验可采用 DUB 和 DW 封装 .................. 1
•
Changed the Minimum Interal Gap value from 0.008 to 0.014 in the Isolator Characteristics table .................................. 10
•
Changed VIORM Specification From: 1300 To: 1200 per VDE certification ......................................................................... 10
•
Changed VPR Specification From 2438 To: 2250 ............................................................................................................... 10
•
Added the Bus Loading paragraph to the Application Information section ......................................................................... 16
Changes from Revision C (July 2010) to Revision D
Page
•
Changed the SUPPLY CURRENT table for ICC1 1st row From: Typ = 1 To: 1.8 and MAX = 2 To: 2.8 ............................... 3
•
Changed the SUPPLY CURRENT table for ICC1 2nd row From: Typ = 2 To: 2.8 and MAX = 3 To: 3.6 .............................. 3
•
Changed the REGULATORY INFORMATION table .......................................................................................................... 11
Copyright © 2009–2011, Texas Instruments Incorporated
17
ISO1050
ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
Changes from Revision D (June 2011) to Revision E
www.ti.com.cn
Page
•
Added 器件 ISO1050L .......................................................................................................................................................... 1
•
Changed (DW封装)在 (ISO1050DW) 的特性列表中 ........................................................................................................ 1
•
Changed (DUB封装) 在 (ISO1050DUB和ISO1050LDW) 的特性列表中 ..................................................................... 1
•
从 CSA 认可中删除了 IEC 60950-1 特性着重号 ................................................................................................................... 1
•
从:IEC 6060-1(医疗用)和 CSA 批准未决到:IEC 6060-1(医疗用) 和 CSA 已批准 ................................................... 1
•
添加的特性 - 增强 5KVRMS .................................................................................................................................................. 1
•
Changed ISO105DW 采用的 DW 封装和 ISO1050DUB 和 ISO1050LDW 采用的 DUB 封装提供高达 5000VVRMS的电
镀绝缘。 ................................................................................................................................................................................ 1
•
Added the AVAILABLE OPTIONS table submitted to TIS ................................................................................................... 2
•
Added Note 1 to the INSULATION CHARACTERISTICS table ......................................................................................... 10
•
Changed VIORM From: 8-DUB Package to ISO1050DUB and ISO1050LDW ..................................................................... 10
•
Changed VIORM From: 16-DW to ISO1050DW .................................................................................................................... 10
•
Changed the VISO Isolation voltage per UL section of the INSULATION CHARACTERISTICS table. .............................. 10
•
Changed the IEC 60664-1 Ratings Table ........................................................................................................................... 10
•
Changed the REGULATORY INFORMATION table .......................................................................................................... 11
•
Changed From: File Number: 220991 (Approval Pending) To: File Number: 220991 ....................................................... 11
•
Changed in note (1) 3000 to 2500 and 6000 to 5000 ........................................................................................................ 11
•
Changed in LIFE EXPECTANCY vs WORKING VOLTAGE (8-DUB PACKAGE TO: LIFE.....(ISO1050DW and
ISO1050LDW) ..................................................................................................................................................................... 12
18
Copyright © 2009–2011, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com
10-Dec-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package Qty
Drawing
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Samples
(3)
(Requires Login)
ISO1050DUB
ACTIVE
SOP
DUB
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-4-260C-72 HR
ISO1050DUBR
ACTIVE
SOP
DUB
8
350
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-4-260C-72 HR
ISO1050DW
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
ISO1050DWR
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
18-Oct-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
ISO1050DUBR
SOP
DUB
8
350
330.0
24.4
10.9
10.01
5.85
16.0
24.0
Q1
ISO1050DWR
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
18-Oct-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
ISO1050DUBR
SOP
DUB
ISO1050DWR
SOIC
DW
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
8
350
358.0
335.0
35.0
16
2000
367.0
367.0
38.0
Pack Materials-Page 2
重要声明
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售
都遵循在订单确认时所提供的TI 销售条款与条件。
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,
客户应提供充分的设计与操作安全措施。
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而
对 TI 及其代理造成的任何损失。
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。
只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有
法律和法规要求。
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要
求,TI不承担任何责任。
产品
应用
数字音频
www.ti.com.cn/audio
通信与电信
www.ti.com.cn/telecom
放大器和线性器件
www.ti.com.cn/amplifiers
计算机及周边
www.ti.com.cn/computer
数据转换器
www.ti.com.cn/dataconverters
消费电子
www.ti.com/consumer-apps
DLP® 产品
www.dlp.com
能源
www.ti.com/energy
DSP - 数字信号处理器
www.ti.com.cn/dsp
工业应用
www.ti.com.cn/industrial
时钟和计时器
www.ti.com.cn/clockandtimers
医疗电子
www.ti.com.cn/medical
接口
www.ti.com.cn/interface
安防应用
www.ti.com.cn/security
逻辑
www.ti.com.cn/logic
汽车电子
www.ti.com.cn/automotive
电源管理
www.ti.com.cn/power
视频和影像
www.ti.com.cn/video
微控制器 (MCU)
www.ti.com.cn/microcontrollers
RFID 系统
www.ti.com.cn/rfidsys
OMAP应用处理器
www.ti.com/omap
无线连通性
www.ti.com.cn/wirelessconnectivity
德州仪器在线技术支持社区
www.deyisupport.com
IMPORTANT NOTICE
邮寄地址: 上海市浦东新区世纪大道 1568 号,中建大厦 32 楼 邮政编码: 200122
Copyright © 2012 德州仪器 半导体技术(上海)有限公司