ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn 独立的控制器局域网 (CAN) 收发器 查询样品: ISO1050, ISO1050L 特性 1 • • • • • • • • • 2 • • • 5000VRMS隔离 (ISO1050DW) 2500-VRMS隔离 (ISO1050DUB和ISO1050LDW) 故障安全输出 低回路延迟:150ns (典型值) 50kV/μs 典型静态抗扰度 符合或者超过 ISO11898 规格 –27V 至 40V 的总线故障保护 主超时功能 IEC 60747-5-2 (VDE 0884,修订版本2) & IEC 61010-1 已通过检验 UL 1577 双重保护已通过检验;更多细节请见管理 信息 IEC 60601-1(医疗用)和 CSA 已通过检验 5 KVRMS针对 EN/UL/CSA 60950-1 (ISO1050DW) 根据 TUV 认可的增强型隔离 • • 具有5V容限的3.3输入 额定工作电压下典型值为25年使用寿命到特性(参 见应用报告SLLA197和Figure 15) 应用范围 • • • • • • • CAN数据总线 工业自动化 – DeviceNet 数据总线 – CANopen数据总线 – CANKingdom数据总线 医疗扫描和成像 安防系统 电信基站状态和控制 加热,通风和空调环境系统(HVAC) 楼宇自动化 说明 ISO1050 是一款电镀隔离的隔离式 CAN 转发器,此转发器符合或者优于I SO11898 标准的技术规范。 此器件有被 一个硅二极管 (SiO2) 绝缘隔栅分开的逻辑输入和输出缓冲器,此绝缘隔栅为说明第一段中的 ISO1050DW 和 2500 VRMS用于 ISO1050DUB 和 ISO1050LDW。 与隔离式电源一起使用,此器件可防止数据总线或者其它电路上的噪 音电流进入本地接地并干扰和损坏敏感电路。 作为一个 CAN 转发器,此器件为总线和信令速度高达 1 兆比特每秒 (Mbps) 的 CAN 控制器分别提供差分发射能力 和差分接收能力。 设计运行在特别恶劣的环境中,此器件特有串线,过压,-27V 至 40V 的接地损失保护和过热关 断,以及 -12V 到 12V 的共模范围。 ISO1050 额定运行环境温度范围为 –55°C 至 105°C。 DW PACKAGE GND1 GND1 1 2 16 15 Vcc2 GND2 3 4 5 6 7 8 14 13 12 nc CANH CANL nc 11 10 9 RXD TXD GALVANIC ISOLATION Vcc1 GND1 RXD nc nc TXD DUB PACKAGE FUNCTION DIAGRAM CANH Vcc1 RXD 1 2 TXD GND1 3 4 8 7 6 5 Vcc2 CANH CANL GND2 CANL GND2 GND2 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DeviceNet is a trademark of others. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009–2011, Texas Instruments Incorporated English Data Sheet: SLLS983 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. AVAILABLE OPTIONS PRODUCT RATED ISOLATION PACKAGE MARKED AS ISO1050DUB 2500 VRMS DUB-8 ISO1050 ORDERING NUMBER ISO1050DUB (rail) ISO1050DUBR (reel) ISO1050LDW (1) 2500 VRMS (2) DW-16 ISO1050L ISO1050LDW (rail) ISO1050LDWR (reel) ISO1050DW 5000 VRMS DW-16 ISO1050 ISO1050DW (rail) ISO1050DWR (reel) (1) (2) Product Preview Certifiactions Pending ABSOLUTE MAXIMUM RATINGS (1) (2) VALUE / UNIT (3) –0.5 V to 6 V VCC1, VCC2 Supply voltage VI Voltage input (TXD) –0.5 V to 6 V VCANH or VCANH Voltage range at any bus terminal (CANH, CANL) –27 V to 40 V IO Receiver output current ESD ±15 mA Human Body Model JEDEC Standard 22, Method A114-C.01 Charged Device Model Machine Model Bus pins and GND2 (4) ±4 kV All pins ±4 kV JEDEC Standard 22, Test Method C101 All pins ±1.5 kV ANSI/ESDS5.2-1996 All pins ±200 V Tstg Storage temperature –65°C to 150°C TJ Junction temperature –55°C to 150°C (1) (2) (3) (4) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. This isolator is suitable for basic isolation within the safety limiting data. Maintenance of the safety data must be ensured by means of protective circuitry. All input and output logic voltage values are measured with respect to the GND1 logic side ground. Differential bus-side voltages are measured to the respective bus-side GND2 ground terminal. Tested while connected between Vcc2 and GND2. RECOMMENDED OPERATING CONDITIONS MIN VCC1 Supply voltage, controller side VCC2 Supply voltage, bus side VI or VIC Voltage at bus pins (separately or common mode) VIH High-level input voltage TXD VIL Low-level input voltage TXD VID Differential input voltage NOM 3 4.75 Driver 5 MAX UNIT 5.5 V 5.25 V –12 (1) 12 V 2 5.25 V 0 0.8 V –7 7 V –70 IOH High-level output current IOL Low-level output current TA Ambient Temperature –55 105 °C TJ Junction temperature (see THERMAL CHARACTERISTICS) –55 125 °C (1) 2 Receiver mA –4 Driver 70 Receiver 4 mA The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet. Copyright © 2009–2011, Texas Instruments Incorporated ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn SUPPLY CURRENT over recommended operating conditions (unless otherwise noted) PARAMETER ICC1 VCC1 Supply current ICC2 VCC2 Supply current (1) TEST CONDITIONS MIN TYP (1) MAX VI = 0 V or VCC1 , VCC1 = 3.3V 1.8 2.8 VI = 0 V or VCC1 , VCC1 = 5V 2.3 3.6 Dominant VI = 0 V, 60-Ω Load 52 73 Recessive VI = VCC1 8 12 UNIT mA mA All typical values are at 25°C with VCC1 = VCC2 = 5V. DEVICE SWITCHING CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tloop1 Total loop delay, driver input to receiver output, Recessive to Dominant See Figure 9 112 150 210 ns tloop2 Total loop delay, driver input to receiver output, Dominant to Recessive See Figure 9 112 150 210 ns DRIVER ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER VO(D) Bus output voltage (Dominant) VO(R) Bus output voltage (Recessive) VOD(D) TEST CONDITIONS CANH CANL Differential output voltage (Dominant) MIN TYP MAX 2.9 3.5 4.5 0.8 1.2 1.5 See Figure 1 and Figure 2, VI = 2 V, RL= 60Ω 2 2.3 3 See Figure 1, Figure 2 and Figure 3, VI = 0 V, RL = 60Ω 1.5 3 See Figure 1, Figure 2, and Figure 3 VI = 0 V, RL = 45Ω, Vcc > 4.8V 1.4 3 See Figure 1 and Figure 2, VI = 3 V, RL = 60Ω –0.12 0.012 –0.5 0.05 See Figure 1 and Figure 2, VI = 0 V, RL = 60Ω VOD(R) Differential output voltage (Recessive) VOC(D) Common-mode output voltage (Dominant) VOC(pp) Peak-to-peak common-mode output voltage IIH High-level input current, TXD input VI at 2 V IIL Low-level input current, TXD input VI at 0.8 V IO(off) Power-off TXD leakage current VCC1, VCC2 at 0 V, TXD at 5 V VI = 3 V, No Load 2.3 3 0.3 5 –5 See Figure 11, VCANH = –12 V, CANL Open Short-circuit steady-state output current CO Output capacitance See receiver input capacitance CMTI Common-mode transient immunity See Figure 13, VI = VCC or 0 V See Figure 11, VCANL =–12 V, CANH Open V See Figure 11, VCANL = 12 V, CANH Open 1 –0.5 71 25 V μA μA –72 0.36 –1 V μA 10 –105 See Figure 11, VCANH = 12 V, CANL Open IOS(ss) V V 2 See Figure 8 UNIT mA 105 50 kV/μs DRIVER SWITCHING CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER tPLH Propagation delay time, recessive-to-dominant output tPHL Propagation delay time, dominant-to-recessive output tr Differential output signal rise time tf Differential output signal fall time tdom Dominant time-out Copyright © 2009–2011, Texas Instruments Incorporated TEST CONDITIONS See Figure 4 ↓ CL=100 pF, See Figure 10 MIN TYP MAX 31 74 110 25 44 75 20 50 300 20 50 450 700 UNIT ns μs 3 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn RECEIVER ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER VIT+ Positive-going bus input threshold voltage VIT– Negative-going bus input threshold voltage Vhys Hysteresis voltage (VIT+ – VIT–) VOH High-level output voltage with Vcc = 5V VOH High-level output voltage with Vcc1 = 3.3V VOL Low-level output voltage CI TEST CONDITIONS See Table 1 MIN 500 TYP (1) MAX UNIT 750 900 mV 650 mV 150 mV IOH = –4 mA, See Figure 6 VCC – 0.8 4.6 IOH = –20 μA, See Figure 6 VCC – 0.1 5 IOL = 4 mA, See Figure 6 VCC – 0.8 3.1 IOL = 20 μA, See Figure 6 VCC – 0.1 3.3 V V IOL = 4 mA, See Figure 6 0.2 0.4 IOL = 20 μA, See Figure 6 0 0.1 Input capacitance to ground, (CANH or CANL) TXD at 3 V, VI = 0.4 sin (4E6πt) + 2.5V 6 CID Differential input capacitance TXD at 3 V, VI = 0.4 sin (4E6πt) RID Differential input resistance TXD at 3 V 30 RIN Input resistance (CANH or CANL) TXD at 3 V 15 RI(m) Input resistance matching (1 – [RIN (CANH) / RIN (CANL)]) × 100% VCANH = VCANL CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 13 (1) V pF 3 pF 80 kΩ 30 40 kΩ –3% 0% 3% 25 50 kV/μs All typical values are at 25°C with VCC1 = VCC2 = 5V. RECEIVER SWITCHING CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER tPLH Propagation delay time, low-to-high-level output tPHL Propagation delay time, high-to-low-level output tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from bus-side power loss 4 TEST CONDITIONS TXD at 3 V, See Figure 6 VCC1 at 5 V, See Figure 12 MIN TYP MAX 66 90 130 51 80 105 3 6 3 6 6 UNIT ns μs Copyright © 2009–2011, Texas Instruments Incorporated ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn PARAMETER MEASUREMENT INFORMATION Dominant » 3.5 V IO(CANH) VO (CANH) CANH II 0 or Vcc1 Recessive TXD GND1 VOD CANL RL IO(CANL) GND2 » 2.5 V VO(CANH) + VO(CANL) 2 » 1.5 V VOC VO (CANL) VI VO(CANH) VO(CANL ) GND1 GND2 Figure 1. Driver Voltage, Current and Test Definitions Figure 2. Bus Logic State Voltage Definitions 330 W ±1% CANH 0V TXD VOD 60 W ±1% + _ CANL -2 V < V test < 7 V GND2 330 W ±1% Figure 3. Driver VOD with Common-mode Loading Test Circuit Vcc VI CANH TXD 60 W ±1% VO VI t PLH VO (SEE NOTE A) Vcc/2 0V CL = 100 pF ± 20% (SEE NOTE B) CANL Vcc/2 t PHL VO(D) 90% 0.9V 0.5V 10% tr tf A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 125 kHz, 50% duty cycle, tr ≤ 6 ns, tf ≤ 6 ns, ZO = 50Ω. B. CL includes instrumentation and fixture capacitance within ±20%. VO(R) Figure 4. Driver Test Circuit and Voltage Waveforms CANH VIC = VI(CANH) + VI(CANL) 2 IO RXD VID CANL VI(CANH) VO VI(CANL) GND2 GND1 Figure 5. Receiver Voltage and Current Definitions Copyright © 2009–2011, Texas Instruments Incorporated 5 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn PARAMETER MEASUREMENT INFORMATION (continued) CANH IO 3.5 V RXD V I 2.4 V 2 V CANL 1.5 V t pHL t pLH VI CL = 15 pF ± 20 % (SEE NOTE B) VO (SEE NOTE A) 1 .5 V 0.3 Vcc 1 V O 10 % tf tr GND 2 V OH 90 % 0.7 Vcc 1 V OL GND 1 A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 125 kHz, 50% duty cycle, tr ≤ 6 ns, tf ≤ 6 ns, ZO = 50Ω. B. CL includes instrumentation and fixture capacitance within ±20%. Figure 6. Receiver Test Circuit and Voltage Waveforms Table 1. Differential Input Voltage Threshold Test INPUT OUTPUT VCANH VCANL |VID| –11.1 V –12 V 900 mV L R 12 V 11.1 V 900 mV L –6 V –12 V 6V L 12 V 6V 6V L –11.5 V –12 V 500 mV H 12 V 11.5 V 500 mV H –12 V –6 V –6 V H 6V 12 V –6 V H Open Open X H 1 nF VOL VOH CANH RXD CANL 15 pF 1 nF TXD + VI _ GND2 GND1 The waveforms of the applied transients are in accordance with ISO 7637 part 1, test pulses 1, 2, 3a, and 3b. Figure 7. Transient Over-Voltage Test Circuit 6 Copyright © 2009–2011, Texas Instruments Incorporated ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn 27 W ±1 % CANH TXD CANL 47 nF VI 27 W ±1 % V OC ± 20% GND 1 = V (CANH) + V (CANL) O O 2 GND 2 V OC(pp) V OC Figure 8. Peak-to-Peak Output Voltage Test Circuit and Waveform CANH VI TXD 60 W ±1% Vcc TXD Input CANL 50% 0V tloop 2 RXD RXD Output + VO _ t loop1 50% VOH 50% VOL 15 pF ± 20% GND1 Figure 9. tLOOP Test Circuit and Voltage Waveforms Vcc VI CANH TXD RL= 60 W ± 1 % CL 0V VOD V OD (D) (see Note B ) (see Note A ) CANH VOD VI 900 mV 500 mV t dom GND 1 A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 125 kHz, 50% duty cycle, tr ≤ 6 ns, tf ≤ 6 ns, ZO = 50Ω. B. CL includes instrumentation and fixture capacitance within ±20%. 0V Figure 10. Dominant Timeout Test Circuit and Voltage Waveforms Copyright © 2009–2011, Texas Instruments Incorporated 7 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn IOS (SS) I OS (P) I OS 15 s CANH TXD 0V 0 V or VCC 1 12 V CANL VI -12 V or 12 V VI 0V GND2 or 10 ms 0V VI -12 V Figure 11. Driver Short-Circuit Current Test Circuit and Waveforms VI VCC 2 CANH 0V TXD VCC2 CL 60 W ±1% VI VO RXD 0V t fs CANL + VO 2.7 V VOH 50% VOL 15pF ± 20% GND 1 NOTE: CL = 100pF includes instrumentation and fixture capacitance within ± 20%. Figure 12. Failsafe Delay Time Test Circuit and Voltage Waveforms 8 Copyright © 2009–2011, Texas Instruments Incorporated ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn C = 0.1 mF ± 1% 2.0 V VCC 1 VCC2 CANH C = 0.1 mF ±1% GND2 GND1 TXD 60 W S1 VOH or VOL CANL 0.8 V RXD VOH or VOL 1 kW GND 1 GND 2 CL = 15 pF (includes probe and jig capacitance) V TEST Figure 13. Common-Mode Transient Immunity Test Circuit CANH ISO1050 47nF 30 W Spectrum Analyzer 6.2 kW 10 nF 30 W TXD 500kbps CANL 6.2 kW Figure 14. Electromagnetic Emissions Measurement Setup DEVICE INFORMATION FUNCTION TABLE (1) DRIVER INPUTS (1) (2) OUTPUTS RECEIVER BUS STATE DIFFERENTIAL INPUTS VID = CANH–CANL OUTPUT RXD BUS STATE L DOMINANT VID ≥ 0.9 V L DOMINANT TXD CANH CANL L (2) H H Z Z RECESSIVE 0.5 V < VID < 0.9 V ? ? Open Z Z RECESSIVE VID ≤ 0.5 V H RECESSIVE X Z Z RECESSIVE Open H RECESSIVE H = high level; L = low level; X = irrelevant; ? = indeterminate; Z = high impedance Logic low pulses to prevent dominant time-out. Copyright © 2009–2011, Texas Instruments Incorporated 9 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 ISOLATOR CHARACTERISTICS www.ti.com.cn (1) (2) over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN L(I01) Minimum air gap (Clearance) Shortest terminal to terminal distance through air L(I02) Minimum external tracking (Creepage) Shortest terminal to terminal distance across the package surface L(I01) Minimum air gap (Clearance) Shortest terminal to terminal distance through air L(I02) RIO Minimum external tracking (Creepage) Shortest terminal to terminal distance across the package surface Minimum Internal Gap (Internal Clearance) Distance through the insulation Isolation resistance DUB-8 DW-16 TYP MAX UNIT 6.1 mm 6.8 mm 8.34 mm 8.10 mm 0.014 mm Input to output, VIO = 500 V, all pins on each side of the barrier tied together creating a two-terminal device, Tamb < 100°C >1012 Input to output VIO = 500 V, 100°C ≤Tamb ≤Tamb max >1011 Ω Ω CIO Barrier capacitance VI = 0.4 sin (4E6πt) 1.9 pF CI Input capacitance to ground VI = 0.4 sin (4E6πt) 1.3 pF (1) (2) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance. Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. INSULATION CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS ISO1050DUB and ISO1050LDW VIORM Maximum working insulation voltage per IEC VPR Input to output test voltage per IEC VIOTM Transient overvoltage per IEC 1200 ISO1050DW VPR = 1.875 x VIORM, t = 1 sec (100% production) Partial discharge < 5 pC t = 60 sec (qualification) t = 1 sec (100% production) ISO1050DUB and ISO1050LDW Isolation voltage per UL ISO1050DW RS 560 ISO1050DW ISO1050DUB and ISO1050LDW VISO Isolation voltage per UL UNIT Vpeak (1) 1050 Vpeak 2250 4000 t = 60 sec (qualification) 2500 t = 1 sec (100% production) 3000 t = 60 sec (qualification) 4243 t = 1 sec (100% production) 5092 VIO = 500 V at TS > 109 Pollution Degree (1) SPECIFICATION Vpeak Vrms Vrms Ω 2 For applications that require DC working voltages between GND1 and GND2, please contact Texas Instruments for further details. IEC 60664-1 RATINGS PARAMETER Basic isolation group Installation classification 10 TEST CONDITIONS Material group SPECIFICATION II Rated mains voltage ≤ 150 Vrms I–IV Rated mains voltage ≤ 300 Vrms I–III Rated mains voltage ≤ 400 Vrms I–II Rated mains voltage ≤ 600 Vrms (ISO1050DW only) I-II Rated mains voltage ≤ 848 Vrms (ISO1050DW only) I Copyright © 2009–2011, Texas Instruments Incorporated ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn IEC SAFETY LIMITING VALUES safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures. PARAMETER TEST CONDITIONS DUB-8 IS Safety input, output, or supply current DW-16 TS MIN TYP MAX UNIT θJA = 73.3 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C 310 θJA = 73.3 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C 474 θJA = 76 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C 299 θJA = 76 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C 457 Maximum case temperature mA mA °C 150 The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assured junction-to-air thermal resistance in the Thermal Characteristics table is that of a device installed on a High-K Test Board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance. REGULATORY INFORMATION VDE TUV CSA UL Certified according to DIN EN 60747-5-2 Certified according to EN/UL/CSA 60950-1 Approved under CSA Component Acceptance Notice #5A Recognized under 1577 (1) Component Recognition Program Basic Insulation Transient Overvoltage, 4000 VPK Surge Voltage, 4000 VPK Maximum Working Voltage, 1200 VPK (ISO1050DW) and 560 VPK (ISO1050DUB) ISO1050LDW certification is pending ISO1050DW: 5000 VRMS Reinforced Insulation, 400 VRMS maximum working voltage 5000 VRMS Basic Insulation, 600 VRMS maximum working voltage ISO1050DUB and ISO1050LDW: 2500 VRMS Reinforced Insulation, 400 VRMS maximum working voltage 2500 VRMS Basic Insulation, 600 VRMS maximum working voltage 5000 VRMS Reinforced Insulation 2 Means of Patient Protection at 125 VRMS per IEC 60601-1 (3rd Ed.) Double Protection ISO1050DUB: 2500 VRMS ISO1050DW: 3500 VRMS, 4243 VRMS Single Protection Certification pending ISO1050LDW Certification pending File Number: 40016131 Certificate Number: U8V 11 09 77311 008 File Number: 220991 File Number: E181974 (1) Production tested ≥ 3000 VRMS (ISO1050DUB and ISO1050LDW) and 5092 VRMS (ISO1050DW) for 1 second in accordance with UL 1577. THERMAL INFORMATION (DUB-8 PACKAGE) over recommended operating conditions (unless otherwise noted) PARAMETER (1) MIN TYP MAX UNIT 120 °C/W High-K Thermal Resistance 73.3 °C/W Low-K Thermal Resistance 10.2 °C/W Junction-to-case thermal resistance Low-K Thermal Resistance 14.5 °C/W θJA Junction-to-air θJB Junction-to-board thermal resistance θJC PD Device power dissipation Tj shutdown Thermal shutdown temperature (2) (1) (2) TEST CONDITIONS Low-K Thermal Resistance VCC1= 5.5V, VCC2= 5.25V, TA=105°C, RL= 60Ω, TXD input is a 500kHz 50% duty-cycle square wave 200 190 mW °C Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages. Extended operation in thermal shutdown may affect device reliability. Copyright © 2009–2011, Texas Instruments Incorporated 11 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn LIFE EXPECTANCY vs WORKING VOLTAGE (ISO1050DW and ISO1050LDW) Life Expectancy – Years 100 VIORM at 560 V 28 Years 10 0 120 250 500 750 880 1000 VIORM – Working Voltage – V G001 Figure 15. Life Expectancy vs Working Voltage 12 Copyright © 2009–2011, Texas Instruments Incorporated ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn EQUIVALENT I/O SCHEMATICS TXD Input VCC1 RXD Output VCC1 VCC1 VCC1 1 MW 8W 500 W IN OUT 13 W CANL Input CANH Input Vcc2 Vcc2 10 kW 10 kW 20 kW 20 kW Input 40 V Input 10 kW 10 kW 40 V CANH and CANL Outputs Vcc2 CANH CANL 40 V Copyright © 2009–2011, Texas Instruments Incorporated 40 V 13 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn TYPICAL CHARACTERISTICS RECESSIVE-TO-DOMINANT LOOP TIME vs FREE-AIR TEMPERATURE (across Vcc) DOMINANT-TO-RECESSIVE LOOP TIME vs FREE-AIR TEMPERATURE (across Vcc) 163 200 159 180 VCC1 = 3 V, VCC2 = 4.75 V 157 Loop Time - ns Loop Time - ns 161 VCC1 = 3 V, VCC2 = 4.75 V 190 VCC1 = 5 V, VCC2 = 5 V 170 160 155 VCC1 = 5.5 V, VCC2 = 5.25 V 153 151 149 150 140 -60 VCC1 = 5.5 V, VCC2 = 5.25 V -40 147 VCC1 = 5 V, VCC2 = 5 V 145 -60 -20 0 20 40 60 80 100 120 TA - Free-Air Temperature - °C -40 -20 0 20 40 60 80 100 120 TA - Free-Air Temperature - °C Figure 16. Figure 17. SUPPLY CURRENT (RMS) vs SIGNALING RATE (kbps) DRIVER OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 100 3.5 VO = CANH 3 VO - Output Voltage - V ICC - Supply Current - mA ICC2 = 5 V 10 ICC1 = 5 V 1 250 450 550 650 750 Signaling Rate - kbps Figure 18. 14 850 2 1.5 ICC1 = 3.3 V 350 2.5 950 1 -60 VO = CANL -40 -20 0 20 40 60 80 100 120 TA - Free-Air Temperature - °C Figure 19. Copyright © 2009–2011, Texas Instruments Incorporated ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn TYPICAL CHARACTERISTICS (continued) EMISSIONS SPECTRUM TO 10 MHz EMISSIONS SPECTRUM TO 50 MHz Figure 20. Figure 21. Copyright © 2009–2011, Texas Instruments Incorporated 15 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn APPLICATION INFORMATION DOMINANT TIME-OUT A dominant time-out circuit in the ISO1050 prevents the driver from blocking network communications if a local controller fault occurs. The time-out circuit is triggered by a falling edge on TXD. If no rising edge occurs on TXD before the time-out of the circuits expires, the driver is disabled to prevent the local node from continuously transmitting a Dominant bit. If a rising edge occurs on TXD, commanding a Recessive bit, the timer will be reset and the driver will be re-enabled. The time-out value is set so that normal CAN communication will not cause the Dominant time-out circuit to expire. FAILSAFE If the bus-side power supply Vcc2 is lower than about 2.7V, the power shutdown circuits in the ISO1050 will disable the transceiver to prevent spurious transitions due to an unstable supply. If Vcc1 is still active when this occurs, the receiver output will go to a failsafe HIGH value in about 6 microseconds. THERMAL SHUTDOWN The ISO1050 has an internal thermal shutdown circuit that turns off the driver outputs when the internal temperature becomes too high for normal operation. This shutdown circuit prevents catastrophic failure due to short-circuit faults on the bus lines. If the device cools sufficiently after thermal shutdown, it will automatically re-enable, and may again rise in temperature if the bus fault is still present. Prolonged operation with thermal shutdown conditions may affect device reliability. BUS LOADING In the CAN standard ISO 11898-2 the driver differential output is specified with a 60Ω load (must be greater than 1.5V) and with a fully-loaded bus (must be greater than 1.2V). The ISO1050 is specified to meet the 1.5V requirement with a 60Ω load, and 1.4V with a 45Ω load. The differential input resistance of the ISO1050 is a minimum of 30KΩ. If the 167 transceivers are in parallel on a bus, this is equivalent to a 180Ω differential load. That transceiver load of 180Ω in parallel with the 60Ω (two 120Ω termination resistors) gives a total 45Ω. Therefore, the ISO1050 supports over 167 transceivers on a single bus segment, with margin to the 1.2V CAN requirement. 16 Copyright © 2009–2011, Texas Instruments Incorporated ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 www.ti.com.cn REVISION HISTORY Changes from Original (June 2009) to Revision A Page • Added IEC60747-5-2 和 IEC61010-1 已认可的信息 ............................................................................................................. 1 • Added 额定工作电压下典型值为25年使用寿命到特性 .......................................................................................................... 1 • Added LIFE EXPECTANCY vs WORKING VOLTAGE section .......................................................................................... 12 Changes from Revision A (Sept 2009) to Revision B Page • Changed DW 封装从预览到生产数据 ................................................................................................................................... 1 • Added Insulation Characteristics and IEC 60664-1 Ratings tables .................................................................................... 10 • Added IEC file number ........................................................................................................................................................ 11 • Added DW-16 thermal information table ............................................................................................................................. 12 Changes from Revision B (June 2009) to Revision C Page • Changed IEC 60747-5-2 特性着重号从:对 DW 封装的检验未决到:VDE 通过检验可采用 DUB 和 DW 封装 .................. 1 • Changed the Minimum Interal Gap value from 0.008 to 0.014 in the Isolator Characteristics table .................................. 10 • Changed VIORM Specification From: 1300 To: 1200 per VDE certification ......................................................................... 10 • Changed VPR Specification From 2438 To: 2250 ............................................................................................................... 10 • Added the Bus Loading paragraph to the Application Information section ......................................................................... 16 Changes from Revision C (July 2010) to Revision D Page • Changed the SUPPLY CURRENT table for ICC1 1st row From: Typ = 1 To: 1.8 and MAX = 2 To: 2.8 ............................... 3 • Changed the SUPPLY CURRENT table for ICC1 2nd row From: Typ = 2 To: 2.8 and MAX = 3 To: 3.6 .............................. 3 • Changed the REGULATORY INFORMATION table .......................................................................................................... 11 Copyright © 2009–2011, Texas Instruments Incorporated 17 ISO1050 ISO1050L ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011 Changes from Revision D (June 2011) to Revision E www.ti.com.cn Page • Added 器件 ISO1050L .......................................................................................................................................................... 1 • Changed (DW封装)在 (ISO1050DW) 的特性列表中 ........................................................................................................ 1 • Changed (DUB封装) 在 (ISO1050DUB和ISO1050LDW) 的特性列表中 ..................................................................... 1 • 从 CSA 认可中删除了 IEC 60950-1 特性着重号 ................................................................................................................... 1 • 从:IEC 6060-1(医疗用)和 CSA 批准未决到:IEC 6060-1(医疗用) 和 CSA 已批准 ................................................... 1 • 添加的特性 - 增强 5KVRMS .................................................................................................................................................. 1 • Changed ISO105DW 采用的 DW 封装和 ISO1050DUB 和 ISO1050LDW 采用的 DUB 封装提供高达 5000VVRMS的电 镀绝缘。 ................................................................................................................................................................................ 1 • Added the AVAILABLE OPTIONS table submitted to TIS ................................................................................................... 2 • Added Note 1 to the INSULATION CHARACTERISTICS table ......................................................................................... 10 • Changed VIORM From: 8-DUB Package to ISO1050DUB and ISO1050LDW ..................................................................... 10 • Changed VIORM From: 16-DW to ISO1050DW .................................................................................................................... 10 • Changed the VISO Isolation voltage per UL section of the INSULATION CHARACTERISTICS table. .............................. 10 • Changed the IEC 60664-1 Ratings Table ........................................................................................................................... 10 • Changed the REGULATORY INFORMATION table .......................................................................................................... 11 • Changed From: File Number: 220991 (Approval Pending) To: File Number: 220991 ....................................................... 11 • Changed in note (1) 3000 to 2500 and 6000 to 5000 ........................................................................................................ 11 • Changed in LIFE EXPECTANCY vs WORKING VOLTAGE (8-DUB PACKAGE TO: LIFE.....(ISO1050DW and ISO1050LDW) ..................................................................................................................................................................... 12 18 Copyright © 2009–2011, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Qty Drawing Eco Plan Lead/Ball Finish (2) MSL Peak Temp Samples (3) (Requires Login) ISO1050DUB ACTIVE SOP DUB 8 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR ISO1050DUBR ACTIVE SOP DUB 8 350 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR ISO1050DW ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR ISO1050DWR ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 18-Oct-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant ISO1050DUBR SOP DUB 8 350 330.0 24.4 10.9 10.01 5.85 16.0 24.0 Q1 ISO1050DWR SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 18-Oct-2012 *All dimensions are nominal Device Package Type Package Drawing ISO1050DUBR SOP DUB ISO1050DWR SOIC DW Pins SPQ Length (mm) Width (mm) Height (mm) 8 350 358.0 335.0 35.0 16 2000 367.0 367.0 38.0 Pack Materials-Page 2 重要声明 德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。 TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。 TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险, 客户应提供充分的设计与操作安全措施。 TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。 对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。 在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。 客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。 在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用 的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。 TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。 只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面 向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有 法律和法规要求。 TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要 求,TI不承担任何责任。 产品 应用 数字音频 www.ti.com.cn/audio 通信与电信 www.ti.com.cn/telecom 放大器和线性器件 www.ti.com.cn/amplifiers 计算机及周边 www.ti.com.cn/computer 数据转换器 www.ti.com.cn/dataconverters 消费电子 www.ti.com/consumer-apps DLP® 产品 www.dlp.com 能源 www.ti.com/energy DSP - 数字信号处理器 www.ti.com.cn/dsp 工业应用 www.ti.com.cn/industrial 时钟和计时器 www.ti.com.cn/clockandtimers 医疗电子 www.ti.com.cn/medical 接口 www.ti.com.cn/interface 安防应用 www.ti.com.cn/security 逻辑 www.ti.com.cn/logic 汽车电子 www.ti.com.cn/automotive 电源管理 www.ti.com.cn/power 视频和影像 www.ti.com.cn/video 微控制器 (MCU) www.ti.com.cn/microcontrollers RFID 系统 www.ti.com.cn/rfidsys OMAP应用处理器 www.ti.com/omap 无线连通性 www.ti.com.cn/wirelessconnectivity 德州仪器在线技术支持社区 www.deyisupport.com IMPORTANT NOTICE 邮寄地址: 上海市浦东新区世纪大道 1568 号,中建大厦 32 楼 邮政编码: 200122 Copyright © 2012 德州仪器 半导体技术(上海)有限公司