CNY64/ CNY65/ CNY66 Vishay Semiconductors Optocoupler with Phototransistor Output Description The CNY64/ CNY65/ CNY66 consist of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead plastic package. The single components are mounted in opposite oneanother, providing a distance between input and output for highest safety requirements of > 3 mm. Applications Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation): D For appl. class I – IV at mains voltage ≤ 300 V D For appl. class I – IV at mains voltage ≤ 600 V D For appl. class I – III at mains voltage ≤ 1000 V 14832 A (+) C C (–) E according to VDE 0884, table 2, suitable for: 95 10850 Switch-mode power supplies, line receiver, computer peripheral interface, microprocessor system interface. VDE Standards These couplers perform safety functions according to the following equipment standards: D VDE 0884 Optocoupler for electrical safety requirements D IEC 950/EN 60950 Office machines (applied for reinforced isolation for mains voltage ≤ 400 VRMS) D VDE 0804 Telecommunication apparatus and data processing D IEC 65 Safety for mains-operated electronic and related household apparatus D VDE 0700/IEC 335 Household equipment D VDE 0160 Electronic equipment for electrical power installation D VDE 0750/IEC 601 Medical equipment Rev. A4, 11–Jan–99 1 (10) CNY64/ CNY65/ CNY66 Vishay Semiconductors Order Instruction Ordering Code CNY64/ CNY65/ CNY66 CNY64A/ CNY65A CNY64B/ CNY65B CTR Ranking 50 to 300% 63 to 125% 100 to 200% Remarks Features D Rated insulation voltage (RMS includes DC) Approvals: D Underwriters Laboratory (UL) 1577 recognized, file number E-76222 D VDE 0884, Certificate number 76814 VDE 0884 related features: D Rated impulse voltage (transient overvoltage) VIOTM = 8 kV peak D Isolation test voltage (partial discharge test voltage) Vpd = 2.8 kV peak VIOWM = 1000 VRMS (1450 V peak) D Rated recurring peak voltage (repetitive) VIORM = 1000 VRMS D Creepage current resistance according to VDE 0303/IEC 112 Comparative Tracking Index: CTI = 200 D Thickness through insulation > 3 mm D Coupling Systems: CNY64 Coupling System H, CNY65 Coupling System J, CNY66 Coupling System K, Absolute Maximum Ratings Input (Emitter) Parameter Reverse voltage Forward current Forward surge current Power dissipation Junction temperature Test Conditions tp ≤ 10 ms Tamb ≤ 25°C Symbol VR IF IFSM PV Tj Value 5 75 1.5 120 100 Unit V mA A mW °C Symbol VCEO VECO IC ICM PV Tj Value 32 7 50 100 130 100 Unit V V mA mA mW °C Symbol VIO Ptot Tamb Tstg Tsd Value 8.2 250 –55 to +85 –55 to +100 260 Unit kV mW °C °C °C Output (Detector) Parameter Collector emitter voltage Emitter collector voltage Collector current Collector peak current Power dissipation Junction temperature Test Conditions tp/T = 0.5, tp ≤ 10 ms Tamb ≤ 25°C Coupler Parameter AC isolation test voltage (RMS) Total power dissipation Ambient temperature range Storage temperature range Soldering temperature 2 (10) Test Conditions t = 1 min Tamb ≤ 25°C 2 mm from case, t ≤ 10 s Rev. A4, 11–Jan–99 CNY64/ CNY65/ CNY66 Vishay Semiconductors Electrical Characteristics (Tamb = 25°C) Input (Emitter) Parameter Forward voltage Junction capacitance Test Conditions IF = 50 mA VR = 0, f = 1 MHz Symbol VF Cj Min. Typ. 1.25 50 Max. 1.6 Unit V pF Test Conditions IC = 1 mA IE = 100 mA VCE = 20 V, If = 0 Symbol VCEO VECO ICEO Min. 32 7 Typ. Max. 200 Unit V V nA Test Conditions IF = 10 mA, IC = 1 mA Symbol VCEsat Min. Max. 0.3 Unit V VCE = 5 V, IF = 10 mA, RL = 100 f = 1 MHz fc 110 kHz Ck 0.3 pF Output (Detector) Parameter Collector emitter voltage Emitter collector voltage Collector emitter cut-off current Coupler Parameter Collector emitter saturation voltage Cut-off frequency Coupling capacitance W Typ. Current Transfer Ratio (CTR) Parameter IC/IF Test Conditions VCE = 5 V, IF = 10 mA Rev. A4, 11–Jan–99 Type CNY64, CNY65, CNY66 CNY64A, CNY65A CNY64B, CNY65B Symbol CTR Min. 0.5 Typ. 1 Max. 3 CTR 0.63 1.25 CTR 1 2 Unit 3 (10) CNY64/ CNY65/ CNY66 Vishay Semiconductors Maximum Safety Ratings (according to VDE 0884) see figure 1 This device is used for protective separation against electrical shock only within the maximum safety ratings. This must be ensured by using protective circuits in the applications. Input (Emitter) Parameters Forward current Test Conditions Symbol Isi Value 120 Unit mA Test Conditions Tamb ≤ 25°C Symbol Psi Value 250 Unit mW Test Conditions Symbol VIOTM Tsi Value 8 180 Unit kV °C Output (Detector) Parameters Power dissipation Coupler Parameters Rated impulse voltage Safety temperature Insulation Rated Parameters (according to VDE 0884) Parameter Test Conditions Partial discharge test voltage – 100%, ttest = 1 s Routine test Partial discharge g test voltage g – tTr = 60 s, ttest = 10 s, Lot test (sample test) (see figure 2) Insulation resistance VIO = 500 V VIO = 500 V, Tamb = 100°C VIO = 500 V, Tamb = 180°C Symbol Vpd Min. 2.8 VIOTM Vpd RIO RIO 8 2.2 1012 1011 RIO 109 Typ. Max. Unit kV kV kV W W W (construction test only) VIOTM 250 V 225 t1, t2 = 1 to 10 s t3, t4 = 1 s ttest = 10 s tstres = 12 s Psi (mW) 200 175 VPd 150 125 VIOWM VIORM 100 75 Isi (mA) 50 25 0 0 0 95 10922 25 50 75 100 125 150 175 200 Tamb ( °C ) Figure 1. Derating diagram 4 (10) t3 ttest t4 t1 13930 tTr = 60 s t2 tstres t Figure 2. Test pulse diagram for sample test according to DIN VDE 0884 Rev. A4, 11–Jan–99 CNY64/ CNY65/ CNY66 Vishay Semiconductors Switching Characteristics Parameter Delay time Rise time Fall time Storage time Turn-on time Turn-off time Turn-on time Turn-off time VS = 5 V, IF = 10 mA, RL = 1 k W ((see figure g 4)) Typ. 2.6 2.4 2.7 0.3 5.0 3.0 25.0 42.5 +5V Unit s s s s s s s s m m m m m m m m 96 11698 IC = 5 mA; Adjusted trough input amplitude W RG = 50 tp 0.01 T + Symbol td tr tf ts ton toff ton toff W IF IF 0 Test Conditions VS = 5 V, IC = 5 mA, RL = 100 ((see figure g 3)) IF 0 t tp tp = 50 ms Channel I 50 W 100 W Channel II IC Oscilloscope W RL ≥ 1 M CL ≤ 20 pF 100% 90% 95 10900 Figure 3. Test circuit, non-saturated operation 10% 0 t tr td IF 0 IF = 10 mA ton +5V tp td tr ton (= td + tr) IC W RG = 50 tp 0.01 T + ts m tp = 50 s tf toff pulse duration delay time rise time turn-on time ts tf toff (= ts + tf) storage time fall time turn-off time Figure 5. Switching times Channel I 50 W Channel II 1k W Oscilloscope W RL ≥ 1 M CL ≤ 20 pF 95 10843 Figure 4. Test circuit, saturated operation Rev. A4, 11–Jan–99 5 (10) CNY64/ CNY65/ CNY66 Vishay Semiconductors Typical Characteristics (Tamb = 25_C, unless otherwise specified) P tot – Total Power Dissipation ( mW ) 200 1000 ICEO– Collector Dark Current, with open Base ( nA ) 160 120 Coupled Device 80 Phototransistor IR-Diode 40 VCE=20V IF=0 100 10 1 0 0 25 50 75 100 Tamb – Ambient Temperature ( °C ) 95 11003 0 Figure 6. Total Power Dissipation vs. Ambient Temperature 100 IC – Collector Current ( mA ) I F – Forward Current ( mA ) Tamb – Ambient Temperature ( °C ) Figure 9. Collector Dark Current vs. Ambient Temperature 1000.0 100.0 10.0 1.0 0.1 VCE=5V 10 1 0.1 0.01 0 96 11862 10 20 30 40 50 60 70 80 90 100 96 12000 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VF – Forward Voltage ( V ) Figure 7. Forward Current vs. Forward Voltage 0.1 1 100 10 IF – Forward Current ( mA ) 95 11012 Figure 10. Collector Current vs. Forward Current 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 –30 –20 –10 0 10 20 30 40 50 60 70 80 96 11911 100 VCE=5V IF=10mA IF=50mA IC – Collector Current ( mA ) CTR rel – Relative Current Transfer Ratio 1.5 10mA 10 2mA 1 1mA 0.1 Tamb – Ambient Temperature ( °C ) 0.1 95 11013 Figure 8. Relative Current Transfer Ratio vs. Ambient Temperature 6 (10) 5mA 1 10 100 VCE – Collector Emitter Voltage ( V ) Figure 11. Collector Current vs. Collector Emitter Voltage Rev. A4, 11–Jan–99 CNY64/ CNY65/ CNY66 VCEsat – Collector Emitter Saturation Voltage ( V ) Vishay Semiconductors t on / t off – Turn on / Turn off Time ( m s ) 1.0 0.9 0.8 0.7 CTR=50% 0.6 0.5 0.4 0.3 0.2 20% 0.1 10% 0 1 30 ton 20 Saturated Operation VS=5V RL=1k 10 100 W 0 5 20 Non Saturated Operation VS=5V RL=100 m VCE=5V 100 10 ton W 15 toff 10 5 0 1 0.1 95 11015 20 15 Figure 14. Turn on / off Time vs. Forward Current t on / t off – Turn on / Turn off Time ( s ) 1000 10 IF – Forward Current ( mA ) 95 11017 Figure 12. Collector Emitter Saturation Voltage vs. Collector Current CTR – Current Transfer Ratio ( % ) toff 40 0 10 IC – Collector Current ( mA ) 96 11912 50 1 100 10 IF – Forward Current ( mA ) 0 95 11016 Figure 13. Current Transfer Ratio vs. Forward Current 2 4 6 8 10 IC – Collector Current ( mA ) Figure 15. Turn on / off Time vs. Collector Current Type CNY65 Date Code (YM) 918 J TK19 V 0884 D E Coupling System Indicator Company Logo Production Location Safety Logo 15089 Figure 16. Marking example Rev. A4, 11–Jan–99 7 (10) CNY64/ CNY65/ CNY66 Vishay Semiconductors Dimensions of CNY64 in mm weight: creepage distance: air path: y y ca. 0.73 g 9.5 mm 9.5 mm after mounting on PC board 14765 Dimensions of CNY65 in mm weight: creepage distance: air path: y y ca. 1.40 g 14 mm 14 mm after mounting on PC board 14763 8 (10) Rev. A4, 11–Jan–99 CNY64/ CNY65/ CNY66 Vishay Semiconductors Dimensions of CNY66 in mm weight: creepage distance: air path: y y ca. 1.70 g 17 mm 17 mm after mounting on PC board 14764 Rev. A4, 11–Jan–99 9 (10) CNY64/ CNY65/ CNY66 Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 10 (10) Rev. A4, 11–Jan–99