ETC CNY65A

CNY64/ CNY65/ CNY66
Vishay Semiconductors
Optocoupler with Phototransistor Output
Description
The CNY64/ CNY65/ CNY66 consist of a phototransistor optically coupled to a gallium arsenide
infrared-emitting diode in a 4-lead plastic package.
The single components are mounted in opposite oneanother, providing a distance between input and
output for highest safety requirements of > 3 mm.
Applications
Circuits for safe protective separation against
electrical shock according to safety class II
(reinforced isolation):
D For appl. class I – IV at mains voltage ≤ 300 V
D For appl. class I – IV at mains voltage ≤ 600 V
D For appl. class I – III at mains voltage ≤ 1000 V
14832
A (+)
C
C (–)
E
according to VDE 0884, table 2, suitable for:
95 10850
Switch-mode power supplies, line receiver,
computer peripheral interface, microprocessor
system interface.
VDE Standards
These couplers perform safety functions according
to the following equipment standards:
D VDE 0884
Optocoupler for electrical safety requirements
D IEC 950/EN 60950
Office machines (applied for reinforced isolation
for mains voltage ≤ 400 VRMS)
D VDE 0804
Telecommunication apparatus and data
processing
D IEC 65
Safety for mains-operated electronic and related
household apparatus
D VDE 0700/IEC 335
Household equipment
D VDE 0160
Electronic equipment for electrical power
installation
D VDE 0750/IEC 601
Medical equipment
Rev. A4, 11–Jan–99
1 (10)
CNY64/ CNY65/ CNY66
Vishay Semiconductors
Order Instruction
Ordering Code
CNY64/ CNY65/ CNY66
CNY64A/ CNY65A
CNY64B/ CNY65B
CTR Ranking
50 to 300%
63 to 125%
100 to 200%
Remarks
Features
D Rated insulation voltage (RMS includes DC)
Approvals:
D Underwriters Laboratory (UL) 1577 recognized,
file number E-76222
D VDE 0884, Certificate number 76814
VDE 0884 related features:
D Rated impulse voltage (transient overvoltage)
VIOTM = 8 kV peak
D Isolation test voltage
(partial discharge test voltage) Vpd = 2.8 kV peak
VIOWM = 1000 VRMS (1450 V peak)
D Rated recurring peak voltage (repetitive)
VIORM = 1000 VRMS
D Creepage current resistance according to
VDE 0303/IEC 112
Comparative Tracking Index: CTI = 200
D Thickness through insulation > 3 mm
D Coupling Systems:
CNY64 Coupling System H,
CNY65 Coupling System J,
CNY66 Coupling System K,
Absolute Maximum Ratings
Input (Emitter)
Parameter
Reverse voltage
Forward current
Forward surge current
Power dissipation
Junction temperature
Test Conditions
tp ≤ 10 ms
Tamb ≤ 25°C
Symbol
VR
IF
IFSM
PV
Tj
Value
5
75
1.5
120
100
Unit
V
mA
A
mW
°C
Symbol
VCEO
VECO
IC
ICM
PV
Tj
Value
32
7
50
100
130
100
Unit
V
V
mA
mA
mW
°C
Symbol
VIO
Ptot
Tamb
Tstg
Tsd
Value
8.2
250
–55 to +85
–55 to +100
260
Unit
kV
mW
°C
°C
°C
Output (Detector)
Parameter
Collector emitter voltage
Emitter collector voltage
Collector current
Collector peak current
Power dissipation
Junction temperature
Test Conditions
tp/T = 0.5, tp ≤ 10 ms
Tamb ≤ 25°C
Coupler
Parameter
AC isolation test voltage (RMS)
Total power dissipation
Ambient temperature range
Storage temperature range
Soldering temperature
2 (10)
Test Conditions
t = 1 min
Tamb ≤ 25°C
2 mm from case, t ≤ 10 s
Rev. A4, 11–Jan–99
CNY64/ CNY65/ CNY66
Vishay Semiconductors
Electrical Characteristics (Tamb = 25°C)
Input (Emitter)
Parameter
Forward voltage
Junction capacitance
Test Conditions
IF = 50 mA
VR = 0, f = 1 MHz
Symbol
VF
Cj
Min.
Typ.
1.25
50
Max.
1.6
Unit
V
pF
Test Conditions
IC = 1 mA
IE = 100 mA
VCE = 20 V, If = 0
Symbol
VCEO
VECO
ICEO
Min.
32
7
Typ.
Max.
200
Unit
V
V
nA
Test Conditions
IF = 10 mA, IC = 1 mA
Symbol
VCEsat
Min.
Max.
0.3
Unit
V
VCE = 5 V, IF = 10 mA,
RL = 100
f = 1 MHz
fc
110
kHz
Ck
0.3
pF
Output (Detector)
Parameter
Collector emitter voltage
Emitter collector voltage
Collector emitter cut-off
current
Coupler
Parameter
Collector emitter
saturation voltage
Cut-off frequency
Coupling capacitance
W
Typ.
Current Transfer Ratio (CTR)
Parameter
IC/IF
Test Conditions
VCE = 5 V, IF = 10 mA
Rev. A4, 11–Jan–99
Type
CNY64,
CNY65,
CNY66
CNY64A,
CNY65A
CNY64B,
CNY65B
Symbol
CTR
Min.
0.5
Typ.
1
Max.
3
CTR
0.63
1.25
CTR
1
2
Unit
3 (10)
CNY64/ CNY65/ CNY66
Vishay Semiconductors
Maximum Safety Ratings (according to VDE 0884) see figure 1
This device is used for protective separation against electrical shock only within the maximum safety ratings.
This must be ensured by using protective circuits in the applications.
Input (Emitter)
Parameters
Forward current
Test Conditions
Symbol
Isi
Value
120
Unit
mA
Test Conditions
Tamb ≤ 25°C
Symbol
Psi
Value
250
Unit
mW
Test Conditions
Symbol
VIOTM
Tsi
Value
8
180
Unit
kV
°C
Output (Detector)
Parameters
Power dissipation
Coupler
Parameters
Rated impulse voltage
Safety temperature
Insulation Rated Parameters (according to VDE 0884)
Parameter
Test Conditions
Partial discharge test voltage – 100%, ttest = 1 s
Routine test
Partial discharge
g test voltage
g – tTr = 60 s, ttest = 10 s,
Lot test (sample test)
(see figure 2)
Insulation resistance
VIO = 500 V
VIO = 500 V,
Tamb = 100°C
VIO = 500 V,
Tamb = 180°C
Symbol
Vpd
Min.
2.8
VIOTM
Vpd
RIO
RIO
8
2.2
1012
1011
RIO
109
Typ.
Max.
Unit
kV
kV
kV
W
W
W
(construction test only)
VIOTM
250
V
225
t1, t2 = 1 to 10 s
t3, t4 = 1 s
ttest = 10 s
tstres = 12 s
Psi (mW)
200
175
VPd
150
125
VIOWM
VIORM
100
75
Isi (mA)
50
25
0
0
0
95 10922
25
50
75
100 125 150 175 200
Tamb ( °C )
Figure 1. Derating diagram
4 (10)
t3 ttest t4
t1
13930
tTr = 60 s
t2
tstres
t
Figure 2. Test pulse diagram for sample test according to
DIN VDE 0884
Rev. A4, 11–Jan–99
CNY64/ CNY65/ CNY66
Vishay Semiconductors
Switching Characteristics
Parameter
Delay time
Rise time
Fall time
Storage time
Turn-on time
Turn-off time
Turn-on time
Turn-off time
VS = 5 V, IF = 10 mA, RL = 1 k
W ((see figure
g
4))
Typ.
2.6
2.4
2.7
0.3
5.0
3.0
25.0
42.5
+5V
Unit
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
96 11698
IC = 5 mA; Adjusted trough
input amplitude
W
RG = 50
tp
0.01
T
+
Symbol
td
tr
tf
ts
ton
toff
ton
toff
W
IF
IF
0
Test Conditions
VS = 5 V, IC = 5 mA, RL = 100 ((see figure
g
3))
IF
0
t
tp
tp = 50 ms
Channel I
50
W
100
W
Channel II
IC
Oscilloscope
W
RL ≥ 1 M
CL ≤ 20 pF
100%
90%
95 10900
Figure 3. Test circuit, non-saturated operation
10%
0
t
tr
td
IF
0
IF = 10 mA
ton
+5V
tp
td
tr
ton (= td + tr)
IC
W
RG = 50
tp
0.01
T
+
ts
m
tp = 50 s
tf
toff
pulse duration
delay time
rise time
turn-on time
ts
tf
toff (= ts + tf)
storage time
fall time
turn-off time
Figure 5. Switching times
Channel I
50
W
Channel II
1k
W
Oscilloscope
W
RL ≥ 1 M
CL ≤ 20 pF
95 10843
Figure 4. Test circuit, saturated operation
Rev. A4, 11–Jan–99
5 (10)
CNY64/ CNY65/ CNY66
Vishay Semiconductors
Typical Characteristics (Tamb = 25_C, unless otherwise specified)
P tot – Total Power Dissipation ( mW )
200
1000
ICEO– Collector Dark Current,
with open Base ( nA )
160
120
Coupled Device
80
Phototransistor
IR-Diode
40
VCE=20V
IF=0
100
10
1
0
0
25
50
75
100
Tamb – Ambient Temperature ( °C )
95 11003
0
Figure 6. Total Power Dissipation vs.
Ambient Temperature
100
IC – Collector Current ( mA )
I F – Forward Current ( mA )
Tamb – Ambient Temperature ( °C )
Figure 9. Collector Dark Current vs.
Ambient Temperature
1000.0
100.0
10.0
1.0
0.1
VCE=5V
10
1
0.1
0.01
0
96 11862
10 20 30 40 50 60 70 80 90 100
96 12000
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VF – Forward Voltage ( V )
Figure 7. Forward Current vs. Forward Voltage
0.1
1
100
10
IF – Forward Current ( mA )
95 11012
Figure 10. Collector Current vs. Forward Current
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
–30 –20 –10 0 10 20 30 40 50 60 70 80
96 11911
100
VCE=5V
IF=10mA
IF=50mA
IC – Collector Current ( mA )
CTR rel – Relative Current Transfer Ratio
1.5
10mA
10
2mA
1
1mA
0.1
Tamb – Ambient Temperature ( °C )
0.1
95 11013
Figure 8. Relative Current Transfer Ratio vs.
Ambient Temperature
6 (10)
5mA
1
10
100
VCE – Collector Emitter Voltage ( V )
Figure 11. Collector Current vs. Collector Emitter Voltage
Rev. A4, 11–Jan–99
CNY64/ CNY65/ CNY66
VCEsat – Collector Emitter Saturation Voltage ( V )
Vishay Semiconductors
t on / t off – Turn on / Turn off Time ( m s )
1.0
0.9
0.8
0.7
CTR=50%
0.6
0.5
0.4
0.3
0.2
20%
0.1
10%
0
1
30
ton
20
Saturated Operation
VS=5V
RL=1k
10
100
W
0
5
20
Non Saturated
Operation
VS=5V
RL=100
m
VCE=5V
100
10
ton
W
15
toff
10
5
0
1
0.1
95 11015
20
15
Figure 14. Turn on / off Time vs. Forward Current
t on / t off – Turn on / Turn off Time ( s )
1000
10
IF – Forward Current ( mA )
95 11017
Figure 12. Collector Emitter Saturation Voltage vs.
Collector Current
CTR – Current Transfer Ratio ( % )
toff
40
0
10
IC – Collector Current ( mA )
96 11912
50
1
100
10
IF – Forward Current ( mA )
0
95 11016
Figure 13. Current Transfer Ratio vs. Forward Current
2
4
6
8
10
IC – Collector Current ( mA )
Figure 15. Turn on / off Time vs. Collector Current
Type
CNY65
Date
Code
(YM)
918 J TK19
V
0884
D E
Coupling
System
Indicator
Company
Logo
Production
Location
Safety
Logo
15089
Figure 16. Marking example
Rev. A4, 11–Jan–99
7 (10)
CNY64/ CNY65/ CNY66
Vishay Semiconductors
Dimensions of CNY64 in mm
weight:
creepage distance:
air path:
y
y
ca. 0.73 g
9.5 mm
9.5 mm
after mounting on PC board
14765
Dimensions of CNY65 in mm
weight:
creepage distance:
air path:
y
y
ca. 1.40 g
14 mm
14 mm
after mounting on PC board
14763
8 (10)
Rev. A4, 11–Jan–99
CNY64/ CNY65/ CNY66
Vishay Semiconductors
Dimensions of CNY66 in mm
weight:
creepage distance:
air path:
y
y
ca. 1.70 g
17 mm
17 mm
after mounting on PC board
14764
Rev. A4, 11–Jan–99
9 (10)
CNY64/ CNY65/ CNY66
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known
as ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized
application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out
of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
10 (10)
Rev. A4, 11–Jan–99