ETC MC145540 ADPCM编码器

应用 MCl筘 弘0实 珥∮p卩 qM∶ ∴
绋解阝
:
ˉ
建
Ⅱ南京邮电学浇⑿1000g冫 个∵
∷
甲 忄中
i∶ ∷
-
i滓
拈
要
:∷
文忄介 绍 了用 hEO△ d5弘 0实 琨 ΔDPClE∷ 痴艹鸦 ”|扭 庄 用 宙奋
口妁控剞挟式冫以灰接 口守存器的比特分舀。
∷∷关键词 ΔpPcM编 解码 接j卩
∷:
艹艹△艹 、柠抠 剞按
, ‘・ 讠i
、
‘
∴
∵ ・ ∴ |∶ ∶
∶
冖
ⅡⅡ
棋式 控锏 守存 嚣
g丿
如
Ⅲ由秉 国 BEρ T0即LΔ 公 司研创 。 ¥q⒕ ∞ 芯
闪 W‘ 绢解卩 器 ⒎募封 装亨 取排 蕈 插
片暴 ∵种
衤
两种。所 米用语音压缩编解码的方法符 合
和平面贴装
^叨
ITU-To。 7a△ 和美国 ΔNsI T。 1301建 议。 可 将 摸
魏:∴ 羽、Ⅱ泓 或 1G Kb/g的 数
拟话 音 变 换 耐 速 率 为 ∮
`教
.i
∶
|∶
∷
i
盅 槐
崖冤嚣缴
靠
窍求 醴
崽
DPCM
编码。同样,在 不F的 使能倌号工作模式下,Δ
编码器可产生四种不同速率的 ΔpPcM码 字,并 从效
字信 号;∶ 汗可将相 甲速率 0g熬 字 审 号 进 π 反 变 换。
MG华 ∞⑾ 具有 ΔDl叩 M编 解 码 带 和 FCM编 解 码
ΔDFCM绸
蓊 /漶 波 器的双向信 号通 潭。 啐亨正常 的
解犸祺 球 外,泽 有 PC吓 绵佴 码淳 枣,电 源哪试模 枣和
应用 MC⒕ 弱如 芯片中的不同速
绸解码嚣润试模式。∷
率 ,信 逭可 实现不 同 0g倍 增 比,有 效的提声信道利用
…1
率。 .
∷
Ⅱ
∴
'部
内
卩
〓
理
原≡
〓
成
组〓
棋拟按 口
与 漶 波器
∶
MC⒕ 搦如
t
∶
∷
・
∴
・
∶
∶
图 △ ¥C1奶 吁 q灬 片
组
”邯 莎 原理 图
芯片的肉邯组成原痤如图 所示。
冖
Ⅱ
∶ 在炭送方向上;祺 拟诂音信号从模拟按口的Ⅱ 端
榆人;经 增盎微调釉漉波器漉波进入 厶DC。 在不同的
使能信垮王作模式下,ADC可 以产生按 A律 或u律
:工
二、 实现 ▲DPgⅡ 珀 饵码典型应用 电路
图 2示 出了用 MClu弱 如 实瑰ΔDPCM编 解码
⒑
5s凵
`'c:‘
+sˇ
C22
o。
1u
.ˉ
⒍一
坠ο
m
・△盯m汛一
由
剿
Rin巳
ADPCM OUT
i
,WRPlO PlI P12
皋:刂:I;:;.讯 T
图 2 ▲DPCM编 解 码典型应用 电路
Ⅱ电手投未斑咖 年笫 na翔
-′
: doˉ 功ˉ
翳`
≡
■
■
■
■
■
■
■
■
■
■
口
臼
口
口
口
口
口
■
臼
曰
臼
〓
=曰
=,〓
〓
=====ˉ
-ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
—
—
—
—
御呷 _口 L__⊥
的-种 典型应用电路。MC⒕5MO与 外 部的联 系 主
∷Ⅱ∶
i ∷-~
串行控制口。
Ⅱ
T1耦
含变量
经
话音信号
z可
入的模拟
见,输
由图
、
黯瘛
耋
莒
黼 掣哭盟品担招
Eo输
2kb/g的
短使能信号工作模式,只在芯片选择β
∷人D∮ o血 箅法时才能采用:桎 这柚漠式卞;使 能信号
并不是在整个 码字的收、发期间始终保持有效 ,而 是只
psTt或 F态 n;葆 持 一
在发嵌 (或 接收薮搪 〉之箭 ,使
嬲
豁
鞲舄
瑞
蹁
T淼
制口。∶
∶ ∷
本 E° L玄 蚊崴 。0Lk奶 珀期的嵩龟平,以 趋知芯片
Γ
)薮′溏。
收
讯咏旌辑卉始∶废∴迭C或 接
’
l
∶
|冖
:凵
CΙ 1ro
、
图 舍 短使靛信号摸式下 a2KV呐q^DpcM
∴CⅡ r∶ 效字按口工作吣序图 ∴
∷ˉ・ ∴…
¨
出模拟话音
输入经芯片内部信号处 理后,在 脚
信号,脚 P王 和脚 Po-是 芯片 内部一个 运算放木帑”
输入和输 出端 ,用 于提高输出电平,由 脚 Po-和 脚
∷
∶∷奸 Ⅱ
∶ Ⅱ∴兰 狂孛接白灰其
平作摸举
llon′ t
:
=
∷
∷
Ⅱ∶
k
qF∶
:串 行控制接口β
四、
∷
’
sOP是 ˉ全 双 工四线接 口:由 发送 输 出 端 sCP
Ⅱ义、
接收输入端sop nx、 莳铈输人端sCp0Lk灰
使能端 sCP EN组 成。 用于从 MC⒕ 5弘 0中 获得状
态信息反向 血0⒕峦如
:废
斑°
迭控钿命令。莳 :血 0虫占
是艟迂莳s0p各控+lJ备 荐辂og丧 叠灰
乩撞hll及 谏榨’
j妊 sC。 客诀态蔷存器的监祝粜卖现的6M0血 5斑 °
r共有1s个 控制及状态寄存器(BRO-Bβ 10,都 是8
△
比特宽的字节寄存器。
对这 1G个 寄存器的访问可通过两个 sCP口 的 8
∶
ls∶ 比特操作来实现。
图5
比特操作或△个 s0P口 的∴
和图 6分 别表示出了对 sCP寄 存器以双 8比 铮 方式
图 β分别表示
进行写操作和读操作时的时序:∷ 图
`和
出了以 △G比 特方式对 sCP寄 存器进行写操作和淳墀
采用 叼 Kb冫ζoq ΔDPCM算 法 ,工作在 长使能信 号模
.由
式下时,薮 荸接
哪
i审
∴
客引踟的工祥莳序。
T(BC1fR)
∵作时 的时序。
F-图 中
△由图
可以看出,在 sCP BX上 ,第 一位
DT
:β
-∷
痂
Dl
l∴
.∷
∶.;
∴
″
L′
∶
哪
″
图 3 长使葩牾号模 式下 姒 Kb/s崛 宀D狎 0M
丿ˉ
数字接 口工作时序 囱 ∵
"0∷
“P∴ 瞅
,
【
彗
:链 薯
荐
萎
罩
靠
廑
早
逸
工
襄
霍
作
屠
弯
¨ 踟 ∷
作时序。
:
∷Ⅰ
!∵ ∵ ∶
=
。
,● h,△
士 ˉ 吐刂 m0扌
∵
{∫
″
・
″
”
sOP寄 仔料双 q比 特 写墀仵示意图
|∵冖
;
∶
AL把
t=t丁 俐
∫
∫
|
ghˉ 1“ od口 oc
∶ 囹0
’
溯灬 r
″f读
・
翌
:gh-imp。 aRnc¨
:-∫
ˉ-η
—
∫
・
1
±望
望凵h竺 望Ξ∫
8比
sCP寄 存器双
=L兰
意图
图、
特
读操
∶、
ρ”
f示
口 也臼 △0uH
附表
BRO.⒋ BnO。 g不 同组合所对皮
的锞作/测 试祺式
podan¨ ˉˉ△
Ⅱ
V△ 。
=钅
砸哂
ˉ△tˉ △△--ˉ
图 9 sC卩 寄存器 IO u特 写操作示 意图
=
∵
=
sCP Ⅲ
″
茁
在 工TU-・ T Tegt模 式下 ,芯 片为
出狎 舍 DP9Ⅵ 编 码 器 的输入提 笨 了独± 的通 道 ,这 相
就使从 直DC中 输 出的 PCM码 字,在 进 入 ΔDPCγ
∫
∫
・
砒P Tx
、
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
Ⅱigh-iop
``
PCM-Δ DC的 箱
一
滗
效
毅
馐
有
蘑
鲨
爵
挛
窆
瑾
掌
指
%舅舅
时
蠡
示
曜 读
本次 sCP操作的意图tI按 下*3比 特为全 0然 后是
∶
绵码器进行编码以前,可 以被外部处理器傲洹半的剡
戢 苒蛳
可利Ⅱ呷q艹 平叩冲弹气工作禅
式,米 对系统进π各吓环甲贼 ∷Ⅱ 、∷气丨
∶
`∷
oγ
输出
⒈ 在电源测试祺式下,{÷ P♀ ∷
∷
巾暴绋饯”卩
小位码宇?泫 码字反应中是心冖y珥 阝T弓 !胛 △申电压
幽 习丛岢存带B卩 9中 诀弘。 Ⅱ ∴ '、
:∵
BR8寄 杼带 :卩 卩q.阝 是绋诤纷解鸹控制:弘
置位时,将 使芯片的 ΔDC和 DΔ C。 由u律 或 Δ律压
2・
存器中读 出的 8比
扩方式转芟为土FF乎 蝴
轴裤码方式。
3・ Δ
PPcM押 码赫入寄存器邴 ∷Ⅱ这是t个 只
读/只 写的寄存嚣r即 该寄存器的费寮 卒以自外部处
理器写入,但 勋 !申 外邯咎淫带从该寄存器诔串”内
谷 却矛不是由外鄂处理带罕
∶
嘹 `。
`|∶
|∴
MC⒕ 5夕 ⒃|船 0∝咄油撵圭蚰 存钳的陀祷
蛰 i窜 ii△ 拿 ∷1Ⅱ ¨
分配如下:
:宝
|i}∶ ∷
1{kⅠ
土榨枝煮挂钿 窗裔 染 ⒒dB虫 o。 j莛 u/Δ
∶
′
律选择 位:∶ 控制蓍芯片 |PcM绌 镣 泗 帑 的 ェ 作 方
式。置位时 -选 择 Δ 律压扩方甙 舳 莳 ;选 挣 u律 压
′
扩方式
:ˉ
∴
¨
‘ ∶
:∴
:BEO∶ 呸
1BRO・ 3为 Mo⒕ 5虫 o操 作 /测 试模式控
对 Bn9寄 存毋进行读操作 ,将 使外 鄂处 理器得剽
^的
信号经 ΔDq转 换弓 9馋 出” Pq肛 二
卩客⒊;i 》
当BBO寄 存貉 中岣操乍猁 试摸 本拄 制位叩 0.4、
FrI吖
时Ⅱ外 邯雉漯 拙时 卩尽9寄 存 帘
::O・ 3被 设置成
∷
呻写操作P、 将可 u谭 伊窟 :chC∷
码寐遇绮I冷 叩M绸
丬
码器 的输入端。 这梓 ,崔 进入 ΔDPCM编 码以前广
外
舯
午 △DPcM解 码输出寄衤
碱 附表给出础 满陀侍舾 柚朱桡镪 合脐选摔:揣
V 锶
∴ ΔDPC卫盘
未同的撅作/mJ破 谀式。∷. ∷Ⅱ
Ⅱ、
{由
Ⅱ
I~
钺。
如附狡 中所示∫
前两种都是 芷膏莳 上作拶
~
莒涫卢蕃氨
蛰
MOTOROLA
Order this document
by MC145540/D
SEMICONDUCTOR TECHNICAL DATA
MC145540
Advance Information
MC145540 ADPCM Codec
This document contains information on a new product. Specifications and information herein are subject to change without notice.
REV 0
 Motorola, Inc. 1997
This page intentionally left blank.
TABLE OF CONTENTS
SECTION 1
GENERAL DESCRIPTION
1.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-1
1.2
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-1
SECTION 2
DEVICE DESCRIPTION
2.1
2.2
MC145540 ADPCM CODEC DEVICE DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1
PCM Codec-Filter Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1
2-1
2.1.2
ADPCM Transcoder Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3
2.1.3
Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4
MC145540
2.2.1
2.2.1.1
2.2.1.2
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog Signal Processing Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Signal Processing Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4
2-4
2-4
2-4
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.3.1
2.2.2.3.2
2.2.2.3.3
Analog Interface and Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Analog Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Analog Output Drivers and Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2.2.3
Sidetone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-7
2.2.4
Universal Tone Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-7
2.2.5
Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-7
2.2.6
Signal Processing Clock (SPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-7
2.2.7
2.2.7.1
2.2.7.2
Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Long Frame Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Frame Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-8
2-8
2-9
2.3
PIN ASSIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-10
2.4
PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1
Power Supply Pins (VSS, VEXT, VDSP, VDD, VAG, C1 –, C1 +) . . . . . . . . . . . . . . . . . . .
2.4.2
Analog Interface Pins (TG, TI –, TI +, RO, AXO –, AXO +, PI, PO –, PO +) . . . . . . . . . . . .
2.4.3
ADPCM/PCM Serial Interface (FST, BCLKT, DT, SPC, DR, BCLKR, FSR) . . . . . . . . . .
2.4.4
Serial Control Port (SCP) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.4.1
Byte Register Operations (PDI/RESET, SCP EN, SCP CLK, SCP Tx, SCP Rx) . . . . . . .
2-11
2-11
2-12
2-13
2-15
2-15
MOTOROLA
MC145540
i
SECTION 3
SERIAL CONTROL PORT REGISTERS
3.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3.2
REGISTER MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3.3
BIT DESCRIPTION LEGEND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3.4
BYTE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-3
3.4.1
BR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-3
3.4.2
BR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-4
3.4.3
BR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-5
3.4.4
BR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-6
3.4.5
BR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-6
3.4.6
BR5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
3.4.7
BR6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8
3.4.8
BR7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9
3.4.9
BR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10
3.4.10
BR9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10
3.4.11
BR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10
3.4.12
BR11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11
3.4.13
BR12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11
3.4.14
BR13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11
3.4.15
BR14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11
3.4.16
BR15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11
SECTION 4
ELECTRICAL SPECIFICATIONS
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
ii
MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
POWER SUPPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIGITAL LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ANALOG ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
POWER DRIVERS PI, PO+, PO–, AXO+, AXO– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ANALOG ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
POWER DRIVERS PI, PO+, PO–, AXO+, AXO– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ANALOG TRANSMISSION PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIGITAL SWITCHING CHARACTERISTICS, LONG FRAME SYNC
AND SHORT FRAME SYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
4-1
4-2
4-2
4-3
4-4
4-5
4-6
DIGITAL SWITCHING CHARACTERISTICS — SERIAL CONTROL PORT (SCP) . . . . . . . . .
4-10
MC145540
4-7
MOTOROLA
SECTION 5
PACKAGE DIMENSIONS
5.1
CASE OUTLINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-1
SECTION 6
APPLICATION CIRCUITS
6.1
SCHEMATIC DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-1
SECTION 7
PCB LAYOUT GUIDELINES
7.1
7.2
7.3
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PC BOARD MOUNTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
POWER SUPPLY, GROUND, AND NOISE CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . .
7-1
7-1
7-1
SECTION 8
PROGRAMMING THE MC145540 TONE GENERATORS
8.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8-1
8.1.1
8.1.2
8.1.3
8-2
8-3
8.1.4
MOTOROLA
Programing the Tone Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tone Frequency Coefficient Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tone Frequency Coefficient Calculation using Integer Mathematics for
Decimal to Hexadecimal Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tone Attenuation Coefficient Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MC145540
8-4
8-4
iii
LIST OF FIGURES
Figure
#
iv
Page
#
Title
2-1
MC145540 ADPCM Codec Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2
2-2
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-10
2-3
Long Frame Sync — 64 kbps PCM Data Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-14
2-4
Long Frame Sync — 32 kbps ADPCM Data Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-14
2-5
Long Frame Sync — 24 kbps ADPCM Data Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-14
2-6
Long Frame Sync — 16 kbps ADPCM Data Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-15
2-7
Short Frame Sync — 32 kbps ADPCM Data Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-15
2-8
SCP Byte Register Write Operation Using Double 8-Bit Transfer . . . . . . . . . . . . . . . . . . . . .
2-16
2-9
SCP Byte Register Write Operation Using Single 16-Bit Transfer . . . . . . . . . . . . . . . . . . . .
2-16
2-10
SCP Byte Register Read Operation Using Double 8-Bit Transfer . . . . . . . . . . . . . . . . . . . . .
2-16
2-11
SCP Byte Register Read Operation Using Single 16-Bit Transfer . . . . . . . . . . . . . . . . . . . .
2-16
4-1
MC145540 Long Frame Sync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-8
4-2
MC145540 Short Frame Sync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-9
4-3
MC145540 Serial Control Port (SCP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-11
5-1
Plastic DIP Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-1
5-2
Plastic SOG Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-1
6-1
MC145540 Handset Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-1
6-2
MC145540 Transformer Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-2
6-3
MC145540 Transformer + Speaker Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-2
MC145540
MOTOROLA
LIST OF TABLES
Figure
#
Title
Page
#
2-1
PCM Full Scale and Zero Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-8
2-2
PCM Codes for Digital mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-8
3-1
Bit Read/Write Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3-2
Byte Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2
3-3
Input/Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-3
3-4
Sidetone Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-4
3-5
Transmit Analog Trim Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-4
3-6
Receive Analog Trim Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-5
3-7
Digital Receive Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-6
3-8
Tone Generator Address Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
3-9
Tone Generator Coefficients for DTMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8
8-1
Tone Generator Address Parameter Destinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8-2
8-2
Frequency Coefficients for Tone Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8-6
8-3
Attenuation Coefficients for Tone Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8-34
MOTOROLA
MC145540
v
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
vi
MC145540
MOTOROLA
1
GENERAL DESCRIPTION
1.1
INTRODUCTION
The MC145540 ADPCM Codec is a single chip implementation of a PCM codec-filter and an ADPCM
encoder/decoder, and therefore provides an efficient solution for applications requiring the digitization
and compression of voiceband signals. This device is designed to operate over a wide voltage range,
2.7 to 5.25 V, and as such is ideal for battery powered as well as ac powered applications. The
MC145540 ADPCM Codec also includes a serial control port and internal control and status registers
that permit a microcontroller to exercise many built-in features.
The ADPCM Codec is designed to meet the 32 kbps ADPCM conformance requirements of CCITT
Recommendation G.721 and ANSI T1.301. It also meets ANSI T1.303 and CCITT Recommendation
G.723 for 24 kbps ADPCM operation, and the 16 kbps ADPCM standard, CCITT Recommendation
G.726. This device also meets the PCM conformance specification of the CCITT G.714 Recommendation.
1.2
FEATURES
Key features of the MC145540 ADPCM Codec include:
•
•
•
•
•
•
•
•
•
•
•
•
MOTOROLA
Single 2.7 to 5.25 V Power Supply
Typical 3 V Power Dissipation of 55 mW, Power Down of 0. 15 mW
Differential Analog Circuit Design for Lowest Noise
Complete Mu-Law and A-Law Companding PCM Codec/Filter
ADPCM Transcoder for 64, 32, 24, and 16 kbps data rates
Universal Programmable Dual Tone Generator
Programmable Transmit Gain, Receive Gain, and Sidetone Gain
Low Noise, High Gain, Three Terminal Input Operational Amplifier for Microphone Interface
Push-Pull 300 Ω Power Drivers with External Gain Adjust for Receiver Interface
Push-Pull 300 Ω Auxiliary Output Drivers for Ringer Interface
Voltage Regulated Charge Pump to Power the Analog Circuitry in Low Voltage Applications
Receive Side Noise Burst Detect Algorithm
MC145540
1-1
1-2
MC145540
MOTOROLA
2
DEVICE DESCRIPTION
2.1
MC145540 ADPCM CODEC DEVICE DESCRIPTION
The MC145540 is a single channel Mu-Law or A-Law companding PCM codec-filter with an ADPCM
encoder/decoder operating on a single voltage power supply from 2.7 to 5.25 V.
The MC145540 ADPCM Codec is a complete solution for digitizing and reconstructing voice in compliance with CCITT G.714, G.721, G.723, G.726 and ANSI T1.301 and T1.303 for 64, 32, 24, and
16 kbps. This device satisfies the need for high quality, low power, low data rate voice transmission and
storage applications and is offered in 28-pin DIP and SOG packages.
Referring to Figure 2-1, the main functional blocks of the MC145540 are the switched capacitor
technology PCM codec-filter, the DSP based ADPCM encoder/decoder, and the voltage regulated
charge pump. As an introduction to the functionality of the ADPCM Codec, a basic description of these
functional blocks follows.
2.1.1
PCM Codec-Filter Block Description
A PCM codec-filter is a device used for digitizing and reconstructing the human voice. These devices
were developed primarily for the telephone network to facilitate voice switching and transmission. Once
the voice is digitized, it may be switched by digital switching methods or transmitted long distance (T1,
microwave, fiber optics, satellites, etc.) without degradation. The name codec is an acronym from
“COder” for the analog-to-digital converter (ADC) used to digitize voice, and “DECoder” for the digitalto-analog converter (DAC) used for reconstructing voice. A codec is a single device that does both the
ADC and DAC conversions.
To digitize voice intelligibly requires a signal to distortion of about 30 dB for a dynamic range of about
40 dB. This may be accomplished with a linear 13-bit ADC and DAC, but will far exceed the required
signal to distortion at amplitudes greater than 40 dB below the peak amplitude. This excess performance is at the expense of bits of data per sample. Two methods of data reduction are implemented by
compressing the 13-bit linear scheme to companded 8-bit schemes. These companding schemes follow a segmented or “piecewise-linear” curve formatted as sign bit, three chord bits, and four step bits.
For a given chord, all 16 of the steps have the same voltage weighting. As the voltage of the analog input
increases, the four step bits increment and carry to the three chord bits, which increment. When the
chord bits increment, the step bits double their voltage weighting. This results in an effective resolution
of six bits (sign + chord + four step bits) across a 42 dB dynamic range (seven chords above zero, by
6 dB per chord). There are two companding schemes used: Mu-255 Law specifically in North America,
and A-Law specifically in Europe. These companding schemes are accepted world wide.
MOTOROLA
MC145540
2-1
2-2
PO+
ANALOG INTERFACE
AND
CODECĆFILTER
-1
DIGITAL SIGNAL PROCESSOR
+
PO-
DR
FSR
MC145540
Figure 2-1. MC145540 ADPCM Codec Block Diagram
LINEAR TO
COMPANDED
DAC
RO
AXO-
TRIM GAIN
AND FILTER
AXO+
V AG
2.4 VOLT
REFERENCE
-
FSR LENGTH
CIRCUITRY
BCLKR
Σ
BCLKT
FST LENGTH
CIRCUITRY
SIDETONE
GAIN
TRIM GAIN
AND FILTER
+
NOISEĆBURST
DETECT CIRCUIT
UNIVERSAL
DUAL TONE
GENERATOR
TG
TI+
INPUT SHIFT
REGISTER
-
PI
TI-
ADPCM
DECODER
RECEIVE
DIGITAL GAIN
ADPCM SERIAL
DATA PORT
COMPANDED
TO LINEAR
ADC
ADPCM
ENCODER
OUTPUT SHIFT
REGISTER
FST
DT
POWER SUPPLY MANAGEMENT
SUBSYSTEM
V DD
5 VOLT
REGULATED
CHARGE PUMP
FOR CODECĆFILTER
ANALOG
PROCESSING
MOTOROLA
C1+
C1-
VSS
3 VOLT
REGULATOR FOR
DIGITAL SIGNAL
PROCESSOR
V EXT
V DSP
SEQUENCE
AND
CONTROL
SERIAL CONTROL PORT
SCP EN
SCP CLK
SCP RX
SCP TX
PDI/RESET
SPC
In a sampling environment, Nyquist theory says that to properly sample a continuous signal, it must be
sampled at a frequency higher than twice the signal’s highest frequency component. Voice contains
spectral energy above 3 kHz, but its absence is not detrimental to intelligibility. To reduce the digital
data rate, which is proportional to the sampling rate, a sample rate of 8 kHz was adopted, consistent
with a bandwidth of 3 kHz. This sampling requires a low-pass filter to limit the high frequency energy
above 3 kHz from distorting the inband signal. The telephone line is also subject to 50/60 Hz power line
coupling, which must be attenuated from the signal by a high-pass filter before the analog-to-digital
converter.
The digital-to-analog conversion process reconstructs a staircase version of the desired inband signal
which has spectral images of the inband signal modulated about the sample frequency and its harmonics. These spectral images are called aliasing components which need to be attenuated to obtain the
desired signal. The low-pass filter used to attenuate these aliasing components is typically called a
reconstruction or smoothing filter.
The MC145540 ADPCM Codec incorporates this codec function as one of its main functional blocks.
2.1.2
ADPCM Transcoder Block Description
An Adaptive Differential PCM (ADPCM) transcoder is used to reduce the data rate required to transmit a
PCM encoded voice signal while maintaining the voice fidelity and intelligibility of the PCM signal.
The ADPCM transcoder is used on both Mu-Law and A-Law 64 kbps data streams which represent
either voice or voice band data signals that have been digitized by a PCM codec-filter. The PCM to
ADPCM encoder section of this transcoder has a type of linear predicting digital filter which is trying to
predict the next PCM sample based on the previous history of the PCM samples. The ADPCM to PCM
decoder section implements an identical linear predicting digital filter. The error or difference between
the predicted and the true PCM input value is the information that is sent from the encoder to the decoder as an ADPCM word. The characteristics of this ADPCM word include the number of quantized steps
(this determines the number of bits per ADPCM word) and the actual meaning of this word is a function
of the predictor’s output value, the error signal, and the statistics of the history of PCM words. The term
“adaptive” applies to the transfer function of the filter that generates the ADPCM word which adapts to
the statistics of the signals presented to it. This means that an ADPCM word ‘3’ does not have the same
absolute error voltage weighting for the analog signal when the channel is quiet as it does when the
channel is processing a speech signal. The ADPCM to PCM decoder section has a reciprocating filter
function which interprets the ADPCM word for proper reconstruction of the PCM sample.
The adaptive characteristics of the ADPCM algorithm make it difficult to analyze and quantify the
performance of the ADPCM code sequence. The 32 kbps algorithm was optimized for both voice and
moderate speed modems ( 4800 baud). This optimization includes that the algorithm supports the
voice frequency band of 300 Hz to 3400 Hz with minimal degradation for signal-to-distortion, gainversus-level, idle channel noise and other analog transmission performance. This algorithm has also
been subjected to audibility testing with many languages for Mean Opinion Score (MOS) ratings and
performed well when compared to 64 kbps PCM. The standards committees have specified multiple
16000 word test vectors for the encoder and for the decoder to verify compliance. To run these test
vectors, the device must be initialized to the reference state by resetting the device.
v
In contrast to 64 kbps PCM, the ADPCM words appear as random bit activity on an oscilloscope display
whether the audio channel is processing speech or a typical PCM idle channel with nominal bit activity.
The ADPCM algorithm does not support dc signals with the exception of digital quiet, which will result in
all ones in the ADPCM channel. All digital processing is performed on 13-bit linearizations of the 8-bit
PCM companded words, whether the words are Mu-Law or A-Law. This allows an ADPCM channel to
be intelligibly decoded into a Mu-Law PCM sequence or an A-Law PCM sequence irrespective of
whether it was originally digitized as Mu-Law or A-Law. There will be additional quantizing degradation if
the companding scheme is changed because the ADPCM algorithm is trying to reconstruct the original
13-bit linear codes, which included companding quantization.
MOTOROLA
MC145540
2-3
2.1.3
Charge Pump
The charge pump is the functional block that allows the analog signal processing circuitry of the
MC145540 to operate with a power supply voltage as low as 2.7 V. This analog signal processing circuitry includes the PCM codec-filter function, the transmit trim gain, the receive trim gain, the sidetone gain
control, and the transmit input operational amplifier. This circuitry does not dissipate much current but it
does require a nominal voltage of 5 V for the VDD power supply.
The charge pump block is a regulated voltage doubler that takes twice the current it supplies from the
voltage applied to the VEXT power supply pin, which may range from 2.7 to 5.25 V and generates the
required 5 V V DD supply. The charge pump block receives as inputs the VEXT supply voltage, the same
256 kHz clock that sequences the analog signal processing circuitry, and the Charge Pump Enable
signal from the SCP block. It also makes use of the capacitor connected to the C1+ and C1– pins and
the decoupling capacitor connected to the V DD pin.
2.2
MC145540 FUNCTIONAL DESCRIPTION
A more detailed description of the circuit functionality for the main functional blocks of the MC145540
follows.
2.2.1
2.2.1.1
Power Supply Configuration
ANALOG SIGNAL PROCESSING POWER SUPPLY
All analog signal processing is powered by the VDD pin at 5 V. This voltage may be applied directly to the
VDD pin or 5 V may be obtained by the on-chip 5 V regulated charge pump which is powered from the
VEXT pin. The VEXT pin is the main positive power supply pin for this device.
For applications that are not 5 V regulated, the on-chip 5 V regulated charge pump may be turned on
and C1 will be required. VDD will require a 1.0 µF decoupling capacitor to filter the voltage spikes of the
charge pump. This allows the VEXT power supply to be from 2.7 to 5.25 V. This mode of operation is
intended for hand held applications where three NiCad cells or three dry cells would be the power
supply.
The on-chip 5 V regulated charge pump is a single stage charge pump that effectively series regulates
the amount of voltage it generates and internally applies this regulated voltage to the VDD pin. This 5 V
voltage is developed by connecting the external 0.1 µF capacitor, C1, between the VEXT power supply
pin and the power supply ground pin, VSS. This puts a charge of as much as 2.7 V on C1. The charge
pump circuitry then connects the negative lead of C1 to the VEXT pin, which sums the voltage of C1 with
the voltage at VEXT for a minimum potential voltage of 5.4 V. The charge voltage on C1 is regulated such
that the summing of voltages is regulated to 5 V. This limits all of the voltages on the device to safe levels
for this IC fabrication technology. This charge pumped voltage is then stored on the 1.0 µF capacitor
connected at VDD and VSS, which filters and serves as a reservoir for power. The clock period for this
charge pump is the same 256 kHz as the analog sequencing clock, minimizing noise problems.
For applications with a regulated 5 V (± 5%) power supply, the VDD pin and the VEXT pin are connected
to the 5 V power supply. These pins may share one decoupling capacitor in this configuration as a
function of external noise on the power supply. The on-chip 5 V regulated charge pump should be
turned off via the SCP port at register zero. The external capacitor, C1, should not be populated for
these applications.
2.2.1.2
DIGITAL SIGNAL PROCESSING POWER SUPPLY
This device has an on-chip series regulator which limits the voltage of the Digital Signal Processing
(DSP) circuitry to about 3 V. This reduces the maximum power dissipation of this circuitry. From the
VEXT power supply pin, the DSP circuitry appears as a constant current load instead of a resistive
(CV2 /2) load for a constant clock frequency. This series regulator is designed to have a low drop-out
voltage, which allows the DSP circuitry to work when the VEXT voltage is as low as 2.7 V. The output of
this regulator is brought out to the VDSP pin for a 0.1 µF decoupling capacitor. This regulator is not
designed to power any loads external to the device.
2-4
MC145540
MOTOROLA
2.2.2
2.2.2.1
Analog Interface and Signal Path
TRANSMIT ANALOG
The transmit analog portion of this device includes a low-noise, three terminal operational amplifier
capable of driving a 2 kΩ load. This op amp has inputs of TI+ and TI – and its output is TG. This op amp is
intended to be configured in an inverting gain circuit. The analog signal may be applied directly to the TG
pin if this transmit op amp is independently powered down. Power down may be achieved by connecting
both the TI+ and TI – inputs to the VDD pin. The TG pin becomes high impedance when the transmit op
amp is powered down. The TG pin is internally connected to a time continuous three-pole anti-aliasing
pre-filter. This pre-filter incorporates a two-pole Butterworth active low-pass filter, followed by a single
passive pole. This pre-filter is followed by a single-ended to differential converter that is clocked at
512 kHz. All subsequent analog processing utilizes fully differential circuitry. The output of the differential converter is followed by the transmit trim gain stage. This stage is intended to compensate for gain
tolerances of external components such as microphones. The amount of gain control is 0 to 7 dB in 1 dB
steps. This stage accommodates only positive gain because the maximum signal levels of the output of
the input op amp are the same as the transmit filter and ADC, which should nominally be next to the clip
levels of this device’s circuitry. Any requirement for attenuation of the output of the input op amp would
mean that it is being overdriven. The gain is programmed via the SCP port in BR1 (b2:b0). The next
section is a fully-differential, 5-pole switched-capacitor low-pass filter with a 3.4 kHz frequency cutoff.
After this filter is a 3-pole switched-capacitor high-pass filter having a cutoff frequency of about 200 Hz.
This high-pass stage has a transmission zero at dc that eliminates any dc coming from the analog input
or from accumulated op amp offsets in the preceding filter stages. (This high-pass filter may be removed
from the signal path under control of the SCP port BR8 (b4).) The last stage of the high-pass filter is an
autozeroed sample and hold amplifier.
One bandgap voltage reference generator and digital-to-analog converter (DAC) are shared by the
transmit and receive sections. The autozeroed, switched-capacitor bandgap reference generates precise positive and negative reference voltages that are virtually independent of temperature and power
supply voltage. A binary-weighted capacitor array (CDAC) forms the chords of the companding structure, while a resistor string (RDAC) implements the linear steps within each chord. The encode process
uses the DAC, the voltage reference, and a frame-by-frame autozeroed comparator to implement a
successive-approximation analog-to-digital conversion (ADC) algorithm. All of the analog circuitry involved in the data conversion (the voltage reference, RDAC, CDAC, and comparator) are implemented
with a differential architecture.
The nonlinear companded Mu-Law transfer curve of the ADC may be changed to 8-bit linear by BR8
(b5).
The input to the ADC is normally connected to the output of the transmit filter section, but may be
switched to measure the voltage at the VEXT pin for battery voltage monitoring. This is selected by the
I/O Mode in BR0 (b4:b3). In this mode, the ADC is programmed to output a linear 8-bit PCM word for the
voltage at VEXT which is intended to be read in BR9 (b7:b0). The data format for the ADC output is a
Don’t Care for the sign bit and seven magnitude bits. The scaling for the ADC is for 6.3 V at VEXT equals
full scale (BIN X111 1111). The ADPCM algorithm does not support dc signals.
2.2.2.2
TRANSMIT DIGITAL
The Digital Signal Processor (DSP) section of this device is a custom designed, interrupt driven, microcoded machine optimized for implementing the ADPCM algorithms. In the full duplex speech mode, the
DSP services one encode interrupt and one decode interrupt per frame (125 µs). The encode algorithm
(i.e., 16 kbps, 24 kbps, or 32 kbps ADPCM, or 64 kbps PCM) is determined by the length of the transmit
output enable at the FST pin. The length of the FST enable measured in transmit data clock (BCLKT)
cycles tells the device which encoding rate to use. This enable length information is used by the encoder
each frame. The transmit ADPCM word corresponding to this request will be computed during the next
frame and will be available a total of two frames after being requested. This transmit enable length
information can be delayed by the device an additional four frames corresponding to a total of six
frames. These six frames of delay allow the device to be clocked with the same clocks for both transmit
(encode) and receive (decode), and to be frame aligned for applications that require every sixth frame
signaling. It is important to note that the enable length information is delayed and not the actual ADPCM
MOTOROLA
MC145540
2-5
(PCM) sample word. The amount of delay for the FST enable length is controlled in BR7 (b5). If the FST
enable goes low before the falling edge of BCLKT during the last bit of the ADPCM word, the digital data
output circuitry counts BCLKT cycles to keep the data output (DT pin) low impedance for the duration of
the ADPCM data word (2, 3, 4, or 8 BCLKT cycles) minus one half of a BCLKT cycle.
2.2.2.3
2.2.2.3.1
RECEIVE
Receive Digital
The receive digital section of this device accepts serial ADPCM (PCM) words at the DR pin under the
control of the BCLKR and FSR pins. The FSR enable duration, measured in BCLKR cycles, tells the
device which decode algorithm (i.e., 16 kbps, 24 kbps, or 32 kbps ADPCM, or 64 kbps PCM) the DSP
machine should use for the word that is being received at the DR pin. This algorithm may be changed on
a frame by frame basis.
The DSP machine receives an interrupt when an ADPCM word has been received and is waiting to be
decoded into a PCM word. The DSP machine performs a decode and an encode every frame when the
device is operating in its full duplex conversation mode. The DSP machine decodes the ADPCM word
according to CCITT G.726 for 32 kbps, 24 kbps, and 16 kbps. This decoding includes the correction for
the CCITT/ANSI Sync function, except when the receive digital gain is used. The receive digital gain is
anticipated to be user adjustable gain control in handset applications where as much as 12 dB of gain or
more than 12 dB of attenuation may be desirable. The receive digital gain is a linear multiply performed
on the 13-bit linear data before it is converted to Mu-Law or A-Law, and is programmed via the SCP port
in BR3 (b7:b0). The decoded PCM word may be read via the SCP port in BR10 (b7:b0).
2.2.2.3.2
Receive Analog Signal Processing
The receive analog signal processing section includes the DAC described above, a sample and hold
amplifier, a trim gain stage, a 5-pole 3400 Hz switched capacitor low-pass filter with sinX/X correction,
and a 2-pole active smoothing filter to reduce the spectral components of the switched capacitor filter.
(The receive low-pass smoothing filter may be removed from the signal path for the additional spectral
components for applications using the on-chip tone generator function described below. This low-pass
filter performs the sinX/X compensation. The receive filter is removed from the circuit via the SCP in
BR2(b4).) The input to the smoothing filter is the output to the receive trim gain stage. This stage is
intended to compensate for gain tolerances of external components such as handset receivers. This
stage is capable of 0 to 7 dB of attenuation in 1 dB steps. This stage accommodates only attenuation
because the nominal signal levels of the DAC should be next to the clip levels of this device’s circuitry
and any positive gain would overdrive the outputs. The gain is programmed via the SCP port in BR2
(b2:b0).The output of the 2-pole active smoothing filter is buffered by an amplifier which is output at the
RO pin. This output is capable of driving a 2 kΩ load to the VAG pin.
2.2.2.3.3
Receive Analog Output Drivers and Power Supply
The high current analog output circuitry (PO +, PO –, PI, AXO +, AXO –) is powered by the VEXT power
supply pin. Due to the wide range of VEXT operating voltages for this device, this circuitry and the RO pin
have a programmable reference point of either VAG (2.4 V) or VEXT /2. In applications where this device
is powered with 5 V, it is recommended that the dc reference for this circuitry be programmed to VAG.
This allows maximum output signals for driving high power telephone line transformer interfaces and
loud speaker/ringers. For applications that are battery powered, VAG will still be 2.4 V, but the receive
analog output circuitry will be powered from as low as 2.7 V. To optimize the output power, this circuitry
should be referenced to one half of the battery voltage, VEXT /2. The RO pin is powered by the VDD pin,
but its dc reference point is programmed the same as the high current analog output circuitry.
This device has two pairs of power amplifiers that are connected in a push-pull configuration. These
push-pull power driver pairs have similar drive capabilities, but have different circuit configurations and
different intended uses. The PO + and PO – power drivers are intended to accommodate large gain
ranges with precise adjustment by two external resistors for applications such as driving a telephone
line or a handset receiver. The PI pin is the inverting input to the PO – power amplifier. The non-inverting
input is internally tied to the same reference as the RO output. This allows this amplifier to be used in an
inverting gain circuit with two external resistors. The PO + amplifier has a gain of –1, and is internally
connected to the PO – output. This complete power amplifier circuit is a differential (push-pull) amplifier
2-6
MC145540
MOTOROLA
with adjustable gain which is capable of driving a 300 Ω load to +12 dBm when VEXT is 5 V. The PO +
and PO – outputs are intended to drive loads differentially and not to VSS or VAG. The PO + and PO –
power amplifiers may be powered down independently of the rest of the chip by connecting the PI pin to
VDD or in BR2 (b5).
The other paired power driver outputs are the AXO + and AXO – Auxiliary outputs. These push-pull
output amplifiers are intended to drive a ringer or loud speaker with impedance as low as 300 Ω to
+12 dBm when VEXT is 5 V. The AXO + and AXO – outputs are intended to drive loads differentially and
not to VSS or VAG. The AXO + and AXO – power amplifiers may be powered down independently of the
rest of the chip via the SCP port in BR2 (b6).
2.2.3
Sidetone
The Sidetone function of this device allows a controlled amount of the output from the transmit filter to be
summed with the output of the DAC at the input to the receive low-pass filter. The sidetone component
has gains of –8.5 dB, –10.5 dB, –12.0 dB, –13.5 dB, –15.0 dB, –18.0 dB, –21.5 dB, and –70 dB. The
sidetone function is controlled by the SCP port in BR1 (b6:b4).
v
2.2.4
Universal Tone Generator
The Universal Dual Tone Generator function supports both the transmit and the receive sides of this
device. When the tone generator is being used, the decoder function of the DSP circuit is disabled. The
output of the tone generator is made available to the input of the receive digital gain function for use at
the receive analog outputs. In handset applications, this could be used for generating DTMF, distinctive
ringing or call progress feedback signals. In telephone line interface applications, this tone generator
could be used for signaling on the line. The tone generator output is also available for the input to the
encoder function of the DSP machine for outputting at the DT pin. This function is useful in handset
applications for non-network signaling such as information services, answering machine control, etc. At
the network interface side of a cordless telephone application, this function could be used for dialing
feedback or call progress to the handset. The tone generator function is controlled by the SCP port in
BR4, BR5, and BR7. The tone generator does not work when the device is operated in 64 kbps mode,
except when analog loopback is enabled at BR0 (b5). For more information on programming the tone
generators, see Section 8.
2.2.5
Power Down
There are two methods of putting all of this device into a low power consumption mode that makes the
device nonfunctional and consumes virtually no power. PDI/RESET is the power down input and reset
pin which, when taken low for 10 SPC clock cycles or more, powers down the device. Another way to
power the device down is by the SCP port at BR0. BR0 allows the analog section of this device to be
powered down individually and/or the digital section of this device to be powered down individually.
When the chip is powered down, the VAG, TG, RO, PO +, PO –, AXO +, AXO –, DT, and SCP Tx outputs
are high impedance . To return the chip to the power up state, PDI/RESET must be high and the SPC
clock and the FST or the FSR frame sync pulses must be present. The ADPCM algorithm is reset to the
CCITT initial state following the reset transition from low-to-high logic states. The DT output will remain
in a high-impedance state for at least two FST pulses after power up.
2.2.6
Signal Processing Clock (SPC)
This is the clock that sequences the DSP circuit. This clock may be asynchronous to all other functions
of this device. Clock frequencies of 20.48 MHz or 20.736 MHz are recommended. This clock is also
used to drive a digitally phase locked prescaler that is referenced to FST (8 kHz) and automatically
determines the proper divide ratio to use for achieving the required 256 kHz internal sequencing clock
for all analog signal processing, including analog-to-digital conversion, digital-to-analog conversion,
transmit filtering, receive filtering, and analog gain functions of this device and the charge pump.
The SPC input accepts an input clock frequency from 20.48 to 23.04 MHz. This clock frequency should
be a multiple of 256 kHz within a tolerance of ± 10 SPC clock cycles per FST rising edge. For an FST of
8 kHz without jitter, this equates to a tolerance of ± 80 kHz. The total tolerance is measured in SPC
MOTOROLA
MC145540
2-7
cycles per FST rising edge. If FST has jitter, the jitter must be measured in SPC clock cycles which will
be subtracted from 10, and the frequency tolerance for SPC should be tightened accordingly. (The SPC
clock may be optionally specified for higher frequencies. Contact the factory for more information.)
The analog sequencing function of the SPC clock may be eliminated by reprogramming the device to
use the BCLKR pin as the direct input for the required 256 kHz analog sequencing clock. The 256 kHz
clock applied at BCLKR must be an integer 32 times the FST 8 kHz clock and be approximately rising
edge aligned with the FST rising edge. This mode requires that the transmit and receive ADPCM transfers be controlled by the BCLKT pin. This is reprogrammed via the SCP port in BR0 (b7).
2.2.7
Digital I/O
The MC145540 is programmable for Mu-Law or A-Law. The timing for the PCM data transfer is independent of the companding scheme selected. Table 2-1 shows the 8-bit data word format for positive
and negative zero and full scale for both 64 kbps companding schemes. Refer to Section 2.4.3, Figures
2-3 through 2-7, for a summary and comparison of the five PCM data interface modes of this device.
2.2.7.1
LONG FRAME SYNC
Long Frame Sync is the industry name for one type of clocking format which controls the transfer of the
ADPCM or PCM data words. Refer to Section 2.4.3, Figures 2-3 through 2-6. The “Frame Sync” or
“Enable” is used for two specific synchronizing functions. The first is to synchronize the PCM data word
transfer, and the second is to control the internal analog-to-digital and digital-to-analog conversions.
The term “Sync” refers to the function of synchronizing the PCM data word onto or off of the multiplexed
serial PCM data bus, also known as a PCM highway. The term “Long” comes from the duration of the
frame sync measured in PCM data clock cycles. Long Frame Sync timing occurs when the frame sync is
used directly as the PCM data output driver enable. This results in the PCM output going low impedance
with the rising edge of the transmit frame sync, and remaining low impedance for the duration of the
transmit frame sync.
Table 2-1. PCM Full Scale and Zero Words
Mu-Law
Level
A-Law
Sign Bit
Chord Bits
Step Bits
Sign Bit
Chord Bits
Step Bits
+ Full Scale
1
0 0 0
0 0 0 0
1
0 1 0
1 0 1 0
+ Zero
1
1 1 1
1 1 1 1
1
1 0 1
0 1 0 1
– Zero
0
1 1 1
1 1 1 1
0
1 0 1
0 1 0 1
– Full Scale
0
0 0 0
0 0 0 0
0
0 1 0
1 0 1 0
Table 2-2. PCM Codes for Digital mW
Mu-Law
Phase
2-8
A-Law
Sign Bit
Chord Bits
Step Bits
Sign Bit
Chord Bits
Step Bits
π/8
0
0 0 1
1 1 1 0
0
0 1 1
0 1 0 0
3π/8
0
0 0 0
1 0 1 1
0
0 1 0
0 0 0 1
5π/8
0
0 0 0
1 0 1 1
0
0 1 0
0 0 0 1
7π/8
0
0 0 1
1 1 1 0
0
0 1 1
0 1 0 0
9π/8
1
0 0 1
1 1 1 0
1
0 1 1
0 1 0 0
11π/8
1
0 0 0
1 0 1 1
1
0 1 0
0 0 0 1
13π/8
1
0 0 0
1 0 1 1
1
0 1 0
0 0 0 1
15π/8
1
0 0 1
1 1 1 0
1
0 1 1
0 1 0 0
MC145540
MOTOROLA
The implementation of Long Frame Sync for this device has maintained industry compatibility and been
optimized for external clocking simplicity. The PCM data output goes low impedance with the rising
edge of the FST pin but the MSB of the data is clocked out due to the logical AND of the transmit frame
sync (FST pin) with the transmit data clock (BCLKT pin). This allows either the rising edge of the FST
enable or the rising edge of the BCLKT data clock to be first. This implementation includes the PCM
data output remaining low impedance until the middle of the LSB (seven and a half data clock cycles for
64 kbps PCM, three and a half data clock cycles for 32 kbps ADPCM, etc.). This allows the frame sync
to be approximately rising edge aligned with the initiation of the PCM data word transfer but the frame
sync does not have a precise timing requirement for the end of the PCM data word transfer. This prevents bus contention between similar devices on a common bus. The device recognizes Long Frame
Sync clocking when the frame sync is held high for two consecutive falling edges of the transmit data
clock.
In the full duplex speech mode, the DSP services one encode interrupt and one decode interrupt per
frame (125 µs). The encode algorithm (i.e., 16 kbps, 24 kbps, or 32 kbps ADPCM, or 64 kbps PCM) is
determined by the length of the transmit output enable at the FST pin. The length of the FST enable
measured in transmit data clock (BCLKT) cycles tells the device which encoding rate to use. This enable length information is used by the encoder each frame. The transmit ADPCM word corresponding to
this request will be computed during the next frame and be available a total of two frames after being
requested. This transmit enable length information can be delayed by the device an additional four
frames corresponding to a total of six frames. This six frames of delay allows the device to be clocked
with the same clocks for both transmit (encode) and receive (decode), and to be frame aligned for
applications that require every sixth frame signaling. It is important to note that the enable length information is delayed and not the actual ADPCM (PCM) sample word. The amount of delay for the FST
enable length is controlled by the SCP port at BR7 (b5). The digital data output circuitry counts BCLKT
cycles to keep the data output (DT pin) low impedance for the duration of the ADPCM data word (2, 3, 4,
or 8 BCLKT cycles) minus one half of a BCLKT cycle.
The length of the FST enable tells the DSP what encoding algorithm to use. The transmit logic decides
on each frame sync whether it should interpret the next frame sync pulse as a Long or a Short Frame
Sync. The device is designed to prevent PCM bus contention by not allowing the PCM data output to go
low impedance for at least two frame sync cycles after power is applied or when coming out of the
power-down mode.
The receive side of the device is designed to accept the same frame sync and data clock as the transmit
side and to be able to latch its own transmit PCM data word. Thus the PCM digital switch only needs to
be able to generate one type of frame sync for use by both transmit or receive sections of the device.
The logical AND of the receive frame sync with the receive data clock tells the device to start latching the
serial word into the receive data input on the falling edges of the receive data clock. The internal receive
logic counts the receive data clock falling edges while the FSR enable is high and transfers the enable
length and the PCM data word into internal registers for access by the DSP machine which also sets the
DSP’s decoder interrupt.
The receive digital section of this device accepts serial ADPCM (PCM) words at the DR pin under the
control of the BCLKR and FSR pins. The FSR enable duration measured in BCLKR cycles, tells the
device which decode algorithm (i.e., 16 kbps, 24 kbps, or 32 kbps ADPCM, or 64 kbps PCM) the DSP
machine should use for the word that is being received at the DR pin. This algorithm may be changed on
a frame by frame basis.
When the device is programmed to be in the PCM Codec mode by BR0 (4:3), the device will output and
input the complete 8-bit PCM words using the long frame sync clocking format as though the FST and
FSR pulses were held high for eight data clock cycles.
The DSP machine receives an interrupt when an ADPCM word has been received and is waiting to be
decoded into a PCM word. The DSP machine performs a decode and an encode every frame when the
device is operating in its full duplex conversation mode. The DSP machine decodes the ADPCM word
according to CCITT G.726 for 32 kbps, 24 kbps, and 16 kbps.
MOTOROLA
MC145540
2-9
2.2.7.2
SHORT FRAME SYNC
Short Frame Sync is the industry name for this type of clocking format which controls the transfer of the
ADPCM data words. Refer to Section 2.4.3, Figure 2-7. This device uses Short Frame Sync timing for
32 kbps ADPCM only. The “Frame Sync” or “Enable” is used for two specific synchronizing functions.
The first is to synchronize the ADPCM data word transfer, and the second is to control the internal
analog-to-digital and digital-to-analog conversions. The term “Sync” refers to the function of synchronizing the ADPCM data word onto or off of the multiplexed serial ADPCM data bus, also known as a
PCM highway. The term “Short” comes from the duration of the frame sync measured in PCM data clock
cycles. Short Frame Sync timing occurs when the frame sync is used as a “pre-synchronization” pulse
that is used to tell the internal logic to clock out the ADPCM data word under complete control of the data
clock. The Short Frame Sync is held high for one falling data clock edge. The device outputs the
ADPCM data word beginning with the following rising edge of the data clock. This results in the ADPCM
output going low impedance with the rising edge of the transmit data clock, and remaining low impedance until the middle of the LSB (three and a half PCM data clock cycles).
The device recognizes Short Frame Sync clocking when the frame sync is held high for one and only
one falling edge of the transmit data clock. The transmit logic decides on each frame sync whether it
should interpret the next frame sync pulse as a Long or a Short Frame Sync. It is not recommended to
switch between Long Frame Sync and Short Frame Sync clocking without going through a power down
cycle due to bus contention problems. The device is designed to prevent PCM bus contention by not
allowing the ADPCM data output to go low impedance for at least two frame sync cycles after power is
applied or when coming out of a power-down mode.
The receive side of the device is designed to accept the same frame sync and data clock as the transmit
side and to be able to latch its own transmit ADPCM data word. Thus the PCM digital switch only needs
to be able to generate one type of frame sync for use by both transmit or receive sections of the device.
The falling edge of the receive data clock (BCLKR) latching a high logic level at the receive frame sync
(FSR) input tells the device to start latching the 4-bit ADPCM serial word into the receive data input on
the following four falling edges of the receive data clock. The internal receive logic counts the receive
data clock cycles and transfers the ADPCM data word to a register for access by the DSP.
When the device is programmed to be in the PCM Codec mode by BR0 (4:3), the device will output the
complete 8-bit PCM word using the short frame sync clocking format. The 8-bit PCM word will be
clocked out (or in) the same way that the 4-bit ADPCM word would be, except that the fourth bit will be
valid for the full BCLKT period and the eighth bit will be valid for only one half of the BCLKT period.
2.3
PIN ASSIGNMENT
The pin assignments for the MC145540 28-lead DIP and SOG packages are shown in Figure 2-2.
•
28
VDD
2
27
FSR
TG
1
TI TI+
3
26
BCLKR
VAG
4
25
DR
RO
5
24
C1+
23
C1-
22
VSS
21
SPC
MC145540P
28-LEAD PLASTIC DIP
CASE 710
28
1
AXO AXO +
VDSP
6
7
8
VEXT
9
20
DT
PI
10
19
BCLKT
PO -
11
18
FST
PO +
12
17
SCP Rx
PDI/RESET
13
16
SCP Tx
SCP EN
14
15
SCP CLK
MC145540DW
28-LEAD WIDE BODY SOG
CASE 751F
28
1
(TOP VIEW)
Figure 2-2. Pin Assignments
2-10
MC145540
MOTOROLA
2.4
PIN DESCRIPTIONS
The pin descriptions are listed in functional groups and provide detailed information about the particular
subsystem of the device and the associated pins.
2.4.1
Power Supply Pins
VSS
Negative Power Supply (Pin 22)
This is the most negative power supply and is typically connected to 0 V.
VEXT
External Power Supply Input (Pin 9)
This power supply input pin must be between 2.7 and 5.25 V. Internally, it is connected to the input of the
VDSP voltage regulator, the 5 V regulated charge pump, and all digital I/O including the Serial Control
Port and the ADPCM Serial Data Port. This pin is also connected to the analog output drivers (PO +,
PO–, AXO + and AXO –). This pin should be decoupled to VSS with a 0.1 µF ceramic capacitor. This pin
is internally connected to the VDD and VDSP pins when the device is powered down.
VDSP
Digital Signal Processor Power Supply Output (Pin 8)
This pin is connected to the output of the on-chip VDSP voltage regulator which supplies the positive
voltage to the DSP circuitry and to the other digital blocks of the ADPCM Codec. This pin should be
decoupled to VSS with a 0.1 µF ceramic capacitor. This pin cannot be used for powering external loads.
This pin is internally connected to the VEXT pin during power down to retain memory.
VDD
Positive Power Supply Input/Output (Pin 28)
This is the positive output of the on-chip voltage regulated charge pump and the positive power supply
input to the analog sections of the device. Depending on the supply voltage available, this pin can
function in one of two different operating modes.
When VEXT is supplied from a regulated 5 V ±5% power supply, VDD is an input and should be externally
connected to VEXT. Charge pump capacitor C1 should not be used and the charge pump should be
disabled in BR0 (b2). In this case VEXT and VDD can share the same 0.1 µF ceramic decoupling capacitor to VSS.
When VEXT is supplied from 2.70 to 5.25 V, such as battery powered applications, the charge pump
should be used. In this case VDD is the output of the on-chip voltage regulated charge pump and must
not be connected to VEXT. VDD should be decoupled to VSS with a 1.0 µF ceramic capacitor. This pin
cannot be used for powering external loads in this operating mode. This pin is internally connected to
the VEXT pin when the charge pump is turned off or the device is powered down.
VAG
Analog Ground Output (Pin 4)
This output pin provides a mid-supply analog ground regulated to 2.4 V. All analog signal processing
within this device is referenced to this pin. This pin should be decoupled to VSS with a 0.01 to 0.1 µF
ceramic capacitor. If the audio signals to be processed are referenced to VSS, then special precautions
must be utilized to avoid noise between VSS and the VAG pin. Refer to the applications information in this
document for more information. The VAG pin becomes high impedance when in analog power-down
mode.
C1–, C1+
Charge Pump Capacitor Pins (Pin 23 and 24)
These are the capacitor connections to the internal voltage regulated charge pump that generate the
VDD supply voltage. A 0.1 µF capacitor should be placed between these pins. Note that if an external
VDD is supplied, this capacitor should not be in the circuit.
MOTOROLA
MC145540
2-11
2.4.2
Analog Interface Pins
TG
Transmit Gain (Pin 1)
This is the output of the transmit gain setting operational amplifier and the input to the transmit bandpass filter. This op amp is capable of driving a 2 kΩ load to the VAG pin. When TI – and TI+ are connected
to VDD, the TG op amp is powered down and the TG pin becomes a high-impedance input to the transmit filter. All signals at this pin are referenced to the VAG pin. This pin is high impedance when the device
is in the analog power-down mode. This op amp is powered by the VDD pin.
TI –
Transmit Analog Input (Inverting) (Pin 2)
This is the inverting input of the transmit gain setting operational amplifier. Gain setting resistors are
usually connected from this pin to TG and from this pin to the analog signal source. The common mode
range of the TI + and TI– pins is from 1.0 V, to VDD – 2 V. Connecting this pin and TI + (pin 3) to VDD will
place this amplifier’s output (TG) in a high-impedance state, thus allowing the TG pin to serve as a
high-impedance input to the transmit filter.
TI+
Transmit Analog Input (Non-Inverting) (Pin 3)
This is the non-inverting input of the transmit input gain setting operational amplifier. This pin accommodates a differential to single ended circuit for the input gain setting op amp. This allows input signals that
are referenced to the VSS pin to be level shifted to the VAG pin with minimum noise. This pin may be
connected to the VAG pin for an inverting amplifier configuration if the input signal is already referenced
to the VAG pin. The common mode range of the TI+ and TI – pins is from 1.0 V, to VDD – 2 V. Connecting
this pin and TI – (pin 2) to VDD will place this amplifier’s output (TG) in a high-impedance state, thus
allowing the TG pin to serve as a high-impedance input to the transmit filter.
RO
Receive Analog Output (Pin 5)
This is the non-inverting output of the receive smoothing filter from the digital-to-analog converter. This
output is capable of driving a 2 kΩ load to 1.575 V peak referenced to the VAG pin. This pin may be dc
referenced to either the VAG pin or a voltage of half of VEXT by BR2 (b7). This pin is high impedance
when the device is in the analog power-down mode. This pin is high impedance except when it is enabled for analog signal output.
AXO–
Auxiliary Audio Power Output (Inverting) (Pin 6)
This is the inverting output of the auxiliary power output drivers. The Auxiliary Power Driver is capable of
differentially driving a 300 Ω load. This power amplifier is powered from VEXT and its output can swing to
within 0.5 V of VSS and VEXT. This pin may be dc referenced to either the VAG pin or a voltage of half of
VEXT by BR2 (b7). This pin is high impedance in power down. This pin is high impedance except when it
is enabled for analog signal output.
AXO+
Auxiliary Audio Power Output (Non-Inverting) (Pin 7)
This is the non-inverting output of the auxiliary power output drivers. The Auxiliary Power Driver is
capable of differentially driving a 300 Ω load. This power amplifier is powered from VEXT and its output
can swing to within 0.5 V of VSS and VEXT. This pin may be dc referenced to either the VAG pin or a
voltage of half of VEXT by BR2 (b7). This pin is high impedance in power down. This pin is high impedance except when it is enabled for analog signal output.
PI
Power Amplifier Input (Pin 10)
This is the inverting input to the PO– amplifier. The non-inverting input to the PO – amplifier may be dc
referenced to either the VAG pin or a voltage of half of VEXT by BR2 (b7). The PI and PO – pins are used
with external resistors in an inverting op amp gain circuit to set the gain of the PO + and PO – push-pull
2-12
MC145540
MOTOROLA
power amplifier outputs. Connecting PI to VDD will power down these amplifiers and the PO + and PO –
outputs will be high impedance.
PO–
Power Amplifier Output (Inverting) (Pin 11)
This is the inverting power amplifier output that is used to provide a feedback signal to the PI pin to set
the gain of the push-pull power amplifier outputs. This power amplifier is powered from VEXT and its
output can swing to within 0.5 V of VSS and VEXT. This should be noted when setting the gain of this
amplifier. This pin is capable of driving a 300 Ω load to PO + independent of supply voltage. The PO +
and PO – outputs are differential (push-pull) and capable of driving a 300 Ω load to 3.15 V peak, which is
6.3 V peak-to-peak when a nominal 5 V power supply is used for VEXT. The bias voltage and signal
reference for this pin may be dc referenced to either the VAG pin or a voltage of half of VEXT by BR2 (b7).
Low impedance loads must be between PO + and PO –. This pin is high impedance when the device is in
the analog power-down mode. This pin is high impedance except when it is enabled for analog signal
output.
PO+
Power Amplifier Output (Non-Inverting) (Pin 12)
This is the non-inverting power amplifier output that is an inverted version of the signal at PO –. This
power amplifier is powered from VEXT and its output can swing to within 0.5 V of VSS and VEXT. This pin
is capable of driving a 300 Ω load to PO –. This pin may be dc referenced to either the VAG pin or a
voltage of half of VEXT by BR2 (b7). This pin is high impedance when the device is in the analog powerdown mode. This pin is high impedance except when it is enabled for analog signal output. See PI and
PO– for more information.
2.4.3
ADPCM/PCM Serial Interface
FST
Frame Sync, Transmit (Pin 18)
When used in the Long Frame Sync or Short Frame Sync mode, this pin accepts an 8 kHz clock that
synchronizes the output of the serial ADPCM data at the DT pin.
BCLKT
Bit Clock, Transmit (Pin 19)
When used in the Long Frame Sync or Short Frame Sync mode, this pin accepts any bit clock frequency
from 64 to 5120 kHz.
DT
Data, Transmit (Pin 20)
This pin is controlled by FST and BCLKT and is high-impedance except when outputting data.
SPC
Signal Processor Clock (Pin 21)
This input accepts a clock frequency from 20.48 to 23.04 MHz that is used as the DSP engine master
clock. Internally the device divides down this clock to generate the 256 kHz clock required by the PCM
Codec. See Section 2.2.6 for additional information. (This clock may be optionally specified for higher
frequencies. Contact the factory for more information.)
DR
Data, Receive (Pin 25)
ADPCM data to be decoded are applied to this input, which operates synchronously with FSR and
BCLKR to enter the data in a serial format.
MOTOROLA
MC145540
2-13
BCLKR
Bit Clock, Receive (Pin 26)
When used in the Long Frame Sync or Short Frame Sync mode, this pin accepts any bit clock frequency
from 64 to 5120 kHz. This pin may be used for applying an external 256 kHz clock for sequencing the
analog signal processing functions of this device. This is selected by the SCP port at BR0 (b7).
FSR
Frame Sync, Receive (Pin 27)
When used in the Long Frame Sync or Short Frame Sync mode, this pin accepts an 8 kHz clock that
synchronizes the input of the serial ADPCM data at the DR pin. FSR can operate asynchronous to FST
in the Long Frame Sync or Short Frame Sync mode.
FST (FSR)
BCLKT (BCLKR)
DT
DR
DON'T CARE
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
DON'T CARE
8
Figure 2-3. Long Frame Sync — 64 kbps PCM Data Timing
FST (FSR)
BCLKT (BCLKR)
DT
DR
DON'T CARE
1
2
3
1
2
3
4
DON'T CARE
4
Figure 2-4. Long Frame Sync — 32 kbps ADPCM Data Timing
FST (FSR)
BCLKT (BCLKR)
DT
DR
DON'T CARE
1
2
1
2
3
DON'T CARE
3
Figure 2-5. Long Frame Sync — 24 kbps ADPCM Data Timing
2-14
MC145540
MOTOROLA
FST (FSR)
BCLKT (BCLKR)
DT
DR
1
DON'T CARE
1
2
DON'T CARE
2
Figure 2-6. Long Frame Sync — 16 kbps ADPCM Data Timing
FST (FSR)
BCLKT (BCLKR)
DT
DR
1
DON'T CARE
1
2
2
3
4
3
4
DON'T CARE
Figure 2-7. Short Frame Sync — 32 kbps ADPCM Data Timing
2.4.4
Serial Control Port (SCP) Interface
The MC145540 is equipped with an industry standard Serial Control Port Interface. The Serial Control
Port (SCP) is used by an external controller, such as an M68HC05 family microcontroller, to communicate with the MC145540 ADPCM Codec.
The SCP is a full-duplex four-wire interface used to pass control and status information to and from the
ADPCM Codec. The Serial Control Port Interface consists of a transmit output, a receive input, a data
clock, and an enable signal. These device pins are known as SCP Tx, SCP Rx, SCP CLK, and
SCP EN, respectively. The SCP Clock determines the rate of exchange of data in both the transmit and
receive directions, and the SCP Enable signal governs when this exchange is to take place.
The operation and configuration of the ADPCM Codec is controlled by setting the state of the control
and status registers within the MC145540 and then monitoring these control and status registers. The
control and status registers reside in sixteen 8-bit wide Byte Registers, BR0-BR15. A complete register
map and detailed register descriptions can be found in Section 3.
2.4.4.1
BYTE REGISTER OPERATIONS
The 16 Byte Registers are addressed by addressing a 4-bit byte register address (A3:A0) as shown in
Figures 2-8 and 2-9. A second 8-bit operation transfers the data word (D7:D0). Alternatively, these
registers can be accessed with a single 16-bit operation as shown in Figures 2-10 and 2-11.
PDI/RESET
Power Down Input/Reset (Pin 13)
A logic 0 applied to this input forces the device into a low power dissipation mode. A rising edge on this
pin causes power to be restored and the ADPCM RESET state (specified in the standards) to be forced.
See Section 2.2.5 for additional information.
MOTOROLA
MC145540
2-15
SCP EN
SCP CLK
SCP Rx
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
DON'T CARE
R/W
A3
A2
A1
SCP Tx
A0
DON'T CARE
D7
D6
D5
D4
D3
D2
D1
D0
HIGH IMPEDANCE
Figure 2-8. SCP Byte Register Write Operation Using Double 8-Bit Transfer
SCP EN
SCP CLK
SCP Rx
SCP Tx
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇÇÇ
ÇÇÇ
ÇÇÇÇÇ
ÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
DON'T CARE
R/W
A3
A2
A1
A0
DON'T CARE
D7
HIGH IMPEDANCE
D6
D5
D4
D3
D2
D1
D0
Figure 2-9. SCP Byte Register Read Operation Using Double 8-Bit Transfer
SCP EN
SCP CLK
SCP Rx
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
DON'T CARE
R/W
A3
A2
SCP Tx
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
DON'T CARE
HIGH IMPEDANCE
Figure 2-10. SCP Byte Register Write Operation Using Single 16-Bit Transfer
SCP EN
SCP CLK
SCP Rx
SCP Tx
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
DON'T CARE
R/W
HIGH IMPEDANCE
A3
A2
A1
A0
DON'T CARE
D7
D6
D5
D4
D3
D2
D1
D0
Figure 2-11. SCP Byte Register Read Operation Using Single 16-Bit Transfer
2-16
MC145540
MOTOROLA
SCP EN
Serial Control Port Enable Input (Pin 14)
This pin, when held low, selects the Serial Control Port (SCP) for the transfer of control and status
information into and out of the MC145540 ADPCM Codec. This pin should be held low for a total of 16
periods of the SCP CLK signal in order for information to be transferred into or out of the MC145540
ADPCM Codec. The timing relationship between SCP EN and SCP CLK is shown in Figures 2-8
through 2-11.
SCP CLK
Serial Control Port Clock Input (Pin 15)
This input to the device is used for controlling the rate of transfer of data into and out of the SCP Interface. Data are clocked into the MC145540 ADPCM Codec from SCP Rx on rising edges of SCP CLK.
Data are shifted out of the device on SCP Tx on falling edges of SCP CLK. SCP CLK can be any frequency from 0 to 4.096 MHz. An SCP transaction takes place when SCP EN is brought low. Note that
SCP CLK is ignored when SCP EN is high (i.e., it may be continuous or it can operate in a burst mode).
SCP Tx
Serial Control Port Transmit Output (Pin 16)
SCP Tx is used to output control and status information from the MC145540 ADPCM Codec. Data are
shifted out of SCP Tx on the falling edges of SCP CLK, most significant bit first.
SCP Rx
Serial Control Port Receive Input (Pin 17)
SCP Rx is used to input control and status information to the MC145540 ADPCM Codec. Data are
shifted into the device on rising edges of SCP CLK. SCP Rx is ignored when data are being shifted out
of SCP Tx or when SCP EN is high.
MOTOROLA
MC145540
2-17
2-18
MC145540
MOTOROLA
3
SERIAL CONTROL PORT REGISTERS
3.1
INTRODUCTION
This section describes all of the MC145540 ADPCM Codec control and status registers available via the
Serial Control Port (SCP) Interface. A Register Map is given in Table 3-2. Each register is then described in detail.
3.2
REGISTER MAP
The SCP register map consists of 16 byte registers. Registers BR0–BR5 and BR7–BR10 provide
external control of and status of the part. Register BR15 holds the value of the mask number for the
particular MC145540. BR6 and BR11–BR14 are not defined and as such are presently reserved.
3.3
BIT DESCRIPTION LEGEND
Each bit described in the following sections has a read/write indicator associated with it. The read/write
indicator, shown in the lower right corner of each bit, shows what type of bit resides there. The options
are described in Table 3-1.
Table 3-1. Bit Read/Write Indicator
Indicator
Type
Description
rw
Read/Write
A Read/Write bit may be written to by the external microcontroller. The
information that is read back will be the data that was written.
ro
Read Only
A Read Only bit may only be read by the external microcontroller. Writing to it
has no effect unless otherwise specified in the text. When the text says that an
“ro” bit is set or cleared, this operation is performed internally by the MC145540.
ro/wo
Read Only/
Write Only
A Read Only/Write Only bit may be written to by the external microcontroller.
However, the value that is read back by the external microcontroller is not
necessarily the value that was written. An “ro” bit is set and cleared by some
internal operation in the MC145540.
NOTE
“Setting” a bit corresponds to writing a one to the register and “clearing” a bit corresponds
to writing a zero to the register.
MOTOROLA
MC145540
3-1
Table 3-2. Byte Register Map
3-2
Byte
b7
b6
b5
b4
b3
b2
b1
b0
BR0
Ext
256 kHz
Clk
Mu/A Law
Select
Analog
Loopback
I/O Mode
(1)
I/O Mode
(0)
Charge
Pump
Disable
Analog
Power
Down
Digital
Power
Down
BR1
Reserved
Sidetone
Gain (2)
Sidetone
Gain (1)
Sidetone
Gain (0)
Transmit
Mute
Transmit
Gain (2)
Transmit
Gain (1)
Transmit
Gain (0)
BR2
RO
Reference
Select
AXO
Enable
PO
Disable
Receive
Filter
Disable
RO Mute
Analog
Receive
Gain (2)
Analog
Receive
Gain (1)
Analog
Receive
Gain (0)
BR3
Digital Rx
Gain
Enable
Digital Rx
Gain (6)
Digital Rx
Gain (5)
Digital Rx
Gain (4)
Digital Rx
Gain (3)
Digital Rx
Gain (2)
Digital Rx
Gain (1)
Digital Rx
Gain (0)
BR4
N.B. Time
(7)/ Tone
Param.
(7)
N.B. Time
(6)/ Tone
Param.
(6)
N.B. Time
(5)/ Tone
Param.
(5)
N.B. Time
(4)/ Tone
Param.
(4)
N.B. Time
(3)/ Tone
Param.
(3)
N.B. Time
(2)/ Tone
Param.
(2)
N.B. Time
(1)/ Tone
Param.
(1)
N.B. Time
(0)/ Tone
Param.
(0)
BR5
N.B.
Threshold
(7) /
Address
Param.
(1)
N.B.
Threshold
(6) /
Address
Param.
(0)
N.B.
Threshold
(5) /
Don’t
Care
N.B.
Threshold
(4) /
Don’t
Care
N.B.
Threshold
(3) /
Tone
Param.
(11)
N.B.
Threshold
(2) /
Tone
Param.
(10)
N.B.
Threshold
(1) /
Tone
Param.
(9)
N.B.
Threshold
(0) /
Tone
Param.
(8)
BR6
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
BR7
Tone
Param.
Status
N.B.
Detect
Enable
2/6
Delay
G.726/
Motorola
16 kbps
Tone
Enable
Reserved
Tone 1
Enable
Tone 2
Enable
BR8
Software
Encoder
Reset
Software
Decoder
Reset
Linear
Codec
Mode
Highpass
Disable
Reserved
Reserved
Reserved
Reserved
BR9
Encoder
PCM (7)
Encoder
PCM (6)
Encoder
PCM (5)
Encoder
PCM (4)
Encoder
PCM (3)
Encoder
PCM (2)
Encoder
PCM (1)
Encoder
PCM (0)
BR10
D/A PCM
(7)
D/A PCM
(6)
D/A PCM
(5)
D/A PCM
(4)
D/A PCM
(3)
D/A PCM
(2)
D/A PCM
(1)
D/A PCM
(0)
BR11
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
BR12
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
BR13
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
BR14
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
BR15
Reserved
Reserved
Reserved
Reserved
Mask (3)
Mask (2)
Mask (1)
Mask (0)
MC145540
MOTOROLA
3.4
3.4.1
BYTE REGISTERS
BR0
This register contains several miscellaneous control bits. All bits are cleared on hardware reset, but are
unaffected by a software reset.
BYTE
BR0
b7
b6
b5
b4
b3
b2
b1
b0
EXT
256 kHz
Mu/A LAW
ANALOG
I/O MODE
I/O MODE
CHARGE
ANALOG
DIGITAL
SELECT
LOOPBACK
(1)
(0)
PUMP
POWER
POWER
DISABLE
DOWN
CLK
rw
rw
rw
rw
rw
rw
DOWN
rw
rw
External 256 kHz Clock — This bit controls a mux that selects between an internal or external 256 kHz
signal for clocking the PCM Codec block. When this bit is cleared the mux will select the 256 kHz clock
from the internal clock generator block. When this bit is set, BCLKR is used to provide an external
256 kHz signal and the internal BCLKR signal will then be supplied from BCLKT.
Mu/A Law Select — This bit controls the compression for the encoder and the expansion for the decoder. Clearing this bit selects Mu-Law companding of the PCM data. Setting this bit selects A-Law companding of the PCM data.
Analog Loopback — Setting this bit enables the user to perform an Analog Loopback from the receive
path to the transmit path. Internally the signal at the RO output is routed through an analog switch to the
stage of the transmit path between the output of the TG op amp and the input to the transmit trim gain
circuitry. The output of the TG op amp is disconnected from this node.
I/O Mode (1:0) — These bits are used to configure the MC145540 for different modes of operation and
test (see Table 3-3). Two of the modes select whether the device will function as a combined ADPCM
Codec (I/O Mode 00) or as a PCM Codec (I/O Mode 01). The third mode (I/O Mode 10) accommodates
independent access to the output of the PCM A/D and the input to the ADPCM encoder. This permits the
CCITT/ANSI ADPCM encoder and decoder test vectors to be run, as well as allowing for applications
where the PCM data from the A/D may need to be externally processed before being encoded by the
ADPCM encoder. The last mode (I/O Mode 11) allows the user to perform a battery test, effectively
sampling the voltage present at the VEXT pin. In this mode, the ADC is programmed to output a linear
8-bit PCM word for the voltage at VEXT which is intended to be read in BR9 (b7:b0). The data format for
the ADC output is the sign bit and seven magnitude bits. The sign bit is a “don’t care.” The scaling for the
ADC is for 6.3 V at VEXT equals full scale (BIN X111 1111). The ADPCM algorithm does not support dc
signals.
Charge Pump Disable — Setting this bit disables the operation of the charge pump circuitry, which
normally provides a charge pumped 5 V supply (derived from the VEXT external supply) to the VDD pin,
which is also the power supply input for the analog blocks of the device. Disabling the charge pump will
internally connect the VDD pin to the VEXT pin. See Section 2.4.1, Power Supply Pins, for further
information.
Analog Power Down — When set, this bit forces a power down of the PCM Codec block and the
charge pump. This causes the chip to enter a mode in which all clocks to the analog blocks are halted.
This bit must be cleared before the PCM Codec block can function in its normal mode.
Digital Power Down — When set, this bit forces all clocks to the DSP Engine block to be halted. Clearing this bit will force the DSP Engine to come out of power down and execute an initialization procedure
before starting to execute the ADPCM algorithm.
Table 3-3. Input/Output Modes
MOTOROLA
I/O Mode (1:0)
MC145540 Mode
0 0
ADPCM Codec
0 1
PCM Codec
1 0
CCITT Test
1 1
Battery Test
MC145540
3-3
3.4.2
BR1
This register holds the values of the gain factors used in the transmit stage of the PCM Codec block, and
in the generation of the sidetone signal that is fed back to the receive path. It also contains a bit to mute
the signal going through the PCM Codec transmit path. All bits are cleared on hardware reset.
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR1
RESERVED
SIDETONE
SIDETONE
SIDETONE
TRANSMIT
TRANSMIT
TRANSMIT
TRANSMIT
GAIN (2)
GAIN (1)
GAIN (0)
MUTE
GAIN (2)
GAIN (1)
GAIN (0)
rw
rw
rw
rw
rw
rw
rw
Sidetone Gain (2:0) — These three bits encode the gain factor to be applied to the sidetone signal
before it is fed back to the receive stage of the PCM Codec block. The bit contents map to the gain
factors in Table 3-4.
Transmit Mute — When set, this bit forces the transmit low-pass filter to apply infinite attenuation to its
input signal, effectively muting the transmit path.
Transmit Trim Gain (2:0) — These three bits encode the gain factor to be applied to signals processed
by the transmit stage of the PCM Codec block. The bit contents map to the gain factors in Table 3-5.
Table 3-4. Sidetone Gains
Sidetone Gain
(2)
Sidetone Gain
(1)
Sidetone Gain
(0)
Sidetone Gain
(dB)
0
0
0
–
0
0
1
–21.5
0
1
0
–18.0
0
1
1
–15.0
1
0
0
–13.5
1
0
1
–11.5
1
1
0
–10.5
1
1
1
–8.0
R
Table 3-5. Transmit Analog Trim Gain
Transmit Trim Gain Transmit Trim Gain Transmit Trim Gain Transmit Trim Gain
(2)
(1)
(0)
(dB)
3-4
0
0
0
0
0
0
1
+1
0
1
0
+2
0
1
1
+3
1
0
0
+4
1
0
1
+5
1
1
0
+6
1
1
1
+7
MC145540
MOTOROLA
3.4.3
BR2
The contents of this register configure the operation of the receive section of the PCM Codec block. This
register is cleared when a hardware reset is applied to the part.
BYTE
BR2
b7
b6
b5
b4
b3
RO MUTE
RO
AXO
PO
RECEIVE
REFERENCE
ENABLE
DISABLE
FILTER
SELECT
b2
DISABLE
rw
rw
rw
rw
b1
b0
ANALOG
ANALOG
ANALOG
RECEIVE
RECEIVE
RECEIVE
GAIN (2)
GAIN (1)
GAIN (0)
rw
rw
rw
rw
RO Reference Select — This bit selects the dc bias reference voltage for the analog outputs of the
device. Clearing this bit sets the reference to its default value of VEXT/2. Setting this bit sets the reference voltage of the single-ended output signal available at the RO output pin to VAG (2.4 V). This bit
also determines the reference level for the AXO and PO outputs.
Auxiliary Receive Output Enable — Clearing this bit disables the operation of the AXO block. When
this bit is set, data coming out of the PCM Codec block will be available through the fully differential
AXO+ and AXO – output pins of the part. These outputs are high impedance when not enabled or
powered down.
Power Output Disable — Setting this bit disables the operation of the PO block. When this bit is
cleared it enables the operation of a fully differential power output stage available through PI (input),
PO+ and PO – (output). The PO block may also be disabled if the PI input is tied to VDD. These outputs
are high impedance when disabled or powered down.
Receive Filter Disable — Setting this bit disables the operation of the receive lowpass filter and allows
the unfiltered D/A output to go to the RO or AXO driver(s). The sinX/X compensation is done in the
receive lowpass filter, which is removed with this option. Note that the Analog Receive Gain (2) and (1)
are disabled when this bit is set, bit (0) is still active for 1 dB.
RO Mute — Setting this bit grounds the input of the RO block, providing about 50 dB of attenuation to
the signal. “Full Mute” can be established using the DRx Gain function provided in BR3. The RO block
remains biased when the RO Mute bit is set in order to prevent audible “pop” when turning the block off
and on.
Receive Analog Trim Gain — These three bits encode the gain factor to be applied to signals in the
receive stage of the PCM Codec block. The bit contents map to the gain factors in Table 3-6.
Table 3-6. Receive Analog Trim Gain
MOTOROLA
Receive Analog
Trim Gain
(2)
Receive Analog
Trim Gain
(1)
Receive Analog
Trim Gain
(0)
Receive Analog
Trim Gain
(dB)
0
0
0
0
0
0
1
–1
0
1
0
–2
0
1
1
–3
1
0
0
–4
1
0
1
–5
1
1
0
–6
1
1
1
–7
MC145540
3-5
3.4.4
BR3
This register holds the gain factor for the scaled result of the ADPCM decoder output. A control bit to
disable the Rx gain routine is also included. This register is cleared when a hardware reset is applied to
the part. Write operations to this register are disabled when BR0 (b0) = 1 (Digital Power Down — active).
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR3
DIGITAL RX
DIGITAL RX
DIGITAL RX
DIGITAL RX
DIGITAL RX
DIGITAL RX
DIGITAL RX
DIGITAL RX
GAIN
GAIN (6)
GAIN (5)
GAIN (4)
GAIN (3)
GAIN (2)
GAIN (1)
GAIN (0)
ENABLE
rw
rw
rw
rw
rw
rw
rw
rw
Digital Receive Gain Enable — Setting this bit prevents the DSP Engine from executing the synchronous tandeming routine (CCITT/ANSI Sync function) and enables the execution of the routine that
implements the digital receive gain. When this bit is cleared the CCITT/ANSI Sync function will be
executed and the digital Rx gain will be set to unity.
Digital Receive Gain (6:0) — These bits hold the value of the linear gain factor to be applied to the
decoded digital samples processed by the DSP Engine. This value is represented in the bit fields by the
following summation: (b6) × 21 + (b5) × 20 + (b4) × 2 –1 + (b3) × 2 –2 + (b2) × 2 –3 + (b1) × 2 –4 + (b0)
× 2 –5. Two bits (b6:b5) contribute the integral part of the gain and five bits (b4:b0) contribute the fractional part of the gain. The field is a don’t care when the Digital Receive Gain Enable bit is cleared. Table 3-7
provides three examples of gain settings and shows the weighting of each bit as it applies to the DRx
function.
Table 3-7. Digital Receive Gain
b6
b5
b4
b3
b2
b1
b0
Linear
DRx Gain
Factor
Binary Weighting
21
20
2 –1
2 –2
2 –3
2 –4
2 –5
—
Decimal Equivalent
2
1
0.5
0.25
0.125
0.0625
0.03125
—
Example 1
0
0
1
0
0
0
0
0.5
Example 2
0
1
0
0
0
0
0
1.0
Example 3
1
1
1
1
1
1
1
3.96875
Integral Bits
3.4.5
Fractional Bits
BR4
Registers BR4 and BR5 are used for entering parameter data for the tone generation function and the
noise burst detect algorithm. The function of this register is controlled by BR5 (b7, b6) and BR7 (b7, b6,
b3). This register is cleared when a hardware reset is applied to the part. Write operations to this register
are disabled when BR0 (b0) = 1 (Digital Power Down — active).
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR4
N.B. TIME
N.B. TIME
N.B. TIME
N.B. TIME
N.B. TIME
N.B. TIME
N.B. TIME
N.B. TIME
(7)/ TONE
(6)/ TONE
(5)/ TONE
(4)/ TONE
(3)/ TONE
(2)/ TONE
(1)/ TONE
(0)/ TONE
PARAM. (7)
PARAM. (6)
PARAM. (5)
PARAM. (4)
PARAM. (3)
PARAM. (2)
PARAM. (1)
PARAM. (0)
rw
rw
rw
rw
rw
rw
rw
rw
Noise Burst Detect Time Interval (7:0) — When the MC145540 is in the Noise Burst Detect Mode,
BR7 (b6) = 1 and BR7 (b3) = 0, this register holds the time interval, in milliseconds, over which the
audio energy is integrated. The format of the data word for time is integer binary. The recommended
interval periods are from 20 ms (BIN 0001 0100) to 128 ms (BIN 1000 0000). See the descriptions for
BR5 and BR7 for more information.
Tone Generator Parameter (7:0) — In the tone generation mode, BR7 (b3) = 1, this register is used
to enter the eight LSBs of the tone generator frequency coefficient, or the tone attenuation factor. The
MSBs of the tone generator coefficient or the tone attenuation factor are specified in BR5 (b3:b0).
BR5 (b6) indicates whether the data is a tone coefficient or a tone attenuation factor. Bit BR5 (b7)
indicates whether the data entered is for tone generator 1 or tone generator 2. See the descriptions for
BR5 and BR7 for more information.
3-6
MC145540
MOTOROLA
3.4.6
BR5
Registers BR4 and BR5 are used for entering parameter data for the tone generation function and the
noise burst detect algorithm. This register is cleared when a hardware reset is applied to the part. Write
operations to this register are disabled when BR0 (b0) = 1 (Digital Power Down — active).
BYTE
BR5
b7
b6
b5
b4
b3
b2
b1
b0
N.B.
N.B.
N.B.
N.B.
N.B.
N.B.
N.B.
N.B.
THRESHOLD
THRESHOLD
THRESHOLD
THRESHOLD
THRESHOLD
THRESHOLD
THRESHOLD
THRESHOLD
(7)/
(6)/
(5)/
(4)/
(3)/TONE
(2)/TONE
(1)/TONE
(0)/TONE
ADDRESS
ADDRESS
DON'T CARE
DON'T CARE
PARAM. (11)
PARAM. (10)
PARAM. (9)
PARAM. (8)
PARAM. (1)
PARAM. (0)
rw
rw
rw
rw
rw
rw
rw
rw
Noise Burst Detect Energy Threshold (7:0) — In the Noise Burst Detect Mode, BR7 (b6) = 1 and
BR7 (b3) = 0, this register is used to enter the audio energy threshold value for the noise burst detect
algorithm. The magnitude of the 13-bit decoded linear words are summed in increments of eight samples (1 ms of samples) to obtain a 24-bit value. The number of milliseconds is the value in BR4. When
the number of milliseconds has been completed, the most significant 8 bits of the 24-bit total are
compared with the value of BR5 to determine if there was more energy in the reconstructed ADPCM
codes than normal voice. If the threshold (BR5) is exceeded, then BR7 (b6) will be set. After this
decision is made the 24-bit total is cleared and the process starts over. For a change in the time interval
(BR4), the threshold value (BR5) must be changed proportionally, to detect the same amount of energy
in the received ADPCM. The microcontroller must poll BR7 (b6) and may attenuate the receive gain or
mute the audio output if this bit is set. See BR7 description for more information.
Tone Generator Address Parameter (1:0) — In tone generation mode, BR7 (b3) = 1, this register is
used to enter the four MSBs of the tone frequency coefficient, and the tone attenuation factor. BR5 (b6)
indicates whether the data is a tone frequency coefficient or a tone attenuation factor. Bit BR5 (b7)
indicates whether the data entered is for tone generator 1 or tone generator 2. Setting BR5 (b7:b6)
results in the operation shown in Table 3-8.
Table 3-8. Tone Generator Address Parameters
MOTOROLA
b7
Tone Generator
b6
Tone Parameter
0
0
Tone Generator 1, Frequency Coefficient
0
1
Tone Generator 1, Tone Attenuation Factor
1
0
Tone Generator 2, Frequency Coefficient
1
1
Tone Generator 2, Tone Attenuation Factor
MC145540
Resulting Operation
3-7
3.4.6
BR5 (continued)
Tone Generator Frequency Parameter (11:0) — These bits hold the value used to determine the
frequency for tone generator 1 or tone generator 2. This value must be a 12-bit (2’s complement)
approximation of cos(2πfoT), where fo is the frequency of the tone and T is the period between samples
(125 µs). The format of the data for the tone generator frequency coefficient is a 12-bit 2’s complement
number with bits (10:0) being the fractional part and bit (11) being the sign information. These frequency
coefficients are limited to values between negative 1 (BIN 1.000 0000 0000 or HEX 08 00) and almost
positive 1 (BIN 0.111 1111 1111 or HEX 07 FF). Table 3-9 shows the values that must be used to
synthesize frequencies used in DTMF applications.
Table 3-9. Tone Generator Coefficients for DTMF
Frequency Parameter (Hex)
Tone Frequency (Hz)
BR5
BR4
697
06
D5
770
06
95
852
06
46
941
05
EA
1209
04
A8
1336
03
FC
1477
03
32
1633
02
46
Tone Generator Attenuation Parameter (11:0) — The attenuation parameter will determine the scaling on the amplitude of tones generated. The peak amplitude of the tones before attenuation is 13-bit
linear full scale, which is full scale for the DAC output. In DTMF applications, this attenuation feature
allows for the user to vary the twist of one tone with respect to the other, in order to comply with
standard EIA-470. The attenuation parameter will be used to scale the amplitude of a sample produced
by tone generator 1 or tone generator 2 before it is sent to the receive gain function in preparation for
companding and conversion to an analog signal. The format of the data for the tone generator attenuation parameter is a 12-bit 2’s complement number with bits (10:0) being the fractional part and bit (11)
being the sign information. These attenuation parameters should be limited to positive values between
zero (BIN 0.000 0000 0000 or HEX 00 00) and almost positive 1 (BIN 0.111 1111 1111 or HEX 07 FF).
Note that this scaling will always result in the attenuation of the signal.
3.4.7
BR6
This register is reserved. The state of the bits BR6 (b7:b0) is inconsequential.
3-8
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR6
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
MC145540
MOTOROLA
3.4.8
BR7
This register contains the bits that enable the operation of both tone generators and the noise burst
detect algorithm. BR7 also includes registers that determine whether two or six frame delay is to be
used and which 16 kbps algorithm is to be selected. This register is cleared when a hardware reset
is applied to the part ( i.e., PDI/RESET = 0). Write operations to this register are disabled when
BR0 (b0) = 1 (Digital Power Down — active).
BYTE
BR7
b7
b6
b5
b4
b3
b2
RESERVED
TONE
N.B.
2/6
G.726/
TONE
PARAM.
DETECT
DELAY
MOTOROLA
ENABLE
STATUS
ENABLE
ro
ro/wo
b1
b0
TONE 1
TONE 2
ENABLE
ENABLE
16 kbps
rw
rw
rw
rw
rw
Tone Parameter Status — This read-only bit allows the external microcontroller to know when the data
written to BR4 and BR5 has been accepted by the internal CPU. After writing to registers BR4 and BR5
(in this specific order) the external microcontroller must poll this bit and look for a logic 0 before writing
again to BR4 and BR5. After writing to BR5 this bit will be set indicating to the internal CPU that a valid
parameter was entered. The internal CPU will read the contents of BR4/BR5 before resetting this bit.
See BR4 and BR5 for more information.
Noise Burst Detect Enable — This bit is a ro/wo (read only/write only) bit. This bit may be written to by
the external microcontroller; however, the value that is read back by the external microcontroller is not
necessarily the value previously written. Setting this bit will signal the internal CPU to start running the
noise burst algorithm. If the noise burst detect algorithm finds that the received signal exceeds the
threshold value, it will write to a register that can be read by polling this bit. This allows the possibility to
temporarily mute or attenuate the receive path to prevent the noise burst from disturbing the listener.
See BR4 and BR5 for more information.
2/6 Delay — This bit controls the amount of delay from an ADPCM rate change request at the encoder
input register to the moment the correct output is observed at the DT output pin. When this bit is cleared
there will be a two frame delay; if this bit is set a six frame delay will be applied.
G.726 / Motorola 16 kbps — This bit determines the coding scheme used when operating the part in a
16 kbps mode. Clearing this bit selects the G.726 defined 16 kbps coding algorithm. Setting this bit
selects a Motorola Proprietary ADPCM coding algorithm, which is the 16 kbps algorithm used in the
MC145532 ADPCM Transcoder.
Tone Enable — When this bit is set it tells this device to do four specific things. The first is to execute the
tone generator routine instead of the ADPCM decoder routine. This disables the noise burst detect
algorithm. The second is to select BR4 and BR5 for use in programing the frequency and attenuation
parameters for the tone generators. The third is to route the tone generator output to the input of the
receive digital gain control routine for analog reconstruction and use at the receive analog outputs of the
device. The fourth is to route the tone generator output to the input of the ADPCM encoder for output at
the DT pin. When this bit is low, coefficients for frequency and attenuation are lost.
Reserved — This bit is reserved.
Tone 1 Enable — This bit must be set in order to enable tone 1. This allows the digital samples from
tone generator 1 to be added to the 13-bit linear word at the output of the tone generator function for use
by the rest of the device. This bit must be taken low to reprogram the frequency of tone 1.
Tone 2 Enable — This bit must be set in order to enable tone 2. This allows the digital samples from
tone generator 2 to be added to the 13-bit linear word at the output of the tone generator function for use
by the rest of the device. This bit must be taken low to reprogram the frequency of tone 2.
MOTOROLA
MC145540
3-9
3.4.9
BR8
This register contains miscellaneous control bits. This register is cleared when a hardware reset is
applied to the part. Write operations to this register will be disabled when BR0 (b0) = 1 (Digital Power
Down — active).
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR8
SOFTWARE
SOFTWARE
LINEAR
HIGHĆPASS
RESERVED
RESERVED
RESERVED
RESERVED
ENCODER
DECODER
CODEC
DISABLE
RESET
RESET
MODE
rw
rw
rw
rw
Software Encoder Reset — When set by the SCP control port, this bit forces the MC145540 to execute
an initialization procedure every time it receives an interrupt signal from the encoder I/O registers. This
bit is cleared for normal operation.
Software Decoder Reset — When set by the SCP control port, this bit forces the MC145540 to execute
an initialization procedure every time it receives an interrupt signal from the decoder I/O registers. This
bit is cleared for normal operation.
Linear Codec Mode — Setting this bit will force the PCM Codec block to operate as an 8-bit Linear
Codec. The A/D and D/A will be changed from Mu-Law or A-Law to 8-bit linear.
High-Pass Disable — Setting this bit disables the operation of the transmit high-pass filter. This extends the frequency response of the transmit analog signal path down to dc, which can result in higher
quantization distortion if a dc offset voltage is present at the input to the encoder.
CAUTION
Reserved bits b3, b2, b1, and b0 must be set to zero at all times.
3.4.10
BR9
The read-only (ro) section of this SCP register allows the external microcontroller to have access to the
PCM word generated after an A/D conversion. When the I/O MODE (1:0) field in BR0 (b4:b3) is set to a
logic ‘10’ it will allow the external microcontroller to enter PCM data to the input of the ADPCM encoder
using the write-only (wo) section of this SCP register. In this mode, external processing may be done
on the A/D PCM word before it is encoded into an ADPCM word.
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR9
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
PCM (7)
PCM (6)
PCM (5)
PCM (4)
PCM (3)
PCM (2)
PCM (1)
PCM (0)
ro/wo
ro/wo
ro/wo
ro/wo
ro/wo
ro/wo
ro/wo
ro/wo
3.4.11 BR10
This SCP register allows the external microcontroller to have access to the PCM word generated by the
ADPCM decoder function. This PCM word is the same data that is sent to the PCM Codec to execute a
D/A conversion.
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR10
D/A PCM
D/A PCM
D/A PCM
D/A PCM
D/A PCM
D/A PCM
D/A PCM
D/A PCM
(7)
(6)
(5)
(4)
(3)
(2)
(1)
ro
3-10
ro
ro
MC145540
ro
ro
ro
(0)
ro
ro
MOTOROLA
3.4.12
BR11
This register is reserved. The state of the bits BR11 (b7:b0) is inconsequential.
3.4.13
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR11
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
BR12
This register is reserved. The state of the bits BR12 (b7:b0) is inconsequential.
3.4.14
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR12
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
BR13
This register is reserved. The state of the bits BR13 (b7:b0) is inconsequential.
3.4.15
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR13
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
BR14
This register is reserved. The state of the bits BR14 (b7:b0) is inconsequential.
3.4.16
BYTE
b7
b6
b5
b4
b3
b2
b1
b0
BR14
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
BR15
This register contains the revision number of the particular ADPCM Codec device.
BYTE
b7
b6
b5
b4
b3
BR14
RESERVED
RESERVED
RESERVED
RESERVED
MASK 3
b2
b1
MASK 2
ro
b0
MASK 1
ro
MASK 0
ro
ro
Mask 3:0 — These bits allow for an electronic determination of the revision number of the MC145540
ADPCM Codec manufacturing mask set.
MOTOROLA
MC145540
3-11
3-12
MC145540
MOTOROLA
4
ELECTRICAL SPECIFICATIONS
4.1
MAXIMUM RATINGS (Voltages Referenced to VSS Pin)
Rating
Symbol
Value
Unit
VEXT, VDD
– 0.5 to 6
V
Voltage on Any Analog Input or Output Pin
VSS – 0.3 to
VDD + 0.3
V
Voltage on Any Digital Input or Output Pin
VSS – 0.3 to
VEXT + 0.3
V
TA
– 40 to + 85
°C
Tstg
– 85 to + 150
°C
DC Supply Voltage
Operating Temperature Range
Storage Temperature Range
4.2
POWER SUPPLY (TA = – 40 to + 85°C, SPC = 20.48 MHz)
Characteristics
Min
Typ
Max
Unit
4.75
5.0
5.25
V
—
—
80
85
95
100
—
2
20
mW
V
VEXT = VDD = 5.0 V, Charge Pump Off
VEXT = VDD DC Supply Voltage
Active Power Dissipation (VEXT = 5.0 V)
(No Load, PI
VDD – 0.5 V, AXO + and AXO – off)
(No Load, PI
VDD – 1.5 V, AXO + and AXO – on)
w
v
Power Down Dissipation
(VIH for logic levels must be
w 3.0 V, SPC off)
mW
VEXT = 3.0 V, Charge Pump On Supplying VDD
MOTOROLA
VEXT DC Supply Voltage
2.7
3.0
5.25
Active Power Dissipation (VEXT = 3.0 V)
(No Load, PI
VDD – 0.5 V, AXO + and AXO – off)
(No Load, PI
VDD – 1.5 V, AXO + and AXO – on)
w
v
—
—
55
60
70
75
Power Down Dissipation (SPC off)
—
0.15
2.5
MC145540
mW
mW
4-1
4.3
DIGITAL LEVELS (VEXT = 2.7 to 5.25 V, VSS = 0 V, TA = – 40 to + 85°C)
Characteristics
Min
Max
Unit
Input Low Voltage
(FSR, FST, BCLKR, BCLKT, DR, SCP Rx,
SCP CLK, SCP EN)
VIL
—
0.5
V
Input High Voltage
(FSR, FST, BCLKR, BCLKT, DR, SCP Rx,
SCP CLK, SCP EN)
VIH
VEXT – 0.5
—
V
Input Low Voltage
(SPC)
VIL
—
0.5
V
Input High Voltage
(SPC)
VIH
VEXT – 0.5
—
V
Output Low Voltage (IOL = 1.6 mA)
(DT)
VOL
—
0.4
V
Output High Voltage (IOH = – 1.6 mA)
(DT)
VOH
VEXT – 0.5
—
V
IIL
– 10
+ 10
µA
IIH
– 10
+ 10
µA
(DT, SCP Tx)
IOZ
– 10
+ 10
µA
Output Low Voltage (IOL = 0.8 mA)
(SCP Tx)
VOL
—
0.4
V
Output High Voltage (IOH = – 0.8 mA)
(SCP Tx)
VOH
VEXT – 0.5
—
V
Cin
—
10
pF
Cout
—
15
pF
v Vin v VEXT)
Input High Current (VSS v Vin v VEXT)
Input Low Current (VSS
Output Current in High Impedance State
(VSS
DT, SCP Tx
VEXT)
v
v
Input Capacitance
(FSR, FST, BCLKR, BCLKT, DR, SCP Rx,
SCP CLK, SCP EN)
Output Capacitance
4.4
Symbol
(DT, SCP Tx)
ANALOG ELECTRICAL CHARACTERISTICS
(VEXT = VDD = 5 V ± 5%; Charge Pump Off, VSS = 0 V, BR2 (b7) = 1, TA = – 40 to + 85°C)
Characteristics
Typ
Max
Unit
± 1.0
µA
Input Current
TI +, TI –
—
± 0.1
AC Input Impedance to VAG (1 kHz)
TI +, TI –
—
1.0
—
MΩ
Input Capacitance
TI +, TI –
—
—
10
pF
Input Offset Voltage of TG Op Amp
TI +, TI –
—
—
±5
mV
Input Common Mode Voltage Range
TI +, TI –
1.0
—
VDD – 2.0
V
Input Common Mode Rejection Ratio
TI +, TI –
—
60
—
dB
TG Op Amp
—
3000
—
kHz
TG Op Amp
80
95
—
dB
Equivalent Input Noise (C-Mess) Between TI + and TI – at TG
—
– 30
—
dBr nC
Output Load Capacitance
0
—
100
pF
0.5
1.0
—
—
VDD – 0.5
VDD – 1.0
± 1.0
—
—
mA
TG or RO
2
—
—
kΩ
Output Impedance (0 to 3.4 kHz)
RO
—
1
—
Ω
Output Load Capacitance
RO
0
—
500
pF
DC Output Offset Voltage of RO referenced to VAG
—
±1
± 25
mV
VAG Output Voltage referenced to VSS
2.1
2.4
2.6
V
VAG Output Current with less than 40 mV change in Output Voltage
±2
±5
—
mA
Power Supply Rejection Ratio
(0 to 100 kHz @ 100 mVrms applied to VDD.
C-Message Weighting. All analog signals
referenced to VAG pin.)
—
50
40
75
—
—
dBC
Gain Bandwidth Product (10 kHz, RL
DC Open Loop Gain (RL
w 10 kΩ)
w 10 kΩ)
TG Op Amp
Output Voltage Range
(RL = 10 kΩ to VAG)
(RL = 2 kΩ to VAG)
Output Current
(0.5 V
Vout
v
TG
TG, RO
v VDD – 0.5 V)
Output Load Resistance to VAG
4-2
Min
MC145540
Transmit
Receive
V
MOTOROLA
4.5
POWER DRIVERS PI, PO+, PO–, AXO+, AXO–
(VEXT = VDD = 5 V ± 5%; Charge Pump Off, VSS = 0 V, BR2 (b7) = 1, TA = – 40 to + 85°C)
Characteristics
Min
Typ
Max
Unit
PI
—
± 0.05
± 1.0
µA
PI
10
—
—
MΩ
Input Offset Voltage PI relative to VAG
—
—
± 25
mV
Output Offset Voltage of AXO + relative to AXO –
—
±5
± 60
mV
Output Offset Voltage of AXO + or AXO – relative to VAG
—
± 50
± 150
mV
Output Offset Voltage of PO + relative to PO –
(Inverted Unity Gain for PO –)
—
± 50
± 175
mV
Output Offset Voltage for PO + or PO – relative to VAG
(Inverted Unity Gain for PO –)
—
± 30
± 120
mV
± 10
—
—
mA
—
1
—
Ω
—
1000
—
kHz
0
—
1000
pF
– 0.2
0
+ 0.2
dB
Total Signal to Distortion at PO + (AXO +) and PO – (AXO –) with a
300 Ω differential load
40
50
—
dBC
Power Supply Rejection Ratio
(0 to 25 kHz @ 100 mVrms applied to VEXT,
PO – connected to PI. Differential or measured referenced
to VAG pin.)
40
—
55
40
—
—
dB
Input Current
(VAG – 0.5 V
v PI v VAG + 0.5 V)
Input Resistance
(VAG – 0.5 V
PI
v v VAG + 0.5 V)
Output Current (VSS + 0.7 V
v PO +, PO –, AXO +, AXO – v VDD – 0.7 V)
PO +, PO –, AXO + or AXO – Output Resistance
(Inverted Unity Gain for PO –)
Gain Bandwidth Product (10 kHz, Open Loop)
PO –
Load Capacitance PO +, PO –, AXO + or AXO – to VAG, or from PO +
(AXO+) to PO – (AXO –)
Gain of PO + relative to PO –
0 to 4 kHz
4 to 25 kHz
NOTE: DC reference voltage for PO +, PO –, AXO +, AXO –, and RO is VAG.
MOTOROLA
MC145540
4-3
4.6
ANALOG ELECTRICAL CHARACTERISTICS
(VEXT = 3.0 V ± 10%; Charge Pump On Supplying VDD, VSS = 0 V, BR2 (b7) = 0, TA = – 40 to + 85°C)
Characteristics
Min
Typ
Max
Unit
Input Current
TI +, TI –
—
± 0.01
± 1.0
µA
AC Input Impedance to VAG (1 kHz)
TI +, TI –
—
1.0
—
MΩ
Input Capacitance
TI +, TI –
—
—
10
pF
Input Offset Voltage of TG Op Amp
TI +, TI –
—
—
±5
mV
Input Common Mode Voltage Range
TI +, TI –
1.0
—
VDD – 2.0
V
Input Common Mode Rejection Ratio
TI +, TI –
—
60
—
dB
TG Op Amp
—
3000
—
kHz
TG Op Amp
80
95
—
dB
—
– 30
—
dBrnC
0
—
100
pF
0.5
1.0
—
—
VDD – 0.5
VDD – 1.0
± 1.0
—
—
mA
TG or RO
2
—
—
kΩ
Output Impedance (0 to 3.4 kHz)
RO
—
1
—
Ω
Output Load Capacitance
RO
0
—
500
pF
DC Output Voltage of RO
—
VEXT /2
—
mV
VAG Output Voltage referenced to VSS
2.1
2.4
2.6
V
VAG Output Current with less than 40 mV change in Output Voltage
—
±1
—
mA
Power Supply Rejection Ratio
(0 to 100 kHz @ 100 mVrms applied to VDD.
C-Message Weighting. All analog signals
referenced to VAG pin.)
—
—
40
50
—
—
dBC
Gain Bandwidth Product (10 kHz, RL
DC Open Loop Gain (RL
w 10 kΩ)
w 10 kΩ)
Equivalent Input Noise (C-Mess) Between TI+ and TI– at TG
Output Load Capacitance
TG Op Amp
Output Voltage Range
(RL = 10 kΩ to VAG)
(RL = 2 kΩ to VAG)
Output Current (0.5 V
TG
v Vout v VDD – 0.5 V)
Output Load Resistance to VAG
TG, RO
Transmit
Receive
V
NOTE: To prevent the RO output from distorting during the reconstruction of large analog amplitudes, the receive signal should
be attenuated by 6 dB for 2.7 V operation.
4-4
MC145540
MOTOROLA
4.7
POWER DRIVERS PI, PO+, PO–, AXO+, AXO–
(VEXT = 3.0 V = ± 10%; Charge Pump On Supplying VDD, VSS = 0 V, BR2 (b7) = 0, TA = – 40 to + 85°C)
Characteristics
Min
Typ
Max
Unit
Input Current
(VEXT/2) – 0.5 V
v PI v (VEXT/2) + 0.5 V
PI
—
± 0.05
± 1.0
µA
Input Resistance
(VEXT/2) – 0.5 V
v PI v (VEXT/2) + 0.5 V
PI
10
—
—
MΩ
Input Offset Voltage PI relative to (VEXT/2)
—
—
± 25
mV
Output Offset Voltage of AXO + relative to AXO –
—
±5
± 55
mV
DC Output Voltage of AXO + or AXO –
—
VEXT/2
—
V
Output Offset Voltage of PO + relative to PO – (Inverted Unity Gain for
PO –)
—
±5
± 120
mV
DC Output Voltage of PO + or PO –
—
VEXT/2
—
V
Output Current (VSS + 0.5 V
0.5 V)
—
± 3.5
—
mA
PO +, PO –, AXO + or AXO – Output Resistance (Inverted Unity Gain for
PO –)
—
1
—
Ω
Gain Bandwidth Product @ 10 kHz (Open Loop)
—
1000
—
kHz
v PO +, PO –, AXO +, AXO – v VEXT –
PO –
Load Capacitance PO + to PO –, AXO + to AXO –
0
—
1000
pF
– 0.2
0
+ 0.2
dB
Total Signal to Distortion at PO + (AXO +) and PO – (AXO –) with a
300 Ω differential load
40
50
—
dBC
Power Supply Rejection Ratio
(0 to 25 kHz @ 100 mVrms applied to VEXT.
PO – connected to PI. Differentially measured.)
30
—
45
40
—
—
dB
Gain of PO + (AXO +) relative to PO – (AXO –)
0 to 4 kHz
4 to 25 kHz
NOTE: DC reference voltage for AXO +, AXO –, PO +, PO –, and RO is VEXT/2.
MOTOROLA
MC145540
4-5
4.8
ANALOG TRANSMISSION PERFORMANCE
(VDD = 5 V ±5% Powered by the Charge Pump or Externally; VSS = 0 V; All Analog Signals Referenced to VAG;
0 dBm0 = 0.775 Vrms = + 0 dBm @ 600 Ω; 64 kbps PCM; FST = FSR = 8 kHz; BCLKT = BCLKR = 2.048 MHz;
SPC = 20.48 MHz Synchronous Operation; TA = – 40 to +85°C; Unless Otherwise Noted)
End to End
A/D
D/A
Characteristics
Min
Max
Min
Max
Min
Max
Absolute Gain (0 dBm0 @ 1.02 kHz, TA = 25°C)
VDD = 5.0 V
—
—
– 0.25
0.25
– 0.25
0.25
Absolute Gain Variation with Temperature
0° to + 70°C
– 40° to + 85°C
—
—
—
—
—
—
± 0.03
± 0.05
—
—
± 0.03
± 0.05
Absolute Gain Variation with Power Supply
VDD = 5 V, ± 5%
—
—
—
± 0.03
—
± 0.04
Gain vs Level Tone
(Mu-Law, Relative to
– 10 dBm0, 1.02 kHz)
+ 3 to – 40 dBm0
– 40 to – 50 dBm0
– 50 to – 55 dBm0
—
—
—
—
—
—
– 0.3
– 1.0
– 1.6
+ 0.3
+ 1.0
+ 1.6
– 0.2
– 0.4
– 0.8
+ 0.2
+ 0.4
+ 0.8
Gain vs Level Pseudo Noise, CCITT G.714
(A-Law relative to
– 10 to – 40 dBm0
– 10 dBm0)
– 40 to – 50 dBm0
– 50 to – 55 dBm0
—
—
—
—
—
—
– 0.25
– 0.60
– 1.0
+ 0.25
+ 0.30
+ 0.45
– 0.25
– 0.30
– 0.45
+ 0.25
+ 0.30
+ 0.45
33
35
28
24
—
—
—
—
34
36
29
25
—
—
—
—
34
36
30
25
—
—
—
—
Total Distortion Pseudo Noise, CCITT G.714 (A-Law)
– 3 dBm0
– 6 to – 27 dBm0
– 34 dBm0
– 40 dBm0
– 55 dBm0
27.5
35.0
33.1
28.2
13.2
—
—
—
—
—
28
35.5
33.5
28.5
13.5
—
—
—
—
—
28.5
36.0
34.2
30.0
15.0
—
—
—
—
—
Idle Channel Noise (for End-to-End and A/D, Note 1)
Mu-Law, C-Message Weighted
A-Law, Psophometric Weighted
—
—
19
– 70
—
—
19
– 70
—
—
11
– 78
dBrnC0
dBm0p
15 Hz
50 Hz
60 Hz
200 Hz
300 to 3000 Hz
3300 Hz
3400 Hz
4000 Hz
4600 to 100,000 Hz
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
– 1.0
– 0.20
– 0.35
– 0.8
—
—
– 40
– 30
– 26
– 0.4
+ 0.15
+ 0.15
0.0
– 14
– 32
– 0.5
– 0.5
– 0.5
– 0.5
– 0.20
– 0.35
– 0.8
—
—
0
0
0
0
+ 0.15
+ 0.15
0
– 14
– 30
dB
Inband Spurious (1.02 kHz @ 0 dBm0,
Transmit and Receive)
300 to 3000 Hz
—
– 48
—
– 48
—
– 48
Total Distortion, 1.02 kHz Tone
(Mu-Law,
C-Message Weighting)
+ 3 dBm0
0 to – 30 dBm0
– 40 dBm0
– 45 dBm0
Frequency Response
(Relative to 1.02 kHz @ 0 dBm0)
Unit
dB
dB
dB
dB
dB
dBC
dB
dB
Out-of-Band Spurious at RO +
(300 to 3400 Hz @ 0 dBm0 in)
dB
4600 to 7600 Hz
7600 to 8400 Hz
8400 to 100,000 Hz
—
—
—
– 30
– 40
– 30
—
—
—
—
—
—
—
—
—
– 30
– 40
– 30
Idle Channel Noise Selective @ 8 kHz,
Input = VAG, 30 Hz Bandwidth
—
– 70
—
—
—
– 70
dBm0
Absolute Delay @ 1600 Hz
—
—
—
440
—
330
µs
NOTE: 1. Extrapolated from a 1020 Hz @ – 50 dBm0 distortion measurement to correct for encoder enhancement.
(continued)
4-6
MC145540
MOTOROLA
4.8
ANALOG TRANSMISSION PERFORMANCE (continued)
End to End
Characteristics
A/D
D/A
Min
Max
Min
Max
Min
Max
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
210
130
70
35
70
95
145
– 40
– 40
– 40
– 30
—
—
—
—
—
—
—
85
110
175
—
—
—
– 70
—
– 70
Unit
µs
Group Delay Referenced to 1600 Hz
500 to 600 Hz
600 to 800 Hz
800 to 1000 Hz
1000 to 1600 Hz
1600 to 2600 Hz
2600 to 2800 Hz
2800 to 3000 Hz
Crosstalk of 1020 Hz @ 0 dBm0 from A/D or D/A
(Note 2)
Intermodulation Distortion of two Frequencies of
Amplitudes – 4 to – 21 dBm0 from the range
300 to 3400 Hz
dB
dB
—
– 41
—
– 41
—
– 41
NOTE: 2. Selectively measured while stimulated with 2667 Hz @ – 50 dBm0.
4.9
DIGITAL SWITCHING CHARACTERISTICS, LONG FRAME SYNC AND
SHORT FRAME SYNC
(VEXT = +2.7 V to +5.25 V, VSS = 0 V, All Digital Signals Referenced to VSS, TA = – 40 to +85°C,
CL = 150 pF, Unless Otherwise Noted)
Ref #
Characteristics
Signal Processing Clock (SPC) Frequency (see Note)
Signal Processing Clock (SPC) Duty Cycle
Min
Typ
Max
Unit
20.40
20.48
23.12
MHz
45
50
55
%
1
Master Clock (MCLK) Frequency for External 256 kHz applied at BCLKR pin
—
256
—
kHz
2, 3
Master Clock (MCLK) Duty Cycle for External 256 kHz applied at BCLKR pin
45
—
55
%
4
Rise Time for All Digital Signals
—
—
50
ns
5
Fall Time for All Digital Signals
—
—
50
ns
6
Bit Clock Data Rate for BCLKT or BCLKR
64
—
5120
kHz
7
Minimum Pulse Width High for BCLKT or BCLKR
50
—
—
ns
8
Minimum Pulse Width Low for BCLKT or BCLKR
50
—
—
ns
9
Hold Time for BCLKT (BCLKR) Low to FST (FSR) High
20
—
—
ns
10
Setup Time for FST (FSR) High to BCLKT (BCLKR) Low
80
—
—
ns
11
Setup Time for DR Valid to BCLKR Low
20
—
—
ns
12
Hold Time from BCLKR Low to DR Invalid
50
—
—
ns
LONG FRAME SPECIFIC TIMING
15
Hold Time from 2nd Period of BCLKT (BCLKR) Low to FST (FSR) Low
50
—
—
ns
16
Delay Time from FST or BCLKT, Whichever is Later, to DT for Valid b0 Data
—
—
60
ns
17
Delay Time from BCLKT High to DT for Valid b1 – b7
—
—
60
ns
18
Delay Time from BCLKT Low to DT Output High Impedance
10
—
60
ns
19
Minimum Pulse Width Low for FST or FSR
100
—
—
ns
SHORT FRAME SPECIFIC TIMING
20
Hold Time from BCLKT (BCLKR) Low to FST (FSR) Low
50
—
—
ns
21
Setup Time from FST (FSR) Low to b0 Period of BCLKT (BCLKR) Low
50
—
—
ns
22
Delay Time from BCLKT High to DT Data Valid
10
—
60
ns
23
Delay Time from the 4th BCLKT Low to DT Output High Impedance
10
—
60
ns
NOTE: See section 2.2.6 for more details.
MOTOROLA
MC145540
4-7
4-8
1
4
3
5
2
MCLK
(BCLKR)
9
6
MC145540
Figure 4-1. MC145540 Long Frame Sync Timing
1
BCLKT
2
3
10
4
5
6
7
7
15
9
8
8
FST
16
18
18
17
16
D0
D2
D1
D3
D4
D5
D6
D7
DT
BCLKR
1
2
3
4
5
6
9
7
15
10
7
8
9
8
FSR
12
MOTOROLA
11
DR
D0
D1
D2
D3
D4
D5
D6
D7
MOTOROLA
1
4
3
2
5
MCLK
(BCLKR)
9
6
MC145540
Figure 4-2. MC145540 Short Frame Sync Timing
1
BCLKT
10
2
3
4
5
6
7
20
7
8
21
FST
22
23
22
D0
DT
D1
D2
D3
9
6
1
BCLKR
10
2
3
4
5
7
20
7
21
FSR
12
11
DR
6
D0
D1
D2
D3
8
4-9
4.10
DIGITAL SWITCHING CHARACTERISTICS — SERIAL CONTROL PORT (SCP)
(VEXT = +2.7 V to +5.25 V, VSS = 0 V, All Digital Signals Referenced to VSS, TA = – 40 to +85°C,
CL = 150 pF, Unless Otherwise Noted; Note 1)
Ref #
Characteristics
Min
Max
Unit
25
SCP CLK Rising Edge Before SCP EN Falling Edge
40
—
ns
26
SCP EN Falling Edge Before SCP CLK Rising Edge
30
—
ns
27
SCP Rx Data Valid Before SCP CLK Rising Edge
30
—
ns
28
SCP Rx Data Valid After Rising Edge of SCP CLK
30
—
ns
29
SCP Clock Frequency
—
4.1
MHz
30
SCP Clock Width Low
50
—
ns
31
SCP Clock Width High
50
—
ns
32
SCP CLK Rising Edge Before SCP EN Rising Edge (Note 2)
50
—
ns
33
SCP EN Rising Edge Before SCP CLK Rising Edge (Note 2)
50
—
ns
34
Ninth SCP CLK Falling Edge to SCP Tx Low-Impedance for Read Operations
—
40
ns
35
SCP CLK Falling Edge (While SCP EN is Low) to SCP Tx Data Valid for Read
Operations
—
40
ns
36
SCP EN Falling Edge to SCP Tx Active for Read Operations with 8-Bit Transfers
0
50
ns
37
SCP EN Rising Edge to SCP Tx High-Impedance
—
30
ns
NOTES: 1. Measurements are made from the point at which they achieve their guaranteed minimum or maximum logic levels.
2. SCP EN must rise between the rising edge of the eighth SCP CLK and the rising edge of the ninth SCP CLK for
an 8-bit access or the access will be ignored. For a 16-bit access, SCP EN must rise between the rising edge of
the sixteenth SCP CLK and the rising edge of the seventeenth SCP CLK or the access will be ignored.
4-10
MC145540
MOTOROLA
MOTOROLA
SCP EN MAY REMAIN LOW FOR 8 OR 16 SCP CLK CYCLES.
SCP EN
MC145540
Figure 4-3. MC145540 Serial Control Port (SCP) Timing
33
25
29
32
26
1
2
3
4
5
6
7
8
9
SCP CLK
31
27
28
30
R/W/b7
SCP Rx
1/b6
1/b5
1/b4
A3/b3
A2/b2
A1/b1
A0/b0
NEXT 8 BITS
36
34
35
35
37
36
16ĆBIT
SCP Tx
b7
b6
b5
b4
b3
b2
b1
b0
MODE
4-11
4-12
MC145540
MOTOROLA
5
PACKAGE DIMENSIONS
MC145540P
28-LEAD PLASTIC DIP
CASE 710-02
NOTES:
1.
POSITIONAL TOLERANCE OF LEADS (D),
SHALL BE WITHIN 0.25mm (0.010) AT
MAXIMUM MATERIAL CONDITION, IN
RELATION TO SEATING PLANE AND EACH
OTHER.
2.
28
15
4.
14
A
L
C
N
H
G
F
DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
B
1
DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3.
K
D SEATING
M
J
PLANE
710Ć01 OBSOLETE, NEW STANDARD 710Ć02.
DIM
A
B
C
D
F
G
H
J
K
L
M
N
MILLIMETERS
MIN
MAX
INCHES
MIN MAX
36.45
37.21
1.435
1.465
13.72
14.22
0.540
0.560
3.94
5.08
0.155
0.200
0.36
0.56
0.014
0.022
1.02
1.52
0.040
0.060
2.54 BSC
0.100 BSC
1.65
2.16
0.065
0.085
0.20
0.38
0.008
0.015
2.92
3.43
0.115
0.135
15.24 BSC
0.600 BSC
°
°
15
0
1.02
0.51
°
°
15
0
0.040
0.020
Figure 5-1. Plastic DIP Dimensions
MC145540DW
28-LEAD WIDE BODY PLASTIC SOG
CASE 751F-03
NOTES:
1.
DIMENSIONS A AND B ARE DATUMS AND T IS
A DATUM SURFACE.
2.
DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
3.
4.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
5.
MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
INCHES
MIN MAX
17.80
18.05
0.701
0.711
7.40
7.60
0.292
0.299
2.35
2.65
0.093
0.104
0.35
0.49
0.014
0.019
0.41
0.90
0.016
0.035
1.27 BSC
0.050 BSC
0.229
0.317
0.0090
0.0125
0.127
0.292
0.0050
0.0115
0
°
8
°
0
°
8
°
10.05
10.55
0.395
0.415
0.25
0.75
0.010
0.029
Figure 5-2. Plastic SOG Dimensions
MOTOROLA
MC145540
5-1
5-2
MC145540
MOTOROLA
6
APPLICATION CIRCUITS
+3V
1 kΩ
1 kΩ
68 µF
20 kΩ
1.0 µF
MIC
TG
•
1
28
VDD
1 kΩ
TI -
2
27
FSR
1 kΩ
TI +
3
26
BCLKR
VAG
4
25
DR
RO
5
24
C1+
AXO -
6
23
C1-
AXO +
7
22
VSS
VDSP
8
21
SPC
VEXT
9
20
DT
20 kΩ
1.0 µF
0.1 µF
150 Ω
RINGER
20 kΩ
+3 V
0.1 µF
0.1 µF
3 kΩ
RECEIVER
150 Ω
PI
10
19
BCLKT
PO -
11
18
FST
PO +
12
17
SCP RX
PDI/RESET
13
16
SCP TX
SCP EN
14
15
SCP CLK
1.0 µF
ADPCM IN
0.1 µF
MC145540
20.736 MHz
ADPCM OUT
2.048 MHz
8 kHz
TO MICROCONTROLLER
SERIAL PERIPHERAL
INTERFACE PORT AND
RESET CIRCUIT
Figure 6-1. MC145540 Handset Application
MOTOROLA
MC145540
6-1
10 kΩ
TG
10 kΩ
0.1 µF
NC
NC
20 kΩ
0.1 µF
+5V
0.1 µF
R0 =
600 Ω
N = 0.5
RING
28
VDD
+5V
0.1 µF
2
27
FSR
TI +
3
26
BCLKR
VAG
4
25
DR
RO
5
24
C1+
23
C1-
6
ADPCM IN
NC
NC
AXO +
7
22
VSS
VDSP
8
21
SPC
20.48 MHz
VEXT
9
20
DT
ADPCM OUT
2.048 MHz
8 kHz
150 Ω
N=1
•
TI -
AXO -
10 kΩ
TIP
1
PI
10
19
BCLKT
PO -
11
18
FST
PO +
12
17
SCP RX
PDI/RESET
13
16
SCP TX
SCP EN
14
15
SCP CLK
MC145540
TO MICROCONTROLLER
SERIAL PERIPHERAL
INTERFACE PORT AND
RESET CIRCUIT
Figure 6-2. MC145540 Transformer Application
10 kΩ
10 kΩ
0.1 µF
SPEAKER
150 Ω
20 kΩ
+5V
0.1 µF
600 Ω
TIP
RO =
600 Ω N = 1
RING
0.1 µF
N=1
20 kΩ
•
28
VDD
2
27
FSR
TI +
3
26
BCLKR
VAG
4
25
DR
TG
1
TI -
RO
5
24
C1+
AXO -
6
23
C1-
AXO +
7
22
VSS
VDSP
8
21
SPC
9
20
DT
10
19
BCLKT
VEXT
PI
PO -
11
18
FST
PO +
12
17
SCP RX
PDI/RESET
13
16
SCP TX
SCP EN
14
15
SCP CLK
MC145540
+5V
0.1 µF
ADPCM IN
NC
NC
20.736 MHz
ADPCM OUT
2.048 MHz
8 kHz
TO MICROCONTROLLER
SERIAL PERIPHERAL
INTERFACE PORT AND
RESET CIRCUIT
Figure 6-3. MC145540 Transformer + Speaker Application
6-2
MC145540
MOTOROLA
7
PCB LAYOUT GUIDELINES
7.1
INTRODUCTION
The MC145540 is manufactured using high speed CMOS VLSI technology to implement the complex
analog and digital signal processing functions of an ADPCM Codec. The fully differential analog circuit
design techniques used for this device result in superior performance for the switched capacitor filters,
the analog-to-digital converter (ADC) and the digital-to-analog converter (DAC). Special attention was
given to the design of this device to reduce the sensitivities to noise, including power supply rejection
and susceptibility to radio frequency noise. This special attention to design includes a fifth order lowpass filter, followed by a third order high-pass filter whose output is converted to a digital signal with
greater than 75 dB of dynamic range, all operating on a single 5 V power supply. This results in a MuLaw LSB size for small audio signals of about 386 mV. The typical idle channel noise level of this device
is less than one LSB. In addition to the dynamic range of the codec/filter function of this device, the input
gain-setting op amp has the capability of greater than 30 dB gain intended for an electret microphone
interface.
7.2
PC BOARD MOUNTING
It is recommended that the device be soldered to the PC board for optimum noise performance. If the
device is to be used in a socket, it should be placed in a low parasitic pin inductance (generally low
profile) socket.
7.3
POWER SUPPLY, GROUND, AND NOISE CONSIDERATIONS
This device is intended to be used in switching applications that often require plugging the PC board
into a rack with power applied. This is known as “hot-rack insertion.” In these applications care should
be taken to limit the voltage on any pin from going positive of the VDD pins or negative of the VSS pins.
One method is to extend the ground and power contacts of the PCB connector. The device has input
protection on all pins and may source or sink a limited amount of current without damage. Current
limiting may be accomplished by series resistors between the signal pins and the connector contacts.
The most important considerations for PCB layout deal with noise. This includes noise on the power
supply, noise generated by the digital circuitry on the device, and cross coupling digital or radio frequency signals into the audio signals of this device. The best way to prevent noise is to:
1. Keep digital signals as far away from audio signals as possible.
2. Keep radio frequency signals as far away from the audio signals as possible.
3. Use short, low inductance traces for the audio circuitry to reduce inductive, capacitive, and radio
frequency noise sensitivities.
4. Use short, low inductance traces for digital and RF circuitry to reduce inductive, capacitive, and
radio frequency radiated noise.
5. Connect bypass capacitors from the VDD, VDSP and VAG pins to VSS with minimal trace length.
Ceramic monolithic capacitors of about 0.1 µF are acceptable to decouple the device from its
own noise. The VDD capacitor should be about 1.0 µF when using the charge pump. This larger
value of capacitance is needed to operate as a filter for the current pulses from the charge pump
and as a current reservoir for powering the VDD circuitry while the transfer capacitor, C1 is being
MOTOROLA
MC145540
7-1
charged. C1 handles relatively large current pulses and should have short traces from the device.
The VDSP decoupling capacitor helps supply the instantaneous currents of the digital signal processor circuitry in addition to decoupling the noise that may be generated by other sections of
the device or other circuitry on the power supply. The VAG decoupling capacitor helps to reduce
the impedance of the VAG pin to VSS at frequencies above the bandwidth of the VAG generator,
which reduces the susceptibility to RF noise.
6. Use a short, wide, low inductance trace to connect the VSS ground pin to the power supply ground.
The VSS pin is the digital ground and the most negative power supply pin for the analog circuitry.
All analog signal processing is referenced to the VAG pin, but because digital and RF circuitry
will probably be powered by this same ground, care must be taken to minimize high frequency
noise in the VSS trace. Depending on the application, a double sided PCB with a VSS ground
plane connecting all of the digital and analog VSS pins together would be a good grounding method. A multilayer PC board with a ground plane connecting all of the digital and analog VSS pins
together would be the optimal ground configuration. These methods will result in the lowest resistance and the lowest inductance in the ground circuit. This is important to reduce voltage spikes
in the ground circuit resulting from the high speed digital current spikes. The magnitude of digitally
induced voltage spikes may be hundreds of times larger than the analog signal the device is
required to digitize.
7. Use a short, wide, low inductance trace to connect the VEXT power supply pin to the positive
power supply. Depending on the application, a double sided PCB with bypass capacitors to the
VSS ground plane, as described above, may complete the low impedance coupling for the power
supply. For a multilayer PC board with a power plane, connecting all of the positive power supply
pins to the power plane would be the optimal power distribution method. The integrated circuit
layout and packaging considerations for the positive power supply circuit are essentially the same
as for the VSS ground circuit.
8. The VAG pin is the reference for all analog signal processing. In some applications the audio
signal to be digitized may be referenced to the VSS ground. To reduce the susceptibility to noise
at the input of the ADC section, the three terminal op amp may be used in a differential to single
ended circuit to provide level conversion from the VSS ground to the VAG ground with noise cancellation. The op amp may be used for more than 30 dB of gain in microphone interface circuits,
which will require a compact layout with minimum trace lengths as well as isolation from noise
sources. It is recommended that the layout be as symmetrical as possible to avoid any imbalances
that would reduce the noise cancelling benefits of this differential op amp circuit. Refer to the
application schematics for examples of this circuitry.
9. The MC145540 is fabricated with advanced high speed CMOS technology that is capable of
responding to noise pulses on the clock pins of 1 ns or less. It should be noted that noise pulses
of such short duration may not be seen with oscilloscopes that have less bandwidth than 600 MHz.
The most often encountered sources of clock noise spikes are inductive or capacitive coupling
of high-speed logic signals, and ground bounce. The best solution for addressing clock spikes
due to coupling, is to separate the traces and use short low inductance PC board traces. To
address ground bounce problems, all integrated circuits should have high frequency bypass
capacitors directly across their power supply pins, with low inductance traces for ground and
power supply. A less than optimum solution may be to limit the bandwidth of the trace by adding
series resistance and/or capacitance at the input pin.
If possible, reference audio signals to the VAG pin instead of to the VSS pin. Handset receivers and
telephone line interface circuits using transformers may be audio signal referenced completely to the
VAG pin. Refer to the application schematics for examples of this circuitry. The VAG pin cannot be used
for ESD and telephone line protection.
7-2
MC145540
MOTOROLA
8
PROGRAMMING THE MC145540
TONE GENERATORS
8.1
INTRODUCTION
The Individual tones of the tone generator are calculated by the digital signal processor based on an
Infinite Impulse Response (IIR) algorithm using 13-bit linear math. All of the internal memory locations
for the tone generator coefficients and algorithms are used for the ADPCM decoder routine and their
contents are lost during ADPCM decoder operation. ADPCM decoder operations are performed when
the Tone Enable bit, BR7(b3) is a 0.
Frequency and attenuation coefficients must be programmed after BR7(b3) has been low. If BR7(b3) is
kept high, either of the tones may be turned off and back on by BR7(b1:b0) without reprogramming the
frequency and attenuation coefficients.
The attenuation coefficients may be reprogrammed while BR7(b3) is a logical one for each tone whether the tone is on or off.
The frequency of a tone should not be reprogrammed while it is on. To change the frequency of a tone,
the tone generation algorithm needs to execute an initialization routine to develop the internal previous
samples to load the IIR algorithm. This initialization routine for tone generator 1 is executed while
BR7(b3) is a one and BR7(b1) transitions from a 0 to a 1. The logic state of BR7(b0) does not matter for
tone generator 1. Similarly, this initialization routine for tone generator 2 is executed while BR7(b3) is a
one and BR7(b0) transitions from a 0 to a 1. The logic state of BR7(b1) does not matter for tone generator 2. Both algorithms will be initialized if BR7(b3) is a logic one and BR7(1:0) are written to a logic 1 at
the same time. If the frequency coefficient is changed and this initialization routine is not executed, the
IIR algorithm could become unstable and generate a signal other than a clean sinusoid of the desired
amplitude.
The following procedure outlines the programing sequence for the tone generator.
1. Program the Tone Enable bit, BR7(b3) to a one. This turns on the tone generator routine and turns
off the ADPCM decoder routine. To avoid noise from the tone generator, BR7(1:0) should be written
to zeroes. The logic states of BR7(b7, b6, b5, b4, and b2) do not matter while BR7(b3) is a 1.
2. Program the coefficients for frequency and attenuation. The tone generator may be programmed
for frequency or attenuation for either tone in any order while BR7(1), (Tone 1 Enable) and BR7(0),
(Tone 2 Enable) bits are zeroes. The 12-bit coefficients must be programmed first with the 8 least
significant bits (LSB) in BR4 then the 4 most significant bits (MSB) are to be programmed into the 4
LSB of BR5. BR5 must also be programmed with the tone generator address parameter to tell the
device the destination of the 12-bit coefficient. The tone generator address parameter is programmed into the 2 MSB of BR5 during the same write cycle as the 4 MSB of the 12-bit coefficient.
Table 8-1 shows the tone generator address parameter destinations.
MOTOROLA
MC145540
8-1
Table 8-1. Tone Generator Address Parameter Destinations
b7
b6
Destination
0
0
Tone 1, Frequency Coefficient
0
1
Tone 1, Attenuation Coefficient
1
0
Tone 2, Frequency Coefficient
1
1
Tone 2, Attenuation Coefficient
3. BR7(b7) should be monitored for a logic zero before writing another BR4 plus BR5 coefficient. The
device can accept a coefficient from the combination of BR4 and BR5 once every FST cycle, which
is 125 µs. The typical write period for a non-synchronized microprocessor should not be faster than
every 250 µs.
4. BR7(1:0) may be programmed to logical ones to turn on tone 1 and tone 2. BR7(b3) must be programmed to a logical 1.
8.1.1
Programing the Tone Generator
This is an example of programing the tone generator to generate the DTMF pair of row 1 (697 Hz) at an
amplitude of – 14 dBm (600Ω) and column 2 (1336 Hz) at an amplitude of – 12 dBm (600Ω).
Select the tone generator routine.
Program BR7 with: 0000 1000
Program the 12-bit frequency coefficient for 697 Hz for tone 1. This
section has examples of calculating this frequency coefficient of HEX 6
D5.
Program BR4 with: 1101 0101
Program BR5 with: 0000 0110
Read BR7(7) and check for a zero to confirm that the DSP machine has
latched the data from BR4 and BR5.
Program the 12-bit attenuation coefficient for – 14 dBm (600Ω) for tone
1. This section has an example of calculating this attenuation
coefficient of HEX 1 1A.
Program BR4 with: 0001 1010
Program BR5 with: 0100 0001
Read BR7(7) and check for a zero to confirm that the DSP machine has
latched the data from BR4 and BR5.
Program the 12-bit frequency coefficient for 1336 Hz for tone 2. Table
8–2 is a complete table of frequency coefficients which gives a
coefficient for a 1336.20 Hz frequency of HEX 3 FC.
Program BR4 with: 1111 1100
Program BR5 with: 1000 0011
Read BR7(7) and check for a zero to confirm that the DSP machine has
latched the data from BR4 and BR5.
Program the 12-bit attenuation coefficient for – 12 dBm (600Ω) for tone
2. Table 8-3 is a complete table of attenuation coefficients which
gives a coefficient for an amplitude – 12.01 dBm (600Ω) of HEX 1 63.
Program BR4 with: 0110 0011
Program BR5 with: 1100 0001
8-2
MC145540
MOTOROLA
Read BR7(7) and check for a zero to confirm that the DSP machine has
latched the data from BR4 and BR5.
Turn on tone 1 and tone 2 with BR7(b3, b1, and b0) to logical 1s.
Recall that B7(b3) must be a logical 1 also during all tone generator
functions including programing.
Program BR7 with: 0000 1011
8.1.2
Tone Frequency Coefficient Calculation.
The tone generator frequency is based on a filter which is programmed by the equation
cos(2*pi*f*0.000125). The form of this data is a 12-bit (two’s complement) coefficient. An example of
calculating the binary or hexadecimal coefficient for 697 hertz is this:
cos(2*pi*f*0.000125)
cos(2*pi*(697)*0.000125)
cos(2*(3.14159)*(697)*0.000125)
cos(0.547422 radians) = 0.853869
To convert this number into a 12-bit two’s complement binary number whose most significant bit is the
sign information (1 is negative) and remaining 11-bits are the fractional part, (0.853869) must be converted to a fractional binary number with 11 bits of significance. The successive approximation register
(SAR) method of converting from decimal to binary is used as an example.
(0.853869) is positive,
Therefore: coefficient = binary 0.XXX XXXX XXXX
0.853869 – (2 exp-1) = 0.853869 – 0.5 = 0.353869
Therefore: coefficient = binary 0.1XX XXXX XXXX
0.353869 – (2 exp-2) = 0.353869 – 0.25 = 0.103869
Therefore: coefficient = binary 0.11X XXXX XXXX
0.103869 – (2 exp-3) = 0.103869 – 0.125 = – 0.021131
This changed the sign of the result and
Therefore: coefficient = binary 0.110 XXXX XXXX
0.103869 – (2 exp-4) = 0.103869 – 0.0625 = 0.041369
Therefore: coefficient = binary 0.110 1XXX XXXX
0.041369 – (2 exp-5) = 0.041369 – 0.03125 = 0.010119
Therefore: coefficient = binary 0.110 11XX XXXX
0.010119 – (2 exp-6) = 0.010119 – 0.015625 = – 0.005506
This changed the sign of the result and
therefore: coefficient = binary 0.110 110X XXXX
0.010119 – (2 exp-7) = 0.010119 – 0.0078125 = 0.0023065
Therefore: coefficient = binary 0.110 1101 XXXX
0.0023065 – (2 exp-8) = 0.0023065 – 0.00390625 = – 0.00159975
This changed the sign of the result and
Therefore: coefficient = binary 0.110 1101 0XXX
0.0023065 – (2 exp-9) = 0.0023065 – 0.001953125 = 0.000353375
Therefore: coefficient = binary 0.110 1101 01XX
0.000353375 – (2 exp-10) = 0.000353375 – 0.0009765625 = – 0.0006231875
This changed the sign of the result and
Therefore: coefficient = binary 0.110 1101 010X
MOTOROLA
MC145540
8-3
0.000353375 – (2 exp-11) = 0.000353375 – 0.00048828125 = – .00013490625
This changed the sign of the result and
Therefore: coefficient = binary 0.110 1101 0100
This is the last bit and to make sure that we have the correct value for the LSB, one bit beyond the LSB
must be determined for round-off error minimization. Therefore:
0.000353375
This result
one half of
changes the
– (2 exp-12) = 0.000353375 – 0.000244140625 = 0.000109234375
has a positive sign meaning that the remainder is greater than
the LSB and to minimize error, the LSB should be a one. This
result and therefore: coefficient = binary 0.110 1101 0101
Which binary 0.110 1101 0101
8.1.3
is Hexadecimal 06 D5
Tone Frequency Coefficient Calculation using Integer Mathematics for Decimal to Hexadecimal Conversion.
The math to convert from decimal to binary for the frequency coefficient calculations may be kept in
integer form given that this device uses a coefficient that has 11-bits of fractional component. This is
accomplished by multiplying the result of the cosine function (which is in decimal form) by 211, or 2048.
The round-off error minimization is accomplished by rounding-off the fractional component after multiplying by 2048. This example helps to clarify this procedure by calculating the binary or hexadecimal
coefficient for 697 hertz.
cos(2*pi*f*0.000125)
cos(2*pi*(697)*0.000125)
cos(2*(3.14159)*(697)*0.000125)
cos(0.547422 radians) = 0.853869
Multiply by 2048
0.853869 * 2048 = 1748.723712
Round-off error minimization (the digit to the right of the decimal
point is greater than or equal to 5). Therefore:
1749
725
213
213
85
21
21
5
5
1
1
- 1024
–
512
–
256
–
128
–
64
–
32
–
16
–
8
–
4
–
2
–
1
=
=
=
=
=
=
=
=
=
=
=
725
213
–43
85
21
–11
5
–3
1
–1
0
>
>
>
>
>
>
>
>
>
>
>
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
0.1XX
0.11X
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
XXXX
XXXX
XXXX
1XXX
11XX
110X
1101
1101
1101
1101
1101
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
0XXX
01XX
010X
0101
Therefore: coefficient = binary 0.110 1101 0101
Which binary 0.110 1101 0101
8.1.4
is hexadecimal 06 D5
Tone Attenuation Coefficient Calculation
This is an example of calculating the attenuation coefficient for an output amplitude of – 14 dBm (600Ω)
for one of the tone generators. The tone attenuation is accomplished by an 11-bit linear multiply of the
output from each of the IIR frequency algorithms. The format of the attenuation coefficient is a 12-bit 2’s
complement number with bits (10:0) being the fractional part and bit (11) being the sign information.
These attenuation coefficients should be limited to values between zero (binary 0.000 0000 0000 or
hexadecimal 0 00) and almost positive 1 (binary 0.111 1111 1111 or hexadecimal 7 FF). Note that this
scaling always results in attenuation of the tones.
8-4
MC145540
MOTOROLA
The amplitude from the frequency IIR algorithm is:
0.775 Vrms*(3.17 dB)*8192/8159 = 1.1209 Vrms
3.17 dB = 10exp(3.17/20) V/V = 1.44046 V/V
Where:
1. 0.775 Vrms is 0 dBm0 for this device.
2. 3.17 dB is the amplitude headroom for a tone relative to the
Mu-Law reference level of 0 dBm0.
3. 8192/8159 is the increase in amplitude for 13-bit linear compared
to Mu-Law companding.
The maximum amplitude from either tone 1 or tone 2 is:
1.1209 Vrms*2047/2048=1.1204 Vrms
Where:
4. 2047/2048 is the maximum output ratio for the attenuation routine.
To calculate – 14 dBm (600Ω), start with the equation for dBm in volts, and solve for output voltage.
dBm=10*Log[(Vrms2/R)/1mW]
dBm/10=Log[(Vrms2/R)/1mW]
10exp(dBm/10)=(Vrms2/R)/1mW=(Vrms2)/(R*1mW)
[10exp(dBm/10)]*(R*1mW)=Vrms2
sqrt{[10exp(dBm/10)]*(R*1mW)}=Vrms
Vrms=sqrt{[10exp(dBm/10)]*(600Ω*1mW)}
Using this equation to calculate the voltage for a – 14 dBm amplitude.
Vrms(–14dBm)=sqrt{[10exp(–14/10)]*(600*0.001)}
Vrms(–14dBm)=0.1546 Vrms
The ratio of this desired voltage divided by the maximum tone amplitude gives the tone coefficient,
when this ratio is converted to hexadecimal. The tone coefficient requires an 11-bit fraction, which may
be converted to hexadecimal using the same procedures as the frequency coefficient.
0.1546 Vrms/1.1209 Vrms = 0.137924882
Converting to Hexadecimal for 11-bit fraction.
0.137924882*2048=282
Decimal 282 = Hexadecimal 1 1A
Tables 8-2 and 8-3 show the frequency coefficients and attenuation coefficients for the tone generator.
MOTOROLA
MC145540
8-5
Table 8-2. Frequency Coefficients for Tone Generator
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–2047
8
01
3,960.21
–1997
8
33
3,715.26
–1947
8
65
3,598.47
–2046
8
02
3,943.73
–1996
8
34
3,712.47
–1946
8
66
3,596.47
–2045
8
03
3,931.08
–1995
8
35
3,709.71
–1945
8
67
3,594.48
–2044
8
04
3,920.41
–1994
8
36
3,706.97
–1944
8
68
3,592.50
–2043
8
05
3,911.01
–1993
8
37
3,704.25
–1943
8
69
3,590.52
–2042
8
06
3,902.51
–1992
8
38
3,701.57
–1942
8
6A
3,588.56
–2041
8
07
3,894.70
–1991
8
39
3,698.90
–1941
8
6B
3,586.61
–2040
8
08
3,887.42
–1990
8
3A
3,696.26
–1940
8
6C
3,584.66
–2039
8
09
3,880.59
–1989
8
3B
3,693.64
–1939
8
6D
3,582.73
–2038
8
0A
3,874.13
–1988
8
3C
3,691.04
–1938
8
6E
3,580.80
–2037
8
0B
3,867.98
–1987
8
3D
3,688.46
–1937
8
6F
3,578.88
–2036
8
0C
3,862.10
–1986
8
3E
3,685.91
–1936
8
70
3,576.97
–2035
8
0D
3,856.46
–1985
8
3F
3,683.37
–1935
8
71
3,575.07
–2034
8
0E
3,851.04
–1984
8
40
3,680.86
–1934
8
72
3,573.18
–2033
8
0F
3,845.80
–1983
8
41
3,678.36
–1933
8
73
3,571.29
–2032
8
10
3,840.74
–1982
8
42
3,675.88
–1932
8
74
3,569.41
–2031
8
11
3,835.83
–1981
8
43
3,673.42
–1931
8
75
3,567.54
–2030
8
12
3,831.07
–1980
8
44
3,670.98
–1930
8
76
3,565.68
–2029
8
13
3,826.43
–1979
8
45
3,668.55
–1929
8
77
3,563.83
–2028
8
14
3,821.91
–1978
8
46
3,666.15
–1928
8
78
3,561.98
–2027
8
15
3,817.51
–1977
8
47
3,663.76
–1927
8
79
3,560.14
–2026
8
16
3,813.21
–1976
8
48
3,661.38
–1926
8
7A
3,558.31
–2025
8
17
3,809.00
–1975
8
49
3,659.03
–1925
8
7B
3,556.48
–2024
8
18
3,804.88
–1974
8
4A
3,656.69
–1924
8
7C
3,554.66
–2023
8
19
3,800.85
–1973
8
4B
3,654.36
–1923
8
7D
3,552.85
–2022
8
1A
3,796.90
–1972
8
4C
3,652.05
–1922
8
7E
3,551.05
–2021
8
1B
3,793.02
–1971
8
4D
3,649.75
–1921
8
7F
3,549.25
–2020
8
1C
3,789.22
–1970
8
4E
3,647.47
–1920
8
80
3,547.46
–2019
8
1D
3,785.48
–1969
8
4F
3,645.20
–1919
8
81
3,545.68
–2018
8
1E
3,781.80
–1968
8
50
3,642.95
–1918
8
82
3,543.90
–2017
8
1F
3,778.19
–1967
8
51
3,640.71
–1917
8
83
3,542.13
–2016
8
20
3,774.63
–1966
8
52
3,638.48
–1916
8
84
3,540.37
–2015
8
21
3,771.12
–1965
8
53
3,636.27
–1915
8
85
3,538.61
–2014
8
22
3,767.67
–1964
8
54
3,634.07
–1914
8
86
3,536.86
–2013
8
23
3,764.27
–1963
8
55
3,631.89
–1913
8
87
3,535.12
–2012
8
24
3,760.92
–1962
8
56
3,629.71
–1912
8
88
3,533.38
–2011
8
25
3,757.61
–1961
8
57
3,627.55
–1911
8
89
3,531.65
–2010
8
26
3,754.34
–1960
8
58
3,625.40
–1910
8
8A
3,529.92
–2009
8
27
3,751.12
–1959
8
59
3,623.26
–1909
8
8B
3,528.20
–2008
8
28
3,747.94
–1958
8
5A
3,621.13
–1908
8
8C
3,526.49
–2007
8
29
3,744.80
–1957
8
5B
3,619.02
–1907
8
8D
3,524.78
–2006
8
2A
3,741.70
–1956
8
5C
3,616.92
–1906
8
8E
3,523.08
–2005
8
2B
3,738.63
–1955
8
5D
3,614.82
–1905
8
8F
3,521.38
–2004
8
2C
3,735.60
–1954
8
5E
3,612.74
–1904
8
90
3,519.69
–2003
8
2D
3,732.60
–1953
8
5F
3,610.67
–1903
8
91
3,518.01
–2002
8
2E
3,729.63
–1952
8
60
3,608.61
–1902
8
92
3,516.33
–2001
8
2F
3,726.70
–1951
8
61
3,606.56
–1901
8
93
3,514.65
–2000
8
30
3,723.79
–1950
8
62
3,604.52
–1900
8
94
3,512.99
–1999
8
31
3,720.92
–1949
8
63
3,602.49
–1899
8
95
3,511.32
–1998
8
32
3,718.08
–1948
8
64
3,600.48
–1898
8
96
3,509.67
8-6
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–1897
8
97
3,508.01
–1847
–1896
8
98
3,506.37
–1846
8
C9
3,431.18
–1797
8
CA
3,429.74
–1796
8
FB
3,363.01
8
FC
–1895
8
99
3,504.72
–1845
8
CB
3,428.31
3,361.71
–1795
8
FD
–1894
8
9A
3,503.09
–1844
8
CC
3,360.42
3,426.88
–1794
8
FE
–1893
8
9B
3,501.46
–1843
8
3,359.13
CD
3,425.45
–1793
8
FF
3,357.84
–1892
–1891
8
9C
3,499.83
–1842
8
9D
3,498.21
–1841
8
CE
3,424.03
–1792
9
00
3,356.56
8
CF
3,422.60
–1791
9
01
–1890
8
9E
3,496.59
3,355.27
–1840
8
D0
3,421.19
–1790
9
02
–1889
8
9F
3,353.99
3,494.98
–1839
8
D1
3,419.77
–1789
9
03
3,352.71
–1888
8
–1887
8
A0
3,493.37
–1838
8
D2
3,418.36
–1788
9
04
3,351.44
A1
3,491.77
–1837
8
D3
3,416.95
–1787
9
05
–1886
3,350.16
8
A2
3,490.17
–1836
8
D4
3,415.55
–1786
9
06
3,348.89
–1885
8
A3
3,488.58
–1835
8
D5
3,414.15
–1785
9
07
3,347.62
–1884
8
A4
3,486.99
–1834
8
D6
3,412.75
–1784
9
08
3,346.36
–1883
8
A5
3,485.41
–1833
8
D7
3,411.35
–1783
9
09
3,345.09
–1882
8
A6
3,483.83
–1832
8
D8
3,409.96
–1782
9
0A
3,343.83
–1881
8
A7
3,482.26
–1831
8
D9
3,408.57
–1781
9
0B
3,342.57
–1880
8
A8
3,480.69
–1830
8
DA
3,407.19
–1780
9
0C
3,341.31
–1879
8
A9
3,479.12
–1829
8
DB
3,405.80
–1779
9
0D
3,340.05
–1878
8
AA
3,477.56
–1828
8
DC
3,404.42
–1778
9
0E
3,338.80
–1877
8
AB
3,476.00
–1827
8
DD
3,403.05
–1777
9
0F
3,337.55
–1876
8
AC
3,474.45
–1826
8
DE
3,401.67
–1776
9
10
3,336.30
–1875
8
AD
3,472.91
–1825
8
DF
3,400.30
–1775
9
11
3,335.05
–1874
8
AE
3,471.36
–1824
8
E0
3,398.93
–1774
9
12
3,333.81
–1873
8
AF
3,469.82
–1823
8
E1
3,397.57
–1773
9
13
3,332.56
–1872
8
B0
3,468.29
–1822
8
E2
3,396.20
–1772
9
14
3,331.32
–1871
8
B1
3,466.76
–1821
8
E3
3,394.84
–1771
9
15
3,330.08
–1870
8
B2
3,465.23
–1820
8
E4
3,393.49
–1770
9
16
3,328.85
–1869
8
B3
3,463.71
–1819
8
E5
3,392.13
–1769
9
17
3,327.61
–1868
8
B4
3,462.19
–1818
8
E6
3,390.78
–1768
9
18
3,326.38
–1867
8
B5
3,460.67
–1817
8
E7
3,389.43
–1767
9
19
3,325.15
–1866
8
B6
3,459.16
–1816
8
E8
3,388.08
–1766
9
1A
3,323.92
–1865
8
B7
3,457.66
–1815
8
E9
3,386.74
–1765
9
1B
3,322.69
–1864
8
B8
3,456.15
–1814
8
EA
3,385.40
–1764
9
1C
3,321.47
–1863
8
B9
3,454.66
–1813
8
EB
3,384.06
–1763
9
1D
3,320.24
–1862
8
BA
3,453.16
–1812
8
EC
3,382.73
–1762
9
1E
3,319.02
–1861
8
BB
3,451.67
–1811
8
ED
3,381.39
–1761
9
1F
3,317.81
–1860
8
BC
3,450.18
–1810
8
EE
3,380.06
–1760
9
20
3,316.59
–1859
8
BD
3,448.70
–1809
8
EF
3,378.74
–1759
9
21
3,315.37
–1858
8
BE
3,447.22
–1808
8
F0
3,377.41
–1758
9
22
3,314.16
–1857
8
BF
3,445.74
–1807
8
F1
3,376.09
–1757
9
23
3,312.95
–1856
8
C0
3,444.27
–1806
8
F2
3,374.77
–1756
9
24
3,311.74
–1855
8
C1
3,442.80
–1805
8
F3
3,373.45
–1755
9
25
3,310.53
–1854
8
C2
3,441.34
–1804
8
F4
3,372.14
–1754
9
26
3,309.33
–1853
8
C3
3,439.87
–1803
8
F5
3,370.83
–1753
9
27
3,308.12
–1852
8
C4
3,438.42
–1802
8
F6
3,369.52
–1752
9
28
3,306.92
–1851
8
C5
3,436.96
–1801
8
F7
3,368.21
–1751
9
29
3,305.72
–1850
8
C6
3,435.51
–1800
8
F8
3,366.90
–1750
9
2A
3,304.53
–1849
8
C7
3,434.06
–1799
8
F9
3,365.60
–1749
9
2B
3,303.33
–1848
8
C8
3,432.62
–1798
8
FA
3,364.30
–1748
9
2C
3,302.14
MOTOROLA
MC145540
8-7
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–1747
9
2D
3,300.94
–1697
9
5F
3,243.48
–1647
9
91
3,189.62
–1746
9
2E
3,299.75
–1696
9
60
3,242.37
–1646
9
92
3,188.58
–1745
9
2F
3,298.57
–1695
9
61
3,241.26
–1645
9
93
3,187.53
–1744
9
30
3,297.38
–1694
9
62
3,240.15
–1644
9
94
3,186.49
–1743
9
31
3,296.19
–1693
9
63
3,239.05
–1643
9
95
3,185.45
–1742
9
32
3,295.01
–1692
9
64
3,237.94
–1642
9
96
3,184.41
–1741
9
33
3,293.83
–1691
9
65
3,236.84
–1641
9
97
3,183.37
–1740
9
34
3,292.65
–1690
9
66
3,235.74
–1640
9
98
3,182.33
–1739
9
35
3,291.47
–1689
9
67
3,234.64
–1639
9
99
3,181.29
–1738
9
36
3,290.30
–1688
9
68
3,233.54
–1638
9
9A
3,180.25
–1737
9
37
3,289.12
–1687
9
69
3,232.44
–1637
9
9B
3,179.22
–1736
9
38
3,287.95
–1686
9
6A
3,231.35
–1636
9
9C
3,178.19
–1735
9
39
3,286.78
–1685
9
6B
3,230.25
–1635
9
9D
3,177.15
–1734
9
3A
3,285.61
–1684
9
6C
3,229.16
–1634
9
9E
3,176.12
–1733
9
3B
3,284.44
–1683
9
6D
3,228.07
–1633
9
9F
3,175.09
–1732
9
3C
3,283.27
–1682
9
6E
3,226.98
–1632
9
A0
3,174.06
–1731
9
3D
3,282.11
–1681
9
6F
3,225.89
–1631
9
A1
3,173.03
–1730
9
3E
3,280.95
–1680
9
70
3,224.80
–1630
9
A2
3,172.00
–1729
9
3F
3,279.79
–1679
9
71
3,223.72
–1629
9
A3
3,170.98
–1728
9
40
3,278.63
–1678
9
72
3,222.63
–1628
9
A4
3,169.95
–1727
9
41
3,277.47
–1677
9
73
3,221.55
–1627
9
A5
3,168.93
–1726
9
42
3,276.31
–1676
9
74
3,220.46
–1626
9
A6
3,167.91
–1725
9
43
3,275.16
–1675
9
75
3,219.38
–1625
9
A7
3,166.88
–1724
9
44
3,274.01
–1674
9
76
3,218.30
–1624
9
A8
3,165.86
–1723
9
45
3,272.86
–1673
9
77
3,217.22
–1623
9
A9
3,164.84
–1722
9
46
3,271.71
–1672
9
78
3,216.15
–1622
9
AA
3,163.82
–1721
9
47
3,270.56
–1671
9
79
3,215.07
–1621
9
AB
3,162.81
–1720
9
48
3,269.41
–1670
9
7A
3,214.00
–1620
9
AC
3,161.79
–1719
9
49
3,268.27
–1669
9
7B
3,212.92
–1619
9
AD
3,160.77
–1718
9
4A
3,267.13
–1668
9
7C
3,211.85
–1618
9
AE
3,159.76
–1717
9
4B
3,265.99
–1667
9
7D
3,210.78
–1617
9
AF
3,158.75
–1716
9
4C
3,264.85
–1666
9
7E
3,209.71
–1616
9
B0
3,157.73
–1715
9
4D
3,263.71
–1665
9
7F
3,208.64
–1615
9
B1
3,156.72
–1714
9
4E
3,262.57
–1664
9
80
3,207.58
–1614
9
B2
3,155.71
–1713
9
4F
3,261.44
–1663
9
81
3,206.51
–1613
9
B3
3,154.70
–1712
9
50
3,260.30
–1662
9
82
3,205.45
–1612
9
B4
3,153.69
–1711
9
51
3,259.17
–1661
9
83
3,204.38
–1611
9
B5
3,152.69
–1710
9
52
3,258.04
–1660
9
84
3,203.32
–1610
9
B6
3,151.68
–1709
9
53
3,256.91
–1659
9
85
3,202.26
–1609
9
B7
3,150.67
–1708
9
54
3,255.78
–1658
9
86
3,201.20
–1608
9
B8
3,149.67
–1707
9
55
3,254.66
–1657
9
87
3,200.14
–1607
9
B9
3,148.67
–1706
9
56
3,253.53
–1656
9
88
3,199.08
–1606
9
BA
3,147.66
–1705
9
57
3,252.41
–1655
9
89
3,198.03
–1605
9
BB
3,146.66
–1704
9
58
3,251.29
–1654
9
8A
3,196.97
–1604
9
BC
3,145.66
–1703
9
59
3,250.17
–1653
9
8B
3,195.92
–1603
9
BD
3,144.66
–1702
9
5A
3,249.05
–1652
9
8C
3,194.87
–1602
9
BE
3,143.66
–1701
9
5B
3,247.93
–1651
9
8D
3,193.82
–1601
9
BF
3,142.67
–1700
9
5C
3,246.82
–1650
9
8E
3,192.77
–1600
9
C0
3,141.67
–1699
9
5D
3,245.70
–1649
9
8F
3,191.72
–1599
9
C1
3,140.67
–1698
9
5E
3,244.59
–1648
9
90
3,190.67
–1598
9
C2
3,139.68
8-8
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–1597
9
C3
3,138.69
–1547
9
F5
3,090.17
–1497
A
27
3,043.70
–1596
9
C4
3,137.69
–1546
9
F6
3,089.23
–1496
A
28
3,042.79
–1595
9
C5
3,136.70
–1545
9
F7
3,088.28
–1495
A
29
3,041.88
–1594
9
C6
3,135.71
–1544
9
F8
3,087.33
–1494
A
2A
3,040.97
–1593
9
C7
3,134.72
–1543
9
F9
3,086.39
–1493
A
2B
3,040.07
–1592
9
C8
3,133.73
–1542
9
FA
3,085.44
–1492
A
2C
3,039.16
–1591
9
C9
3,132.75
–1541
9
FB
3,084.50
–1491
A
2D
3,038.25
–1590
9
CA
3,131.76
–1540
9
FC
3,083.55
–1490
A
2E
3,037.34
–1589
9
CB
3,130.77
–1539
9
FD
3,082.61
–1489
A
2F
3,036.44
–1588
9
CC
3,129.79
–1538
9
FE
3,081.67
–1488
A
30
3,035.53
–1587
9
CD
3,128.80
–1537
9
FF
3,080.73
–1487
A
31
3,034.63
–1586
9
CE
3,127.82
–1536
A
00
3,079.79
–1486
A
32
3,033.72
–1585
9
CF
3,126.84
–1535
A
01
3,078.85
–1485
A
33
3,032.82
–1584
9
D0
3,125.86
–1534
A
02
3,077.91
–1484
A
34
3,031.92
–1583
9
D1
3,124.88
–1533
A
03
3,076.97
–1483
A
35
3,031.02
–1582
9
D2
3,123.90
–1532
A
04
3,076.03
–1482
A
36
3,030.12
–1581
9
D3
3,122.92
–1531
A
05
3,075.10
–1481
A
37
3,029.22
–1580
9
D4
3,121.94
–1530
A
06
3,074.16
–1480
A
38
3,028.32
–1579
9
D5
3,120.96
–1529
A
07
3,073.23
–1479
A
39
3,027.42
–1578
9
D6
3,119.99
–1528
A
08
3,072.29
–1478
A
3A
3,026.52
–1577
9
D7
3,119.01
–1527
A
09
3,071.36
–1477
A
3B
3,025.62
–1576
9
D8
3,118.04
–1526
A
0A
3,070.43
–1476
A
3C
3,024.72
–1575
9
D9
3,117.07
–1525
A
0B
3,069.49
–1475
A
3D
3,023.83
–1574
9
DA
3,116.10
–1524
A
0C
3,068.56
–1474
A
3E
3,022.93
–1573
9
DB
3,115.12
–1523
A
0D
3,067.63
–1473
A
3F
3,022.04
–1572
9
DC
3,114.15
–1522
A
0E
3,066.70
–1472
A
40
3,021.14
–1571
9
DD
3,113.18
–1521
A
0F
3,065.77
–1471
A
41
3,020.25
–1570
9
DE
3,112.22
–1520
A
10
3,064.85
–1470
A
42
3,019.35
–1569
9
DF
3,111.25
–1519
A
11
3,063.92
–1469
A
43
3,018.46
–1568
9
E0
3,110.28
–1518
A
12
3,062.99
–1468
A
44
3,017.57
–1567
9
E1
3,109.31
–1517
A
13
3,062.07
–1467
A
45
3,016.68
–1566
9
E2
3,108.35
–1516
A
14
3,061.14
–1466
A
46
3,015.79
–1565
9
E3
3,107.39
–1515
A
15
3,060.22
–1465
A
47
3,014.90
–1564
9
E4
3,106.42
–1514
A
16
3,059.29
–1464
A
48
3,014.01
–1563
9
E5
3,105.46
–1513
A
17
3,058.37
–1463
A
49
3,013.12
–1562
9
E6
3,104.50
–1512
A
18
3,057.45
–1462
A
4A
3,012.23
–1561
9
E7
3,103.54
–1511
A
19
3,056.53
–1461
A
4B
3,011.34
–1560
9
E8
3,102.58
–1510
A
1A
3,055.61
–1460
A
4C
3,010.46
–1559
9
E9
3,101.62
–1509
A
1B
3,054.69
–1459
A
4D
3,009.57
–1558
9
EA
3,100.66
–1508
A
1C
3,053.77
–1458
A
4E
3,008.69
–1557
9
EB
3,099.70
–1507
A
1D
3,052.85
–1457
A
4F
3,007.80
–1556
9
EC
3,098.75
–1506
A
1E
3,051.93
–1456
A
50
3,006.92
–1555
9
ED
3,097.79
–1505
A
1F
3,051.01
–1455
A
51
3,006.03
–1554
9
EE
3,096.83
–1504
A
20
3,050.10
–1454
A
52
3,005.15
–1553
9
EF
3,095.88
–1503
A
21
3,049.18
–1453
A
53
3,004.27
–1552
9
F0
3,094.93
–1502
A
22
3,048.27
–1452
A
54
3,003.39
–1551
9
F1
3,093.97
–1501
A
23
3,047.35
–1451
A
55
3,002.50
–1550
9
F2
3,093.02
–1500
A
24
3,046.44
–1450
A
56
3,001.62
–1549
9
F3
3,092.07
–1499
A
25
3,045.53
–1449
A
57
3,000.74
–1548
9
F4
3,091.12
–1498
A
26
3,044.62
–1448
A
58
2,999.86
MOTOROLA
MC145540
8-9
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–1447
–1446
A
59
2,998.99
–1397
A
5A
2,998.11
–1396
A
8B
2,955.78
–1347
A
BD
2,913.91
A
8C
2,954.93
–1346
A
BE
–1445
A
5B
2,997.23
2,913.08
–1395
A
8D
2,954.08
–1345
A
BF
–1444
A
5C
2,912.26
2,996.35
–1394
A
8E
2,953.23
–1344
A
C0
–1443
A
2,911.43
5D
2,995.48
–1393
A
8F
2,952.39
–1343
A
C1
2,910.61
–1442
–1441
A
5E
2,994.60
–1392
A
90
2,951.54
–1342
A
C2
2,909.79
A
5F
2,993.72
–1391
A
91
2,950.69
–1341
A
C3
2,908.96
–1440
A
60
2,992.85
–1390
A
92
2,949.84
–1340
A
C4
2,908.14
–1439
A
61
2,991.98
–1389
A
93
2,949.00
–1339
A
C5
2,907.32
–1438
A
62
2,991.10
–1388
A
94
2,948.15
–1338
A
C6
2,906.50
–1437
A
63
2,990.23
–1387
A
95
2,947.31
–1337
A
C7
2,905.68
–1436
A
64
2,989.36
–1386
A
96
2,946.46
–1336
A
C8
2,904.86
–1435
A
65
2,988.49
–1385
A
97
2,945.62
–1335
A
C9
2,904.04
–1434
A
66
2,987.62
–1384
A
98
2,944.77
–1334
A
CA
2,903.22
–1433
A
67
2,986.74
–1383
A
99
2,943.93
–1333
A
CB
2,902.40
–1432
A
68
2,985.87
–1382
A
9A
2,943.09
–1332
A
CC
2,901.58
–1431
A
69
2,985.01
–1381
A
9B
2,942.25
–1331
A
CD
2,900.76
–1430
A
6A
2,984.14
–1380
A
9C
2,941.40
–1330
A
CE
2,899.94
–1429
A
6B
2,983.27
–1379
A
9D
2,940.56
–1329
A
CF
2,899.13
–1428
A
6C
2,982.40
–1378
A
9E
2,939.72
–1328
A
D0
2,898.31
–1427
A
6D
2,981.53
–1377
A
9F
2,938.88
–1327
A
D1
2,897.49
–1426
A
6E
2,980.67
–1376
A
A0
2,938.04
–1326
A
D2
2,896.68
–1425
A
6F
2,979.80
–1375
A
A1
2,937.20
–1325
A
D3
2,895.86
–1424
A
70
2,978.94
–1374
A
A2
2,936.37
–1324
A
D4
2,895.05
–1423
A
71
2,978.07
–1373
A
A3
2,935.53
–1323
A
D5
2,894.23
–1422
A
72
2,977.21
–1372
A
A4
2,934.69
–1322
A
D6
2,893.42
–1421
A
73
2,976.34
–1371
A
A5
2,933.85
–1321
A
D7
2,892.60
–1420
A
74
2,975.48
–1370
A
A6
2,933.02
–1320
A
D8
2,891.79
–1419
A
75
2,974.62
–1369
A
A7
2,932.18
–1319
A
D9
2,890.98
–1418
A
76
2,973.76
–1368
A
A8
2,931.34
–1318
A
DA
2,890.16
–1417
A
77
2,972.89
–1367
A
A9
2,930.51
–1317
A
DB
2,889.35
–1416
A
78
2,972.03
–1366
A
AA
2,929.67
–1316
A
DC
2,888.54
–1415
A
79
2,971.17
–1365
A
AB
2,928.84
–1315
A
DD
2,887.73
–1414
A
7A
2,970.31
–1364
A
AC
2,928.01
–1314
A
DE
2,886.92
–1413
A
7B
2,969.45
–1363
A
AD
2,927.17
–1313
A
DF
2,886.11
–1412
A
7C
2,968.60
–1362
A
AE
2,926.34
–1312
A
E0
2,885.30
–1411
A
7D
2,967.74
–1361
A
AF
2,925.51
–1311
A
E1
2,884.49
–1410
A
7E
2,966.88
–1360
A
B0
2,924.68
–1310
A
E2
2,883.68
–1409
A
7F
2,966.02
–1359
A
B1
2,923.85
–1309
A
E3
2,882.87
–1408
A
80
2,965.17
–1358
A
B2
2,923.01
–1308
A
E4
2,882.06
–1407
A
81
2,964.31
–1357
A
B3
2,922.18
–1307
A
E5
2,881.26
–1406
A
82
2,963.46
–1356
A
B4
2,921.35
–1306
A
E6
2,880.45
–1405
A
83
2,962.60
–1355
A
B5
2,920.52
–1305
A
E7
2,879.64
–1404
A
84
2,961.75
–1354
A
B6
2,919.70
–1304
A
E8
2,878.84
–1403
A
85
2,960.89
–1353
A
B7
2,918.87
–1303
A
E9
2,878.03
–1402
A
86
2,960.04
–1352
A
B8
2,918.04
–1302
A
EA
2,877.22
–1401
A
87
2,959.19
–1351
A
B9
2,917.21
–1301
A
EB
2,876.42
–1400
A
88
2,958.34
–1350
A
BA
2,916.39
–1300
A
EC
2,875.61
–1399
A
89
2,957.48
–1349
A
BB
2,915.56
–1299
A
ED
2,874.81
–1398
A
8A
2,956.63
–1348
A
BC
2,914.73
–1298
A
EE
2,874.01
8-10
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–1297
A
EF
2,873.20
–1247
B
21
2,833.53
–1197
B
53
2,794.79
–1296
A
F0
2,872.40
–1246
B
22
2,832.75
–1196
B
54
2,794.03
–1295
A
F1
2,871.60
–1245
B
23
2,831.97
–1195
B
55
2,793.26
–1294
A
F2
2,870.79
–1244
B
24
2,831.18
–1194
B
56
2,792.50
–1293
A
F3
2,869.99
–1243
B
25
2,830.40
–1193
B
57
2,791.73
–1292
A
F4
2,869.19
–1242
B
26
2,829.62
–1192
B
58
2,790.97
–1291
A
F5
2,868.39
–1241
B
27
2,828.84
–1191
B
59
2,790.20
–1290
A
F6
2,867.59
–1240
B
28
2,828.06
–1190
B
5A
2,789.44
–1289
A
F7
2,866.79
–1239
B
29
2,827.28
–1189
B
5B
2,788.68
–1288
A
F8
2,865.99
–1238
B
2A
2,826.50
–1188
B
5C
2,787.91
–1287
A
F9
2,865.19
–1237
B
2B
2,825.72
–1187
B
5D
2,787.15
–1286
A
FA
2,864.39
–1236
B
2C
2,824.94
–1186
B
5E
2,786.39
–1285
A
FB
2,863.59
–1235
B
2D
2,824.16
–1185
B
5F
2,785.62
–1284
A
FC
2,862.79
–1234
B
2E
2,823.38
–1184
B
60
2,784.86
–1283
A
FD
2,862.00
–1233
B
2F
2,822.60
–1183
B
61
2,784.10
–1282
A
FE
2,861.20
–1232
B
30
2,821.82
–1182
B
62
2,783.34
–1281
A
FF
2,860.40
–1231
B
31
2,821.04
–1181
B
63
2,782.58
–1280
B
00
2,859.60
–1230
B
32
2,820.26
–1180
B
64
2,781.82
–1279
B
01
2,858.81
–1229
B
33
2,819.49
–1179
B
65
2,781.06
–1278
B
02
2,858.01
–1228
B
34
2,818.71
–1178
B
66
2,780.30
–1277
B
03
2,857.22
–1227
B
35
2,817.93
–1177
B
67
2,779.54
–1276
B
04
2,856.42
–1226
B
36
2,817.16
–1176
B
68
2,778.78
–1275
B
05
2,855.63
–1225
B
37
2,816.38
–1175
B
69
2,778.02
–1274
B
06
2,854.83
–1224
B
38
2,815.60
–1174
B
6A
2,777.26
–1273
B
07
2,854.04
–1223
B
39
2,814.83
–1173
B
6B
2,776.50
–1272
B
08
2,853.25
–1222
B
3A
2,814.05
–1172
B
6C
2,775.74
–1271
B
09
2,852.45
–1221
B
3B
2,813.28
–1171
B
6D
2,774.98
–1270
B
0A
2,851.66
–1220
B
3C
2,812.51
–1170
B
6E
2,774.23
–1269
B
0B
2,850.87
–1219
B
3D
2,811.73
–1169
B
6F
2,773.47
–1268
B
0C
2,850.08
–1218
B
3E
2,810.96
–1168
B
70
2,772.71
–1267
B
0D
2,849.28
–1217
B
3F
2,810.19
–1167
B
71
2,771.95
–1266
B
0E
2,848.49
–1216
B
40
2,809.41
–1166
B
72
2,771.20
–1265
B
0F
2,847.70
–1215
B
41
2,808.64
–1165
B
73
2,770.44
–1264
B
10
2,846.91
–1214
B
42
2,807.87
–1164
B
74
2,769.69
–1263
B
11
2,846.12
–1213
B
43
2,807.10
–1163
B
75
2,768.93
–1262
B
12
2,845.33
–1212
B
44
2,806.32
–1162
B
76
2,768.18
–1261
B
13
2,844.54
–1211
B
45
2,805.55
–1161
B
77
2,767.42
–1260
B
14
2,843.75
–1210
B
46
2,804.78
–1160
B
78
2,766.67
–1259
B
15
2,842.97
–1209
B
47
2,804.01
–1159
B
79
2,765.91
–1258
B
16
2,842.18
–1208
B
48
2,803.24
–1158
B
7A
2,765.16
–1257
B
17
2,841.39
–1207
B
49
2,802.47
–1157
B
7B
2,764.40
–1256
B
18
2,840.60
–1206
B
4A
2,801.70
–1156
B
7C
2,763.65
–1255
B
19
2,839.82
–1205
B
4B
2,800.93
–1155
B
7D
2,762.90
–1254
B
1A
2,839.03
–1204
B
4C
2,800.17
–1154
B
7E
2,762.15
–1253
B
1B
2,838.24
–1203
B
4D
2,799.40
–1153
B
7F
2,761.39
–1252
B
1C
2,837.46
–1202
B
4E
2,798.63
–1152
B
80
2,760.64
–1251
B
1D
2,836.67
–1201
B
4F
2,797.86
–1151
B
81
2,759.89
–1250
B
1E
2,835.89
–1200
B
50
2,797.09
–1150
B
82
2,759.14
–1249
B
1F
2,835.10
–1199
B
51
2,796.33
–1149
B
83
2,758.39
–1248
B
20
2,834.32
–1198
B
52
2,795.56
–1148
B
84
2,757.64
MOTOROLA
MC145540
8-11
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–1147
B
85
2,756.89
–1097
B
B7
2,719.73
–1047
–1146
B
86
2,756.14
–1096
B
B8
2,718.99
–1046
B
E9
2,683.24
B
EA
–1145
B
87
2,755.39
–1095
B
B9
2,718.25
2,682.52
–1045
B
EB
–1144
B
88
2,754.64
–1094
B
BA
2,681.79
2,717.52
–1044
B
EC
–1143
B
89
2,753.89
–1093
B
2,681.07
BB
2,716.78
–1043
B
ED
2,680.35
–1142
B
8A
2,753.14
–1092
–1141
B
8B
2,752.39
–1091
B
BC
2,716.05
–1042
B
EE
2,679.63
B
BD
2,715.31
–1041
B
EF
–1140
B
8C
2,751.64
2,678.90
–1090
B
BE
2,714.58
–1040
B
F0
–1139
B
8D
2,678.18
2,750.89
–1089
B
BF
2,713.84
–1039
B
F1
2,677.46
–1138
B
–1137
B
8E
2,750.14
–1088
B
C0
2,713.11
–1038
B
F2
2,676.74
8F
2,749.40
–1087
B
C1
2,712.38
–1037
B
F3
–1136
2,676.02
B
90
2,748.65
–1086
B
C2
2,711.64
–1036
B
F4
2,675.30
–1135
B
91
2,747.90
–1085
B
C3
2,710.91
–1035
B
F5
2,674.58
–1134
B
92
2,747.15
–1084
B
C4
2,710.18
–1034
B
F6
2,673.86
–1133
B
93
2,746.41
–1083
B
C5
2,709.44
–1033
B
F7
2,673.14
–1132
B
94
2,745.66
–1082
B
C6
2,708.71
–1032
B
F8
2,672.42
–1131
B
95
2,744.92
–1081
B
C7
2,707.98
–1031
B
F9
2,671.70
–1130
B
96
2,744.17
–1080
B
C8
2,707.25
–1030
B
FA
2,670.98
–1129
B
97
2,743.43
–1079
B
C9
2,706.52
–1029
B
FB
2,670.26
–1128
B
98
2,742.68
–1078
B
CA
2,705.79
–1028
B
FC
2,669.54
–1127
B
99
2,741.94
–1077
B
CB
2,705.05
–1027
B
FD
2,668.82
–1126
B
9A
2,741.19
–1076
B
CC
2,704.32
–1026
B
FE
2,668.10
–1125
B
9B
2,740.45
–1075
B
CD
2,703.59
–1025
B
FF
2,667.38
–1124
B
9C
2,739.70
–1074
B
CE
2,702.86
–1024
C
00
2,666.67
–1123
B
9D
2,738.96
–1073
B
CF
2,702.13
–1023
C
01
2,665.95
–1122
B
9E
2,738.22
–1072
B
D0
2,701.40
–1022
C
02
2,665.23
–1121
B
9F
2,737.47
–1071
B
D1
2,700.67
–1021
C
03
2,664.51
–1120
B
A0
2,736.73
–1070
B
D2
2,699.94
–1020
C
04
2,663.80
–1119
B
A1
2,735.99
–1069
B
D3
2,699.21
–1019
C
05
2,663.08
–1118
B
A2
2,735.25
–1068
B
D4
2,698.49
–1018
C
06
2,662.36
–1117
B
A3
2,734.50
–1067
B
D5
2,697.76
–1017
C
07
2,661.65
–1116
B
A4
2,733.76
–1066
B
D6
2,697.03
–1016
C
08
2,660.93
–1115
B
A5
2,733.02
–1065
B
D7
2,696.30
–1015
C
09
2,660.22
–1114
B
A6
2,732.28
–1064
B
D8
2,695.57
–1014
C
0A
2,659.50
–1113
B
A7
2,731.54
–1063
B
D9
2,694.85
–1013
C
0B
2,658.78
–1112
B
A8
2,730.80
–1062
B
DA
2,694.12
–1012
C
0C
2,658.07
–1111
B
A9
2,730.06
–1061
B
DB
2,693.39
–1011
C
0D
2,657.35
–1110
B
AA
2,729.32
–1060
B
DC
2,692.67
–1010
C
0E
2,656.64
–1109
B
AB
2,728.58
–1059
B
DD
2,691.94
–1009
C
0F
2,655.92
–1108
B
AC
2,727.84
–1058
B
DE
2,691.21
–1008
C
10
2,655.21
–1107
B
AD
2,727.10
–1057
B
DF
2,690.49
–1007
C
11
2,654.50
–1106
B
AE
2,726.36
–1056
B
E0
2,689.76
–1006
C
12
2,653.78
–1105
B
AF
2,725.62
–1055
B
E1
2,689.04
–1005
C
13
2,653.07
–1104
B
B0
2,724.89
–1054
B
E2
2,688.31
–1004
C
14
2,652.36
–1103
B
B1
2,724.15
–1053
B
E3
2,687.59
–1003
C
15
2,651.64
–1102
B
B2
2,723.41
–1052
B
E4
2,686.86
–1002
C
16
2,650.93
–1101
B
B3
2,722.67
–1051
B
E5
2,686.14
–1001
C
17
2,650.22
–1100
B
B4
2,721.94
–1050
B
E6
2,685.41
–1000
C
18
2,649.50
–1099
B
B5
2,721.20
–1049
B
E7
2,684.69
–999
C
19
2,648.79
–1098
B
B6
2,720.46
–1048
B
E8
2,683.96
–998
C
1A
2,648.08
8-12
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–997
–996
C
1B
2,647.37
–947
C
4D
2,612.05
–897
C
7F
2,577.24
C
1C
2,646.66
–946
C
4E
2,611.35
–896
C
80
2,576.54
–995
C
1D
2,645.94
–945
C
4F
2,610.65
–895
C
81
2,575.85
–994
C
1E
2,645.23
–944
C
50
2,609.95
–894
C
82
2,575.16
–993
C
1F
2,644.52
–943
C
51
2,609.25
–893
C
83
2,574.47
–992
C
20
2,643.81
–942
C
52
2,608.55
–892
C
84
2,573.78
–991
C
21
2,643.10
–941
C
53
2,607.85
–891
C
85
2,573.09
–990
C
22
2,642.39
–940
C
54
2,607.15
–890
C
86
2,572.40
–989
C
23
2,641.68
–939
C
55
2,606.45
–889
C
87
2,571.71
–988
C
24
2,640.97
–938
C
56
2,605.75
–888
C
88
2,571.02
–987
C
25
2,640.26
–937
C
57
2,605.05
–887
C
89
2,570.33
–986
C
26
2,639.55
–936
C
58
2,604.35
–886
C
8A
2,569.64
–985
C
27
2,638.84
–935
C
59
2,603.65
–885
C
8B
2,568.95
–984
C
28
2,638.13
–934
C
5A
2,602.95
–884
C
8C
2,568.26
–983
C
29
2,637.43
–933
C
5B
2,602.25
–883
C
8D
2,567.57
–982
C
2A
2,636.72
–932
C
5C
2,601.55
–882
C
8E
2,566.88
–981
C
2B
2,636.01
–931
C
5D
2,600.86
–881
C
8F
2,566.19
–980
C
2C
2,635.30
–930
C
5E
2,600.16
–880
C
90
2,565.51
–979
C
2D
2,634.59
–929
C
5F
2,599.46
–879
C
91
2,564.82
–978
C
2E
2,633.88
–928
C
60
2,598.76
–878
C
92
2,564.13
–977
C
2F
2,633.18
–927
C
61
2,598.07
–877
C
93
2,563.44
–976
C
30
2,632.47
–926
C
62
2,597.37
–876
C
94
2,562.75
–975
C
31
2,631.76
–925
C
63
2,596.67
–875
C
95
2,562.06
–974
C
32
2,631.06
–924
C
64
2,595.98
–874
C
96
2,561.38
–973
C
33
2,630.35
–923
C
65
2,595.28
–873
C
97
2,560.69
–972
C
34
2,629.64
–922
C
66
2,594.58
–872
C
98
2,560.00
–971
C
35
2,628.94
–921
C
67
2,593.89
–871
C
99
2,559.32
–970
C
36
2,628.23
–920
C
68
2,593.19
–870
C
9A
2,558.63
–969
C
37
2,627.52
–919
C
69
2,592.49
–869
C
9B
2,557.94
–968
C
38
2,626.82
–918
C
6A
2,591.80
–868
C
9C
2,557.26
–967
C
39
2,626.11
–917
C
6B
2,591.10
–867
C
9D
2,556.57
–966
C
3A
2,625.41
–916
C
6C
2,590.41
–866
C
9E
2,555.88
–965
C
3B
2,624.70
–915
C
6D
2,589.71
–865
C
9F
2,555.20
–964
C
3C
2,624.00
–914
C
6E
2,589.02
–864
C
A0
2,554.51
–963
C
3D
2,623.29
–913
C
6F
2,588.32
–863
C
A1
2,553.83
–962
C
3E
2,622.59
–912
C
70
2,587.63
–862
C
A2
2,553.14
–961
C
3F
2,621.89
–911
C
71
2,586.94
–861
C
A3
2,552.46
–960
C
40
2,621.18
–910
C
72
2,586.24
–860
C
A4
2,551.77
–959
C
41
2,620.48
–909
C
73
2,585.55
–859
C
A5
2,551.09
–958
C
42
2,619.77
–908
C
74
2,584.85
–858
C
A6
2,550.40
–957
C
43
2,619.07
–907
C
75
2,584.16
–857
C
A7
2,549.72
–956
C
44
2,618.37
–906
C
76
2,583.47
–856
C
A8
2,549.03
–955
C
45
2,617.67
–905
C
77
2,582.77
–855
C
A9
2,548.35
–954
C
46
2,616.96
–904
C
78
2,582.08
–854
C
AA
2,547.66
–953
C
47
2,616.26
–903
C
79
2,581.39
–853
C
AB
2,546.98
–952
C
48
2,615.56
–902
C
7A
2,580.70
–852
C
AC
2,546.30
–951
C
49
2,614.86
–901
C
7B
2,580.00
–851
C
AD
2,545.61
–950
C
4A
2,614.15
–900
C
7C
2,579.31
–850
C
AE
2,544.93
–949
C
4B
2,613.45
–899
C
7D
2,578.62
–849
C
AF
2,544.25
–948
C
4C
2,612.75
–898
C
7E
2,577.93
–848
C
B0
2,543.56
MOTOROLA
MC145540
8-13
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–847
C
B1
2,542.88
–797
C
E3
2,508.94
–747
D
15
2,475.38
–846
C
B2
2,542.20
–796
C
E4
2,508.26
–746
D
16
2,474.71
–845
C
B3
2,541.51
–795
C
E5
2,507.59
–745
D
17
2,474.04
–844
C
B4
2,540.83
–794
C
E6
2,506.91
–744
D
18
2,473.37
–843
C
B5
2,540.15
–793
C
E7
2,506.24
–743
D
19
2,472.71
–842
C
B6
2,539.47
–792
C
E8
2,505.57
–742
D
1A
2,472.04
–841
C
B7
2,538.79
–791
C
E9
2,504.89
–741
D
1B
2,471.37
–840
C
B8
2,538.10
–790
C
EA
2,504.22
–740
D
1C
2,470.71
–839
C
B9
2,537.42
–789
C
EB
2,503.54
–739
D
1D
2,470.04
–838
C
BA
2,536.74
–788
C
EC
2,502.87
–738
D
1E
2,469.37
–837
C
BB
2,536.06
–787
C
ED
2,502.20
–737
D
1F
2,468.71
–836
C
BC
2,535.38
–786
C
EE
2,501.52
–736
D
20
2,468.04
–835
C
BD
2,534.70
–785
C
EF
2,500.85
–735
D
21
2,467.37
–834
C
BE
2,534.02
–784
C
F0
2,500.18
–734
D
22
2,466.71
–833
C
BF
2,533.34
–783
C
F1
2,499.50
–733
D
23
2,466.04
–832
C
C0
2,532.66
–782
C
F2
2,498.83
–732
D
24
2,465.38
–831
C
C1
2,531.97
–781
C
F3
2,498.16
–731
D
25
2,464.71
–830
C
C2
2,531.29
–780
C
F4
2,497.49
–730
D
26
2,464.05
–829
C
C3
2,530.61
–779
C
F5
2,496.81
–729
D
27
2,463.38
–828
C
C4
2,529.93
–778
C
F6
2,496.14
–728
D
28
2,462.72
–827
C
C5
2,529.26
–777
C
F7
2,495.47
–727
D
29
2,462.05
–826
C
C6
2,528.58
–776
C
F8
2,494.80
–726
D
2A
2,461.38
–825
C
C7
2,527.90
–775
C
F9
2,494.13
–725
D
2B
2,460.72
–824
C
C8
2,527.22
–774
C
FA
2,493.46
–724
D
2C
2,460.06
–823
C
C9
2,526.54
–773
C
FB
2,492.78
–723
D
2D
2,459.39
–822
C
CA
2,525.86
–772
C
FC
2,492.11
–722
D
2E
2,458.73
–821
C
CB
2,525.18
–771
C
FD
2,491.44
–721
D
2F
2,458.06
–820
C
CC
2,524.50
–770
C
FE
2,490.77
–720
D
30
2,457.40
–819
C
CD
2,523.82
–769
C
FF
2,490.10
–719
D
31
2,456.73
–818
C
CE
2,523.15
–768
D
00
2,489.43
–718
D
32
2,456.07
–817
C
CF
2,522.47
–767
D
01
2,488.76
–717
D
33
2,455.41
–816
C
D0
2,521.79
–766
D
02
2,488.09
–716
D
34
2,454.74
–815
C
D1
2,521.11
–765
D
03
2,487.42
–715
D
35
2,454.08
–814
C
D2
2,520.43
–764
D
04
2,486.75
–714
D
36
2,453.42
–813
C
D3
2,519.76
–763
D
05
2,486.08
–713
D
37
2,452.75
–812
C
D4
2,519.08
–762
D
06
2,485.41
–712
D
38
2,452.09
–811
C
D5
2,518.40
–761
D
07
2,484.74
–711
D
39
2,451.43
–810
C
D6
2,517.73
–760
D
08
2,484.07
–710
D
3A
2,450.76
–809
C
D7
2,517.05
–759
D
09
2,483.40
–709
D
3B
2,450.10
–808
C
D8
2,516.37
–758
D
0A
2,482.73
–708
D
3C
2,449.44
–807
C
D9
2,515.70
–757
D
0B
2,482.06
–707
D
3D
2,448.78
–806
C
DA
2,515.02
–756
D
0C
2,481.39
–706
D
3E
2,448.11
–805
C
DB
2,514.34
–755
D
0D
2,480.72
–705
D
3F
2,447.45
–804
C
DC
2,513.67
–754
D
0E
2,480.05
–704
D
40
2,446.79
–803
C
DD
2,512.99
–753
D
0F
2,479.39
–703
D
41
2,446.13
–802
C
DE
2,512.32
–752
D
10
2,478.72
–702
D
42
2,445.47
–801
C
DF
2,511.64
–751
D
11
2,478.05
–701
D
43
2,444.80
–800
C
E0
2,510.96
–750
D
12
2,477.38
–700
D
44
2,444.14
–799
C
E1
2,510.29
–749
D
13
2,476.71
–699
D
45
2,443.48
–798
C
E2
2,509.61
–748
D
14
2,476.04
–698
D
46
2,442.82
8-14
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–697
D
47
2,442.16
–647
–696
D
48
2,441.50
–646
D
79
2,409.25
–597
D
7A
2,408.59
–596
D
AB
2,376.62
D
AC
–695
D
49
2,440.84
–645
D
7B
2,407.94
2,375.97
–595
D
AD
–694
D
4A
2,440.17
–644
D
7C
2,375.32
2,407.28
–594
D
AE
–693
D
4B
2,439.51
–643
D
2,374.67
7D
2,406.63
–593
D
AF
2,374.02
–692
–691
D
4C
2,438.85
–642
D
4D
2,438.19
–641
D
7E
2,405.97
–592
D
B0
2,373.37
D
7F
2,405.32
–591
D
B1
–690
D
4E
2,437.53
2,372.72
–640
D
80
2,404.67
–590
D
B2
–689
D
4F
2,372.08
2,436.87
–639
D
81
2,404.01
–589
D
B3
2,371.43
–688
D
–687
D
50
2,436.21
–638
D
82
2,403.36
–588
D
B4
2,370.78
51
2,435.55
–637
D
83
2,402.70
–587
D
B5
–686
2,370.13
D
52
2,434.89
–636
D
84
2,402.05
–586
D
B6
2,369.48
–685
D
53
2,434.23
–635
D
85
2,401.39
–585
D
B7
2,368.83
–684
D
54
2,433.57
–634
D
86
2,400.74
–584
D
B8
2,368.18
–683
D
55
2,432.91
–633
D
87
2,400.09
–583
D
B9
2,367.53
–682
D
56
2,432.25
–632
D
88
2,399.43
–582
D
BA
2,366.88
–681
D
57
2,431.59
–631
D
89
2,398.78
–581
D
BB
2,366.24
–680
D
58
2,430.94
–630
D
8A
2,398.13
–580
D
BC
2,365.59
–679
D
59
2,430.28
–629
D
8B
2,397.47
–579
D
BD
2,364.94
–678
D
5A
2,429.62
–628
D
8C
2,396.82
–578
D
BE
2,364.29
–677
D
5B
2,428.96
–627
D
8D
2,396.17
–577
D
BF
2,363.64
–676
D
5C
2,428.30
–626
D
8E
2,395.51
–576
D
C0
2,363.00
–675
D
5D
2,427.64
–625
D
8F
2,394.86
–575
D
C1
2,362.35
–674
D
5E
2,426.98
–624
D
90
2,394.21
–574
D
C2
2,361.70
–673
D
5F
2,426.33
–623
D
91
2,393.56
–573
D
C3
2,361.05
–672
D
60
2,425.67
–622
D
92
2,392.90
–572
D
C4
2,360.41
–671
D
61
2,425.01
–621
D
93
2,392.25
–571
D
C5
2,359.76
–670
D
62
2,424.35
–620
D
94
2,391.60
–570
D
C6
2,359.11
–669
D
63
2,423.69
–619
D
95
2,390.95
–569
D
C7
2,358.46
–668
D
64
2,423.04
–618
D
96
2,390.29
–568
D
C8
2,357.82
–667
D
65
2,422.38
–617
D
97
2,389.64
–567
D
C9
2,357.17
–666
D
66
2,421.72
–616
D
98
2,388.99
–566
D
CA
2,356.52
–665
D
67
2,421.06
–615
D
99
2,388.34
–565
D
CB
2,355.88
–664
D
68
2,420.41
–614
D
9A
2,387.69
–564
D
CC
2,355.23
–663
D
69
2,419.75
–613
D
9B
2,387.03
–563
D
CD
2,354.58
–662
D
6A
2,419.09
–612
D
9C
2,386.38
–562
D
CE
2,353.94
–661
D
6B
2,418.43
–611
D
9D
2,385.73
–561
D
CF
2,353.29
–660
D
6C
2,417.78
–610
D
9E
2,385.08
–560
D
D0
2,352.64
–659
D
6D
2,417.12
–609
D
9F
2,384.43
–559
D
D1
2,352.00
–658
D
6E
2,416.46
–608
D
A0
2,383.78
–558
D
D2
2,351.35
–657
D
6F
2,415.81
–607
D
A1
2,383.13
–557
D
D3
2,350.70
–656
D
70
2,415.15
–606
D
A2
2,382.48
–556
D
D4
2,350.06
–655
D
71
2,414.50
–605
D
A3
2,381.83
–555
D
D5
2,349.41
–654
D
72
2,413.84
–604
D
A4
2,381.17
–554
D
D6
2,348.77
–653
D
73
2,413.18
–603
D
A5
2,380.52
–553
D
D7
2,348.12
–652
D
74
2,412.53
–602
D
A6
2,379.87
–552
D
D8
2,347.48
–651
D
75
2,411.87
–601
D
A7
2,379.22
–551
D
D9
2,346.83
–650
D
76
2,411.22
–600
D
A8
2,378.57
–550
D
DA
2,346.18
–649
D
77
2,410.56
–599
D
A9
2,377.92
–549
D
DB
2,345.54
–648
D
78
2,409.91
–598
D
AA
2,377.27
–548
D
DC
2,344.89
MOTOROLA
MC145540
8-15
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–547
D
DD
2,344.25
–497
E
0F
2,312.10
–447
E
41
2,280.15
–546
D
DE
2,343.60
–496
E
10
2,311.46
–446
E
42
2,279.52
–545
D
DF
2,342.96
–495
E
11
2,310.82
–445
E
43
2,278.88
–544
D
E0
2,342.31
–494
E
12
2,310.18
–444
E
44
2,278.24
–543
D
E1
2,341.67
–493
E
13
2,309.54
–443
E
45
2,277.61
–542
D
E2
2,341.02
–492
E
14
2,308.90
–442
E
46
2,276.97
–541
D
E3
2,340.38
–491
E
15
2,308.26
–441
E
47
2,276.33
–540
D
E4
2,339.73
–490
E
16
2,307.62
–440
E
48
2,275.70
–539
D
E5
2,339.09
–489
E
17
2,306.98
–439
E
49
2,275.06
–538
D
E6
2,338.45
–488
E
18
2,306.34
–438
E
4A
2,274.42
–537
D
E7
2,337.80
–487
E
19
2,305.70
–437
E
4B
2,273.79
–536
D
E8
2,337.16
–486
E
1A
2,305.06
–436
E
4C
2,273.15
–535
D
E9
2,336.51
–485
E
1B
2,304.42
–435
E
4D
2,272.51
–534
D
EA
2,335.87
–484
E
1C
2,303.78
–434
E
4E
2,271.88
–533
D
EB
2,335.23
–483
E
1D
2,303.14
–433
E
4F
2,271.24
–532
D
EC
2,334.58
–482
E
1E
2,302.50
–432
E
50
2,270.61
–531
D
ED
2,333.94
–481
E
1F
2,301.86
–431
E
51
2,269.97
–530
D
EE
2,333.29
–480
E
20
2,301.22
–430
E
52
2,269.33
–529
D
EF
2,332.65
–479
E
21
2,300.58
–429
E
53
2,268.70
–528
D
F0
2,332.01
–478
E
22
2,299.94
–428
E
54
2,268.06
–527
D
F1
2,331.36
–477
E
23
2,299.30
–427
E
55
2,267.43
–526
D
F2
2,330.72
–476
E
24
2,298.66
–426
E
56
2,266.79
–525
D
F3
2,330.08
–475
E
25
2,298.02
–425
E
57
2,266.16
–524
D
F4
2,329.43
–474
E
26
2,297.38
–424
E
58
2,265.52
–523
D
F5
2,328.79
–473
E
27
2,296.74
–423
E
59
2,264.89
–522
D
F6
2,328.15
–472
E
28
2,296.10
–422
E
5A
2,264.25
–521
D
F7
2,327.50
–471
E
29
2,295.46
–421
E
5B
2,263.61
–520
D
F8
2,326.86
–470
E
2A
2,294.83
–420
E
5C
2,262.98
–519
D
F9
2,326.22
–469
E
2B
2,294.19
–419
E
5D
2,262.34
–518
D
FA
2,325.58
–468
E
2C
2,293.55
–418
E
5E
2,261.71
–517
D
FB
2,324.93
–467
E
2D
2,292.91
–417
E
5F
2,261.07
–516
D
FC
2,324.29
–466
E
2E
2,292.27
–416
E
60
2,260.44
–515
D
FD
2,323.65
–465
E
2F
2,291.63
–415
E
61
2,259.80
–514
D
FE
2,323.01
–464
E
30
2,291.00
–414
E
62
2,259.17
–513
D
FF
2,322.36
–463
E
31
2,290.36
–413
E
63
2,258.53
–512
E
00
2,321.72
–462
E
32
2,289.72
–412
E
64
2,257.90
–511
E
01
2,321.08
–461
E
33
2,289.08
–411
E
65
2,257.27
–510
E
02
2,320.44
–460
E
34
2,288.44
–410
E
66
2,256.63
–509
E
03
2,319.80
–459
E
35
2,287.80
–409
E
67
2,256.00
–508
E
04
2,319.15
–458
E
36
2,287.17
–408
E
68
2,255.36
–507
E
05
2,318.51
–457
E
37
2,286.53
–407
E
69
2,254.73
–506
E
06
2,317.87
–456
E
38
2,285.89
–406
E
6A
2,254.09
–505
E
07
2,317.23
–455
E
39
2,285.25
–405
E
6B
2,253.46
–504
E
08
2,316.59
–454
E
3A
2,284.62
–404
E
6C
2,252.82
–503
E
09
2,315.95
–453
E
3B
2,283.98
–403
E
6D
2,252.19
–502
E
0A
2,315.31
–452
E
3C
2,283.34
–402
E
6E
2,251.56
–501
E
0B
2,314.66
–451
E
3D
2,282.70
–401
E
6F
2,250.92
–500
E
0C
2,314.02
–450
E
3E
2,282.07
–400
E
70
2,250.29
–499
E
0D
2,313.38
–449
E
3F
2,281.43
–399
E
71
2,249.65
–498
E
0E
2,312.74
–448
E
40
2,280.79
–398
E
72
2,249.02
8-16
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–397
E
73
2,248.39
–347
E
A5
2,216.78
–297
E
D7
2,185.30
–396
E
74
2,247.75
–346
E
A6
2,216.14
–296
E
D8
2,184.67
–395
E
75
2,247.12
–345
E
A7
2,215.51
–295
E
D9
2,184.04
–394
E
76
2,246.49
–344
E
A8
2,214.88
–294
E
DA
2,183.41
–393
E
77
2,245.85
–343
E
A9
2,214.25
–293
E
DB
2,182.79
–392
E
78
2,245.22
–342
E
AA
2,213.62
–292
E
DC
2,182.16
–391
E
79
2,244.59
–341
E
AB
2,212.99
–291
E
DD
2,181.53
–390
E
7A
2,243.95
–340
E
AC
2,212.36
–290
E
DE
2,180.90
–389
E
7B
2,243.32
–339
E
AD
2,211.73
–289
E
DF
2,180.27
–388
E
7C
2,242.69
–338
E
AE
2,211.10
–288
E
E0
2,179.64
–387
E
7D
2,242.05
–337
E
AF
2,210.47
–287
E
E1
2,179.02
–386
E
7E
2,241.42
–336
E
B0
2,209.84
–286
E
E2
2,178.39
–385
E
7F
2,240.79
–335
E
B1
2,209.21
–285
E
E3
2,177.76
–384
E
80
2,240.15
–334
E
B2
2,208.58
–284
E
E4
2,177.13
–383
E
81
2,239.52
–333
E
B3
2,207.95
–283
E
E5
2,176.51
–382
E
82
2,238.89
–332
E
B4
2,207.32
–282
E
E6
2,175.88
–381
E
83
2,238.26
–331
E
B5
2,206.69
–281
E
E7
2,175.25
–380
E
84
2,237.62
–330
E
B6
2,206.06
–280
E
E8
2,174.62
–379
E
85
2,236.99
–329
E
B7
2,205.43
–279
E
E9
2,174.00
–378
E
86
2,236.36
–328
E
B8
2,204.80
–278
E
EA
2,173.37
–377
E
87
2,235.72
–327
E
B9
2,204.17
–277
E
EB
2,172.74
–376
E
88
2,235.09
–326
E
BA
2,203.54
–276
E
EC
2,172.11
–375
E
89
2,234.46
–325
E
BB
2,202.91
–275
E
ED
2,171.49
–374
E
8A
2,233.83
–324
E
BC
2,202.28
–274
E
EE
2,170.86
–373
E
8B
2,233.20
–323
E
BD
2,201.65
–273
E
EF
2,170.23
–372
E
8C
2,232.56
–322
E
BE
2,201.02
–272
E
F0
2,169.60
–371
E
8D
2,231.93
–321
E
BF
2,200.39
–271
E
F1
2,168.98
–370
E
8E
2,231.30
–320
E
C0
2,199.76
–270
E
F2
2,168.35
–369
E
8F
2,230.67
–319
E
C1
2,199.13
–269
E
F3
2,167.72
–368
E
90
2,230.03
–318
E
C2
2,198.50
–268
E
F4
2,167.09
–367
E
91
2,229.40
–317
E
C3
2,197.87
–267
E
F5
2,166.47
–366
E
92
2,228.77
–316
E
C4
2,197.24
–266
E
F6
2,165.84
–365
E
93
2,228.14
–315
E
C5
2,196.62
–265
E
F7
2,165.21
–364
E
94
2,227.51
–314
E
C6
2,195.99
–264
E
F8
2,164.59
–363
E
95
2,226.88
–313
E
C7
2,195.36
–263
E
F9
2,163.96
–362
E
96
2,226.24
–312
E
C8
2,194.73
–262
E
FA
2,163.33
–361
E
97
2,225.61
–311
E
C9
2,194.10
–261
E
FB
2,162.71
–360
E
98
2,224.98
–310
E
CA
2,193.47
–260
E
FC
2,162.08
–359
E
99
2,224.35
–309
E
CB
2,192.84
–259
E
FD
2,161.45
–358
E
9A
2,223.72
–308
E
CC
2,192.21
–258
E
FE
2,160.83
–357
E
9B
2,223.09
–307
E
CD
2,191.58
–257
E
FF
2,160.20
–356
E
9C
2,222.45
–306
E
CE
2,190.95
–256
F
00
2,159.57
–355
E
9D
2,221.82
–305
E
CF
2,190.33
–255
F
01
2,158.95
–354
E
9E
2,221.19
–304
E
D0
2,189.70
–254
F
02
2,158.32
–353
E
9F
2,220.56
–303
E
D1
2,189.07
–253
F
03
2,157.69
–352
E
A0
2,219.93
–302
E
D2
2,188.44
–252
F
04
2,157.07
–351
E
A1
2,219.30
–301
E
D3
2,187.81
–251
F
05
2,156.44
–350
E
A2
2,218.67
–300
E
D4
2,187.18
–250
F
06
2,155.81
–349
E
A3
2,218.04
–299
E
D5
2,186.55
–249
F
07
2,155.19
–348
E
A4
2,217.41
–298
E
D6
2,185.93
–248
F
08
2,154.56
MOTOROLA
MC145540
8-17
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–247
–246
F
09
2,153.93
–197
F
0A
2,153.31
–196
F
3B
2,122.66
–147
F
6D
2,091.47
F
3C
2,122.04
–146
F
6E
–245
F
0B
2,152.68
2,090.85
–195
F
3D
2,121.42
–145
F
6F
–244
F
0C
2,090.22
2,152.06
–194
F
3E
2,120.79
–144
F
70
–243
F
2,089.60
0D
2,151.43
–193
F
3F
2,120.17
–143
F
71
2,088.98
–242
–241
F
0E
2,150.80
–192
F
40
2,119.54
–142
F
72
2,088.35
F
0F
2,150.18
–191
F
41
2,118.92
–141
F
73
2,087.73
–240
F
10
2,149.55
–190
F
42
2,118.29
–140
F
74
2,087.11
–239
F
11
2,148.93
–189
F
43
2,117.67
–139
F
75
2,086.48
–238
F
12
2,148.30
–188
F
44
2,117.04
–138
F
76
2,085.86
–237
F
13
2,147.67
–187
F
45
2,116.42
–137
F
77
2,085.24
–236
F
14
2,147.05
–186
F
46
2,115.80
–136
F
78
2,084.61
–235
F
15
2,146.42
–185
F
47
2,115.17
–135
F
79
2,083.99
–234
F
16
2,145.80
–184
F
48
2,114.55
–134
F
7A
2,083.37
–233
F
17
2,145.17
–183
F
49
2,113.92
–133
F
7B
2,082.74
–232
F
18
2,144.54
–182
F
4A
2,113.30
–132
F
7C
2,082.12
–231
F
19
2,143.92
–181
F
4B
2,112.67
–131
F
7D
2,081.50
–230
F
1A
2,143.29
–180
F
4C
2,112.05
–130
F
7E
2,080.88
–229
F
1B
2,142.67
–179
F
4D
2,111.43
–129
F
7F
2,080.25
–228
F
1C
2,142.04
–178
F
4E
2,110.80
–128
F
80
2,079.63
–227
F
1D
2,141.42
–177
F
4F
2,110.18
–127
F
81
2,079.01
–226
F
1E
2,140.79
–176
F
50
2,109.55
–126
F
82
2,078.38
–225
F
1F
2,140.17
–175
F
51
2,108.93
–125
F
83
2,077.76
–224
F
20
2,139.54
–174
F
52
2,108.31
–124
F
84
2,077.14
–223
F
21
2,138.91
–173
F
53
2,107.68
–123
F
85
2,076.52
–222
F
22
2,138.29
–172
F
54
2,107.06
–122
F
86
2,075.89
–221
F
23
2,137.66
–171
F
55
2,106.43
–121
F
87
2,075.27
–220
F
24
2,137.04
–170
F
56
2,105.81
–120
F
88
2,074.65
–219
F
25
2,136.41
–169
F
57
2,105.19
–119
F
89
2,074.02
–218
F
26
2,135.79
–168
F
58
2,104.56
–118
F
8A
2,073.40
–217
F
27
2,135.16
–167
F
59
2,103.94
–117
F
8B
2,072.78
–216
F
28
2,134.54
–166
F
5A
2,103.32
–116
F
8C
2,072.16
–215
F
29
2,133.91
–165
F
5B
2,102.69
–115
F
8D
2,071.53
–214
F
2A
2,133.29
–164
F
5C
2,102.07
–114
F
8E
2,070.91
–213
F
2B
2,132.66
–163
F
5D
2,101.44
–113
F
8F
2,070.29
–212
F
2C
2,132.04
–162
F
5E
2,100.82
–112
F
90
2,069.67
–211
F
2D
2,131.41
–161
F
5F
2,100.20
–111
F
91
2,069.04
–210
F
2E
2,130.79
–160
F
60
2,099.57
–110
F
92
2,068.42
–209
F
2F
2,130.16
–159
F
61
2,098.95
–109
F
93
2,067.80
–208
F
30
2,129.54
–158
F
62
2,098.33
–108
F
94
2,067.17
–207
F
31
2,128.91
–157
F
63
2,097.70
–107
F
95
2,066.55
–206
F
32
2,128.29
–156
F
64
2,097.08
–106
F
96
2,065.93
–205
F
33
2,127.66
–155
F
65
2,096.46
–105
F
97
2,065.31
–204
F
34
2,127.04
–154
F
66
2,095.83
–104
F
98
2,064.68
–203
F
35
2,126.41
–153
F
67
2,095.21
–103
F
99
2,064.06
–202
F
36
2,125.79
–152
F
68
2,094.59
–102
F
9A
2,063.44
–201
F
37
2,125.16
–151
F
69
2,093.96
–101
F
9B
2,062.82
–200
F
38
2,124.54
–150
F
6A
2,093.34
–100
F
9C
2,062.19
–199
F
39
2,123.91
–149
F
6B
2,092.72
–99
F
9D
2,061.57
–198
F
3A
2,123.29
–148
F
6C
2,092.09
–98
F
9E
2,060.95
8-18
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
–97
–96
F
9F
2,060.33
–47
F
D1
2,029.22
3
0
03
1,998.13
F
A0
2,059.70
–46
F
D2
2,028.60
4
0
04
1,997.51
–95
F
A1
2,059.08
–45
F
D3
2,027.98
5
0
05
1,996.89
–94
F
A2
2,058.46
–44
F
D4
2,027.36
6
0
06
1,996.27
–93
F
A3
2,057.84
–43
F
D5
2,026.74
7
0
07
1,995.65
–92
F
A4
2,057.22
–42
F
D6
2,026.11
8
0
08
1,995.03
–91
F
A5
2,056.59
–41
F
D7
2,025.49
9
0
09
1,994.40
–90
F
A6
2,055.97
–40
F
D8
2,024.87
10
0
0A
1,993.78
–89
F
A7
2,055.35
–39
F
D9
2,024.25
11
0
0B
1,993.16
–88
F
A8
2,054.73
–38
F
DA
2,023.63
12
0
0C
1,992.54
–87
F
A9
2,054.10
–37
F
DB
2,023.00
13
0
0D
1,991.92
–86
F
AA
2,053.48
–36
F
DC
2,022.38
14
0
0E
1,991.30
–85
F
AB
2,052.86
–35
F
DD
2,021.76
15
0
0F
1,990.67
–84
F
AC
2,052.24
–34
F
DE
2,021.14
16
0
10
1,990.05
–83
F
AD
2,051.62
–33
F
DF
2,020.52
17
0
11
1,989.43
–82
F
AE
2,050.99
–32
F
E0
2,019.90
18
0
12
1,988.81
–81
F
AF
2,050.37
–31
F
E1
2,019.27
19
0
13
1,988.19
–80
F
B0
2,049.75
–30
F
E2
2,018.65
20
0
14
1,987.57
–79
F
B1
2,049.13
–29
F
E3
2,018.03
21
0
15
1,986.94
–78
F
B2
2,048.50
–28
F
E4
2,017.41
22
0
16
1,986.32
–77
F
B3
2,047.88
–27
F
E5
2,016.79
23
0
17
1,985.70
–76
F
B4
2,047.26
–26
F
E6
2,016.16
24
0
18
1,985.08
–75
F
B5
2,046.64
–25
F
E7
2,015.54
25
0
19
1,984.46
–74
F
B6
2,046.02
–24
F
E8
2,014.92
26
0
1A
1,983.84
–73
F
B7
2,045.39
–23
F
E9
2,014.30
27
0
1B
1,983.21
–72
F
B8
2,044.77
–22
F
EA
2,013.68
28
0
1C
1,982.59
–71
F
B9
2,044.15
–21
F
EB
2,013.06
29
0
1D
1,981.97
–70
F
BA
2,043.53
–20
F
EC
2,012.43
30
0
1E
1,981.35
–69
F
BB
2,042.91
–19
F
ED
2,011.81
31
0
1F
1,980.73
–68
F
BC
2,042.28
–18
F
EE
2,011.19
32
0
20
1,980.10
–67
F
BD
2,041.66
–17
F
EF
2,010.57
33
0
21
1,979.48
–66
F
BE
2,041.04
–16
F
F0
2,009.95
34
0
22
1,978.86
–65
F
BF
2,040.42
–15
F
F1
2,009.33
35
0
23
1,978.24
–64
F
C0
2,039.80
–14
F
F2
2,008.70
36
0
24
1,977.62
–63
F
C1
2,039.17
–13
F
F3
2,008.08
37
0
25
1,977.00
–62
F
C2
2,038.55
–12
F
F4
2,007.46
38
0
26
1,976.37
–61
F
C3
2,037.93
–11
F
F5
2,006.84
39
0
27
1,975.75
–60
F
C4
2,037.31
–10
F
F6
2,006.22
40
0
28
1,975.13
–59
F
C5
2,036.69
–9
F
F7
2,005.60
41
0
29
1,974.51
–58
F
C6
2,036.06
–8
F
F8
2,004.97
42
0
2A
1,973.89
–57
F
C7
2,035.44
–7
F
F9
2,004.35
43
0
2B
1,973.26
–56
F
C8
2,034.82
–6
F
FA
2,003.73
44
0
2C
1,972.64
–55
F
C9
2,034.20
–5
F
FB
2,003.11
45
0
2D
1,972.02
–54
F
CA
2,033.58
–4
F
FC
2,002.49
46
0
2E
1,971.40
–53
F
CB
2,032.95
–3
F
FD
2,001.87
47
0
2F
1,970.78
–52
F
CC
2,032.33
–2
F
FE
2,001.24
48
0
30
1,970.16
–51
F
CD
2,031.71
–1
F
FF
2,000.62
49
0
31
1,969.53
–50
F
CE
2,031.09
0
0
00
2,000.00
50
0
32
1,968.91
–49
F
CF
2,030.47
1
0
01
1,999.38
51
0
33
1,968.29
–48
F
D0
2,029.84
2
0
02
1,998.76
52
0
34
1,967.67
MOTOROLA
MC145540
8-19
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
53
0
35
1,967.05
103
0
67
1,935.94
153
54
0
36
1,966.42
104
0
68
1,935.32
154
0
99
1,904.79
0
9A
55
0
37
1,965.80
105
0
69
1,934.69
1,904.17
155
0
9B
56
0
38
1,965.18
106
0
6A
1,903.54
1,934.07
156
0
9C
57
0
39
1,964.56
107
0
1,902.92
6B
1,933.45
157
0
9D
1,902.30
58
0
3A
1,963.94
108
59
0
3B
1,963.31
109
0
6C
1,932.83
158
0
9E
1,901.67
0
6D
1,932.20
159
0
9F
60
0
3C
1,962.69
1,901.05
110
0
6E
1,931.58
160
0
A0
61
0
3D
1,900.43
1,962.07
111
0
6F
1,930.96
161
0
A1
1,899.80
62
0
63
0
3E
1,961.45
112
0
70
1,930.33
162
0
A2
1,899.18
3F
1,960.83
113
0
71
1,929.71
163
0
A3
64
1,898.56
0
40
1,960.20
114
0
72
1,929.09
164
0
A4
1,897.93
65
0
41
1,959.58
115
0
73
1,928.47
165
0
A5
1,897.31
66
0
42
1,958.96
116
0
74
1,927.84
166
0
A6
1,896.68
67
0
43
1,958.34
117
0
75
1,927.22
167
0
A7
1,896.06
68
0
44
1,957.72
118
0
76
1,926.60
168
0
A8
1,895.44
69
0
45
1,957.09
119
0
77
1,925.98
169
0
A9
1,894.81
70
0
46
1,956.47
120
0
78
1,925.35
170
0
AA
1,894.19
71
0
47
1,955.85
121
0
79
1,924.73
171
0
AB
1,893.57
72
0
48
1,955.23
122
0
7A
1,924.11
172
0
AC
1,892.94
73
0
49
1,954.61
123
0
7B
1,923.48
173
0
AD
1,892.32
74
0
4A
1,953.98
124
0
7C
1,922.86
174
0
AE
1,891.69
75
0
4B
1,953.36
125
0
7D
1,922.24
175
0
AF
1,891.07
76
0
4C
1,952.74
126
0
7E
1,921.62
176
0
B0
1,890.45
77
0
4D
1,952.12
127
0
7F
1,920.99
177
0
B1
1,889.82
78
0
4E
1,951.50
128
0
80
1,920.37
178
0
B2
1,889.20
79
0
4F
1,950.87
129
0
81
1,919.75
179
0
B3
1,888.57
80
0
50
1,950.25
130
0
82
1,919.12
180
0
B4
1,887.95
81
0
51
1,949.63
131
0
83
1,918.50
181
0
B5
1,887.33
82
0
52
1,949.01
132
0
84
1,917.88
182
0
B6
1,886.70
83
0
53
1,948.38
133
0
85
1,917.26
183
0
B7
1,886.08
84
0
54
1,947.76
134
0
86
1,916.63
184
0
B8
1,885.45
85
0
55
1,947.14
135
0
87
1,916.01
185
0
B9
1,884.83
86
0
56
1,946.52
136
0
88
1,915.39
186
0
BA
1,884.20
87
0
57
1,945.90
137
0
89
1,914.76
187
0
BB
1,883.58
88
0
58
1,945.27
138
0
8A
1,914.14
188
0
BC
1,882.96
89
0
59
1,944.65
139
0
8B
1,913.52
189
0
BD
1,882.33
90
0
5A
1,944.03
140
0
8C
1,912.89
190
0
BE
1,881.71
91
0
5B
1,943.41
141
0
8D
1,912.27
191
0
BF
1,881.08
92
0
5C
1,942.78
142
0
8E
1,911.65
192
0
C0
1,880.46
93
0
5D
1,942.16
143
0
8F
1,911.02
193
0
C1
1,879.83
94
0
5E
1,941.54
144
0
90
1,910.40
194
0
C2
1,879.21
95
0
5F
1,940.92
145
0
91
1,909.78
195
0
C3
1,878.58
96
0
60
1,940.30
146
0
92
1,909.15
196
0
C4
1,877.96
97
0
61
1,939.67
147
0
93
1,908.53
197
0
C5
1,877.34
98
0
62
1,939.05
148
0
94
1,907.91
198
0
C6
1,876.71
99
0
63
1,938.43
149
0
95
1,907.28
199
0
C7
1,876.09
100
0
64
1,937.81
150
0
96
1,906.66
200
0
C8
1,875.46
101
0
65
1,937.18
151
0
97
1,906.04
201
0
C9
1,874.84
102
0
66
1,936.56
152
0
98
1,905.41
202
0
CA
1,874.21
8-20
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
203
204
0
CB
1,873.59
253
0
FD
1,842.31
303
1
2F
1,810.93
0
CC
1,872.96
254
0
FE
1,841.68
304
1
30
1,810.30
205
0
CD
1,872.34
255
0
FF
1,841.05
305
1
31
1,809.67
206
0
CE
1,871.71
256
1
00
1,840.43
306
1
32
1,809.05
207
0
CF
1,871.09
257
1
01
1,839.80
307
1
33
1,808.42
208
0
D0
1,870.46
258
1
02
1,839.17
308
1
34
1,807.79
209
0
D1
1,869.84
259
1
03
1,838.55
309
1
35
1,807.16
210
0
D2
1,869.21
260
1
04
1,837.92
310
1
36
1,806.53
211
0
D3
1,868.59
261
1
05
1,837.29
311
1
37
1,805.90
212
0
D4
1,867.96
262
1
06
1,836.67
312
1
38
1,805.27
213
0
D5
1,867.34
263
1
07
1,836.04
313
1
39
1,804.64
214
0
D6
1,866.71
264
1
08
1,835.41
314
1
3A
1,804.01
215
0
D7
1,866.09
265
1
09
1,834.79
315
1
3B
1,803.38
216
0
D8
1,865.46
266
1
0A
1,834.16
316
1
3C
1,802.76
217
0
D9
1,864.84
267
1
0B
1,833.53
317
1
3D
1,802.13
218
0
DA
1,864.21
268
1
0C
1,832.91
318
1
3E
1,801.50
219
0
DB
1,863.59
269
1
0D
1,832.28
319
1
3F
1,800.87
220
0
DC
1,862.96
270
1
0E
1,831.65
320
1
40
1,800.24
221
0
DD
1,862.34
271
1
0F
1,831.02
321
1
41
1,799.61
222
0
DE
1,861.71
272
1
10
1,830.40
322
1
42
1,798.98
223
0
DF
1,861.09
273
1
11
1,829.77
323
1
43
1,798.35
224
0
E0
1,860.46
274
1
12
1,829.14
324
1
44
1,797.72
225
0
E1
1,859.83
275
1
13
1,828.51
325
1
45
1,797.09
226
0
E2
1,859.21
276
1
14
1,827.89
326
1
46
1,796.46
227
0
E3
1,858.58
277
1
15
1,827.26
327
1
47
1,795.83
228
0
E4
1,857.96
278
1
16
1,826.63
328
1
48
1,795.20
229
0
E5
1,857.33
279
1
17
1,826.00
329
1
49
1,794.57
230
0
E6
1,856.71
280
1
18
1,825.38
330
1
4A
1,793.94
231
0
E7
1,856.08
281
1
19
1,824.75
331
1
4B
1,793.31
232
0
E8
1,855.46
282
1
1A
1,824.12
332
1
4C
1,792.68
233
0
E9
1,854.83
283
1
1B
1,823.49
333
1
4D
1,792.05
234
0
EA
1,854.20
284
1
1C
1,822.87
334
1
4E
1,791.42
235
0
EB
1,853.58
285
1
1D
1,822.24
335
1
4F
1,790.79
236
0
EC
1,852.95
286
1
1E
1,821.61
336
1
50
1,790.16
237
0
ED
1,852.33
287
1
1F
1,820.98
337
1
51
1,789.53
238
0
EE
1,851.70
288
1
20
1,820.36
338
1
52
1,788.90
239
0
EF
1,851.07
289
1
21
1,819.73
339
1
53
1,788.27
240
0
F0
1,850.45
290
1
22
1,819.10
340
1
54
1,787.64
241
0
F1
1,849.82
291
1
23
1,818.47
341
1
55
1,787.01
242
0
F2
1,849.20
292
1
24
1,817.84
342
1
56
1,786.38
243
0
F3
1,848.57
293
1
25
1,817.21
343
1
57
1,785.75
244
0
F4
1,847.94
294
1
26
1,816.59
344
1
58
1,785.12
245
0
F5
1,847.32
295
1
27
1,815.96
345
1
59
1,784.49
246
0
F6
1,846.69
296
1
28
1,815.33
346
1
5A
1,783.86
247
0
F7
1,846.07
297
1
29
1,814.70
347
1
5B
1,783.22
248
0
F8
1,845.44
298
1
2A
1,814.07
348
1
5C
1,782.59
249
0
F9
1,844.81
299
1
2B
1,813.45
349
1
5D
1,781.96
250
0
FA
1,844.19
300
1
2C
1,812.82
350
1
5E
1,781.33
251
0
FB
1,843.56
301
1
2D
1,812.19
351
1
5F
1,780.70
252
0
FC
1,842.93
302
1
2E
1,811.56
352
1
60
1,780.07
MOTOROLA
MC145540
8-21
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
353
1
61
1,779.44
403
1
93
1,747.81
453
1
C5
1,716.02
354
1
62
1,778.81
404
1
94
1,747.18
454
1
C6
1,715.38
355
1
63
1,778.18
405
1
95
1,746.54
455
1
C7
1,714.75
356
1
64
1,777.55
406
1
96
1,745.91
456
1
C8
1,714.11
357
1
65
1,776.91
407
1
97
1,745.27
457
1
C9
1,713.47
358
1
66
1,776.28
408
1
98
1,744.64
458
1
CA
1,712.83
359
1
67
1,775.65
409
1
99
1,744.00
459
1
CB
1,712.20
360
1
68
1,775.02
410
1
9A
1,743.37
460
1
CC
1,711.56
361
1
69
1,774.39
411
1
9B
1,742.73
461
1
CD
1,710.92
362
1
6A
1,773.76
412
1
9C
1,742.10
462
1
CE
1,710.28
363
1
6B
1,773.12
413
1
9D
1,741.47
463
1
CF
1,709.64
364
1
6C
1,772.49
414
1
9E
1,740.83
464
1
D0
1,709.00
365
1
6D
1,771.86
415
1
9F
1,740.20
465
1
D1
1,708.37
366
1
6E
1,771.23
416
1
A0
1,739.56
466
1
D2
1,707.73
367
1
6F
1,770.60
417
1
A1
1,738.93
467
1
D3
1,707.09
368
1
70
1,769.97
418
1
A2
1,738.29
468
1
D4
1,706.45
369
1
71
1,769.33
419
1
A3
1,737.66
469
1
D5
1,705.81
370
1
72
1,768.70
420
1
A4
1,737.02
470
1
D6
1,705.17
371
1
73
1,768.07
421
1
A5
1,736.39
471
1
D7
1,704.54
372
1
74
1,767.44
422
1
A6
1,735.75
472
1
D8
1,703.90
373
1
75
1,766.80
423
1
A7
1,735.11
473
1
D9
1,703.26
374
1
76
1,766.17
424
1
A8
1,734.48
474
1
DA
1,702.62
375
1
77
1,765.54
425
1
A9
1,733.84
475
1
DB
1,701.98
376
1
78
1,764.91
426
1
AA
1,733.21
476
1
DC
1,701.34
377
1
79
1,764.28
427
1
AB
1,732.57
477
1
DD
1,700.70
378
1
7A
1,763.64
428
1
AC
1,731.94
478
1
DE
1,700.06
379
1
7B
1,763.01
429
1
AD
1,731.30
479
1
DF
1,699.42
380
1
7C
1,762.38
430
1
AE
1,730.67
480
1
E0
1,698.78
381
1
7D
1,761.74
431
1
AF
1,730.03
481
1
E1
1,698.14
382
1
7E
1,761.11
432
1
B0
1,729.39
482
1
E2
1,697.50
383
1
7F
1,760.48
433
1
B1
1,728.76
483
1
E3
1,696.86
384
1
80
1,759.85
434
1
B2
1,728.12
484
1
E4
1,696.22
385
1
81
1,759.21
435
1
B3
1,727.49
485
1
E5
1,695.58
386
1
82
1,758.58
436
1
B4
1,726.85
486
1
E6
1,694.94
387
1
83
1,757.95
437
1
B5
1,726.21
487
1
E7
1,694.30
388
1
84
1,757.31
438
1
B6
1,725.58
488
1
E8
1,693.66
389
1
85
1,756.68
439
1
B7
1,724.94
489
1
E9
1,693.02
390
1
86
1,756.05
440
1
B8
1,724.30
490
1
EA
1,692.38
391
1
87
1,755.41
441
1
B9
1,723.67
491
1
EB
1,691.74
392
1
88
1,754.78
442
1
BA
1,723.03
492
1
EC
1,691.10
393
1
89
1,754.15
443
1
BB
1,722.39
493
1
ED
1,690.46
394
1
8A
1,753.51
444
1
BC
1,721.76
494
1
EE
1,689.82
395
1
8B
1,752.88
445
1
BD
1,721.12
495
1
EF
1,689.18
396
1
8C
1,752.25
446
1
BE
1,720.48
496
1
F0
1,688.54
397
1
8D
1,751.61
447
1
BF
1,719.85
497
1
F1
1,687.90
398
1
8E
1,750.98
448
1
C0
1,719.21
498
1
F2
1,687.26
399
1
8F
1,750.35
449
1
C1
1,718.57
499
1
F3
1,686.62
400
1
90
1,749.71
450
1
C2
1,717.93
500
1
F4
1,685.98
401
1
91
1,749.08
451
1
C3
1,717.30
501
1
F5
1,685.34
402
1
92
1,748.44
452
1
C4
1,716.66
502
1
F6
1,684.69
8-22
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
503
1
F7
1,684.05
553
504
1
F8
1,683.41
554
2
29
1,651.88
603
2
2A
1,651.23
604
2
5B
1,619.48
2
5C
505
1
F9
1,682.77
555
2
2B
1,650.59
1,618.83
605
2
5D
506
1
FA
1,682.13
556
2
2C
1,618.17
1,649.94
606
2
5E
507
1
FB
1,681.49
557
2
1,617.52
2D
1,649.30
607
2
5F
1,616.87
508
509
1
FC
1,680.85
558
1
FD
1,680.20
559
2
2E
1,648.65
608
2
60
1,616.22
2
2F
1,648.00
609
2
61
510
1
FE
1,679.56
1,615.57
560
2
30
1,647.36
610
2
62
511
1
FF
1,614.92
1,678.92
561
2
31
1,646.71
611
2
63
1,614.27
512
2
513
2
00
1,678.28
562
2
32
1,646.06
612
2
64
1,613.62
01
1,677.64
563
2
33
1,645.42
613
2
65
514
1,612.97
2
02
1,676.99
564
2
34
1,644.77
614
2
66
1,612.31
515
2
03
1,676.35
565
2
35
1,644.12
615
2
67
1,611.66
516
2
04
1,675.71
566
2
36
1,643.48
616
2
68
1,611.01
517
2
05
1,675.07
567
2
37
1,642.83
617
2
69
1,610.36
518
2
06
1,674.42
568
2
38
1,642.18
618
2
6A
1,609.71
519
2
07
1,673.78
569
2
39
1,641.54
619
2
6B
1,609.05
520
2
08
1,673.14
570
2
3A
1,640.89
620
2
6C
1,608.40
521
2
09
1,672.50
571
2
3B
1,640.24
621
2
6D
1,607.75
522
2
0A
1,671.85
572
2
3C
1,639.59
622
2
6E
1,607.10
523
2
0B
1,671.21
573
2
3D
1,638.95
623
2
6F
1,606.44
524
2
0C
1,670.57
574
2
3E
1,638.30
624
2
70
1,605.79
525
2
0D
1,669.92
575
2
3F
1,637.65
625
2
71
1,605.14
526
2
0E
1,669.28
576
2
40
1,637.00
626
2
72
1,604.49
527
2
0F
1,668.64
577
2
41
1,636.36
627
2
73
1,603.83
528
2
10
1,667.99
578
2
42
1,635.71
628
2
74
1,603.18
529
2
11
1,667.35
579
2
43
1,635.06
629
2
75
1,602.53
530
2
12
1,666.71
580
2
44
1,634.41
630
2
76
1,601.87
531
2
13
1,666.06
581
2
45
1,633.76
631
2
77
1,601.22
532
2
14
1,665.42
582
2
46
1,633.12
632
2
78
1,600.57
533
2
15
1,664.77
583
2
47
1,632.47
633
2
79
1,599.91
534
2
16
1,664.13
584
2
48
1,631.82
634
2
7A
1,599.26
535
2
17
1,663.49
585
2
49
1,631.17
635
2
7B
1,598.61
536
2
18
1,662.84
586
2
4A
1,630.52
636
2
7C
1,597.95
537
2
19
1,662.20
587
2
4B
1,629.87
637
2
7D
1,597.30
538
2
1A
1,661.55
588
2
4C
1,629.22
638
2
7E
1,596.64
539
2
1B
1,660.91
589
2
4D
1,628.57
639
2
7F
1,595.99
540
2
1C
1,660.27
590
2
4E
1,627.92
640
2
80
1,595.33
541
2
1D
1,659.62
591
2
4F
1,627.28
641
2
81
1,594.68
542
2
1E
1,658.98
592
2
50
1,626.63
642
2
82
1,594.03
543
2
1F
1,658.33
593
2
51
1,625.98
643
2
83
1,593.37
544
2
20
1,657.69
594
2
52
1,625.33
644
2
84
1,592.72
545
2
21
1,657.04
595
2
53
1,624.68
645
2
85
1,592.06
546
2
22
1,656.40
596
2
54
1,624.03
646
2
86
1,591.41
547
2
23
1,655.75
597
2
55
1,623.38
647
2
87
1,590.75
548
2
24
1,655.11
598
2
56
1,622.73
648
2
88
1,590.09
549
2
25
1,654.46
599
2
57
1,622.08
649
2
89
1,589.44
550
2
26
1,653.82
600
2
58
1,621.43
650
2
8A
1,588.78
551
2
27
1,653.17
601
2
59
1,620.78
651
2
8B
1,588.13
552
2
28
1,652.52
602
2
5A
1,620.13
652
2
8C
1,587.47
MOTOROLA
MC145540
8-23
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
653
2
8D
1,586.82
703
2
BF
1,553.87
753
2
F1
1,520.61
654
2
8E
1,586.16
704
2
C0
1,553.21
754
2
F2
1,519.95
655
2
8F
1,585.50
705
2
C1
1,552.55
755
2
F3
1,519.28
656
2
90
1,584.85
706
2
C2
1,551.89
756
2
F4
1,518.61
657
2
91
1,584.19
707
2
C3
1,551.22
757
2
F5
1,517.94
658
2
92
1,583.54
708
2
C4
1,550.56
758
2
F6
1,517.27
659
2
93
1,582.88
709
2
C5
1,549.90
759
2
F7
1,516.60
660
2
94
1,582.22
710
2
C6
1,549.24
760
2
F8
1,515.93
661
2
95
1,581.57
711
2
C7
1,548.57
761
2
F9
1,515.26
662
2
96
1,580.91
712
2
C8
1,547.91
762
2
FA
1,514.59
663
2
97
1,580.25
713
2
C9
1,547.25
763
2
FB
1,513.92
664
2
98
1,579.59
714
2
CA
1,546.58
764
2
FC
1,513.25
665
2
99
1,578.94
715
2
CB
1,545.92
765
2
FD
1,512.58
666
2
9A
1,578.28
716
2
CC
1,545.26
766
2
FE
1,511.91
667
2
9B
1,577.62
717
2
CD
1,544.59
767
2
FF
1,511.24
668
2
9C
1,576.96
718
2
CE
1,543.93
768
3
00
1,510.57
669
2
9D
1,576.31
719
2
CF
1,543.27
769
3
01
1,509.90
670
2
9E
1,575.65
720
2
D0
1,542.60
770
3
02
1,509.23
671
2
9F
1,574.99
721
2
D1
1,541.94
771
3
03
1,508.56
672
2
A0
1,574.33
722
2
D2
1,541.27
772
3
04
1,507.89
673
2
A1
1,573.67
723
2
D3
1,540.61
773
3
05
1,507.22
674
2
A2
1,573.02
724
2
D4
1,539.94
774
3
06
1,506.54
675
2
A3
1,572.36
725
2
D5
1,539.28
775
3
07
1,505.87
676
2
A4
1,571.70
726
2
D6
1,538.62
776
3
08
1,505.20
677
2
A5
1,571.04
727
2
D7
1,537.95
777
3
09
1,504.53
678
2
A6
1,570.38
728
2
D8
1,537.28
778
3
0A
1,503.86
679
2
A7
1,569.72
729
2
D9
1,536.62
779
3
0B
1,503.19
680
2
A8
1,569.06
730
2
DA
1,535.95
780
3
0C
1,502.51
681
2
A9
1,568.41
731
2
DB
1,535.29
781
3
0D
1,501.84
682
2
AA
1,567.75
732
2
DC
1,534.62
782
3
0E
1,501.17
683
2
AB
1,567.09
733
2
DD
1,533.96
783
3
0F
1,500.50
684
2
AC
1,566.43
734
2
DE
1,533.29
784
3
10
1,499.82
685
2
AD
1,565.77
735
2
DF
1,532.63
785
3
11
1,499.15
686
2
AE
1,565.11
736
2
E0
1,531.96
786
3
12
1,498.48
687
2
AF
1,564.45
737
2
E1
1,531.29
787
3
13
1,497.80
688
2
B0
1,563.79
738
2
E2
1,530.63
788
3
14
1,497.13
689
2
B1
1,563.13
739
2
E3
1,529.96
789
3
15
1,496.46
690
2
B2
1,562.47
740
2
E4
1,529.29
790
3
16
1,495.78
691
2
B3
1,561.81
741
2
E5
1,528.63
791
3
17
1,495.11
692
2
B4
1,561.15
742
2
E6
1,527.96
792
3
18
1,494.43
693
2
B5
1,560.49
743
2
E7
1,527.29
793
3
19
1,493.76
694
2
B6
1,559.83
744
2
E8
1,526.63
794
3
1A
1,493.09
695
2
B7
1,559.16
745
2
E9
1,525.96
795
3
1B
1,492.41
696
2
B8
1,558.50
746
2
EA
1,525.29
796
3
1C
1,491.74
697
2
B9
1,557.84
747
2
EB
1,524.62
797
3
1D
1,491.06
698
2
BA
1,557.18
748
2
EC
1,523.96
798
3
1E
1,490.39
699
2
BB
1,556.52
749
2
ED
1,523.29
799
3
1F
1,489.71
700
2
BC
1,555.86
750
2
EE
1,522.62
800
3
20
1,489.04
701
2
BD
1,555.20
751
2
EF
1,521.95
801
3
21
1,488.36
702
2
BE
1,554.53
752
2
F0
1,521.28
802
3
22
1,487.68
8-24
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
803
3
23
1,487.01
853
3
55
1,453.02
903
3
87
1,418.61
804
3
24
1,486.33
854
3
56
1,452.34
904
3
88
1,417.92
805
3
25
1,485.66
855
3
57
1,451.65
905
3
89
1,417.23
806
3
26
1,484.98
856
3
58
1,450.97
906
3
8A
1,416.53
807
3
27
1,484.30
857
3
59
1,450.28
907
3
8B
1,415.84
808
3
28
1,483.63
858
3
5A
1,449.60
908
3
8C
1,415.15
809
3
29
1,482.95
859
3
5B
1,448.91
909
3
8D
1,414.45
810
3
2A
1,482.27
860
3
5C
1,448.23
910
3
8E
1,413.76
811
3
2B
1,481.60
861
3
5D
1,447.54
911
3
8F
1,413.06
812
3
2C
1,480.92
862
3
5E
1,446.86
912
3
90
1,412.37
813
3
2D
1,480.24
863
3
5F
1,446.17
913
3
91
1,411.68
814
3
2E
1,479.57
864
3
60
1,445.49
914
3
92
1,410.98
815
3
2F
1,478.89
865
3
61
1,444.80
915
3
93
1,410.29
816
3
30
1,478.21
866
3
62
1,444.12
916
3
94
1,409.59
817
3
31
1,477.53
867
3
63
1,443.43
917
3
95
1,408.90
818
3
32
1,476.85
868
3
64
1,442.74
918
3
96
1,408.20
819
3
33
1,476.18
869
3
65
1,442.06
919
3
97
1,407.51
820
3
34
1,475.50
870
3
66
1,441.37
920
3
98
1,406.81
821
3
35
1,474.82
871
3
67
1,440.68
921
3
99
1,406.11
822
3
36
1,474.14
872
3
68
1,440.00
922
3
9A
1,405.42
823
3
37
1,473.46
873
3
69
1,439.31
923
3
9B
1,404.72
824
3
38
1,472.78
874
3
6A
1,438.62
924
3
9C
1,404.02
825
3
39
1,472.10
875
3
6B
1,437.94
925
3
9D
1,403.33
826
3
3A
1,471.42
876
3
6C
1,437.25
926
3
9E
1,402.63
827
3
3B
1,470.74
877
3
6D
1,436.56
927
3
9F
1,401.93
828
3
3C
1,470.07
878
3
6E
1,435.87
928
3
A0
1,401.24
829
3
3D
1,469.39
879
3
6F
1,435.18
929
3
A1
1,400.54
830
3
3E
1,468.71
880
3
70
1,434.49
930
3
A2
1,399.84
831
3
3F
1,468.03
881
3
71
1,433.81
931
3
A3
1,399.14
832
3
40
1,467.34
882
3
72
1,433.12
932
3
A4
1,398.45
833
3
41
1,466.66
883
3
73
1,432.43
933
3
A5
1,397.75
834
3
42
1,465.98
884
3
74
1,431.74
934
3
A6
1,397.05
835
3
43
1,465.30
885
3
75
1,431.05
935
3
A7
1,396.35
836
3
44
1,464.62
886
3
76
1,430.36
936
3
A8
1,395.65
837
3
45
1,463.94
887
3
77
1,429.67
937
3
A9
1,394.95
838
3
46
1,463.26
888
3
78
1,428.98
938
3
AA
1,394.25
839
3
47
1,462.58
889
3
79
1,428.29
939
3
AB
1,393.55
840
3
48
1,461.90
890
3
7A
1,427.60
940
3
AC
1,392.85
841
3
49
1,461.21
891
3
7B
1,426.91
941
3
AD
1,392.15
842
3
4A
1,460.53
892
3
7C
1,426.22
942
3
AE
1,391.45
843
3
4B
1,459.85
893
3
7D
1,425.53
943
3
AF
1,390.75
844
3
4C
1,459.17
894
3
7E
1,424.84
944
3
B0
1,390.05
845
3
4D
1,458.49
895
3
7F
1,424.15
945
3
B1
1,389.35
846
3
4E
1,457.80
896
3
80
1,423.46
946
3
B2
1,388.65
847
3
4F
1,457.12
897
3
81
1,422.76
947
3
B3
1,387.95
848
3
50
1,456.44
898
3
82
1,422.07
948
3
B4
1,387.25
849
3
51
1,455.75
899
3
83
1,421.38
949
3
B5
1,386.55
850
3
52
1,455.07
900
3
84
1,420.69
950
3
B6
1,385.85
851
3
53
1,454.39
901
3
85
1,420.00
951
3
B7
1,385.14
852
3
54
1,453.70
902
3
86
1,419.30
952
3
B8
1,384.44
MOTOROLA
MC145540
8-25
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
953
954
3
B9
1,383.74
1003
3
BA
1,383.04
1004
3
EB
1,348.36
1053
4
1D
1,312.41
3
EC
1,347.64
1054
4
1E
955
3
BB
1,382.33
1,311.69
1005
3
ED
1,346.93
1055
4
1F
1,310.96
956
3
BC
957
3
BD
1,381.63
1006
3
EE
1,346.22
1056
4
20
1,310.24
1,380.93
1007
3
EF
1,345.50
1057
4
21
1,309.51
958
3
959
3
BE
1,380.23
1008
3
F0
1,344.79
1058
4
22
1,308.79
BF
1,379.52
1009
3
F1
1,344.08
1059
4
23
960
1,308.06
3
C0
1,378.82
1010
3
F2
1,343.36
1060
4
24
1,307.33
961
3
C1
1,378.11
1011
3
F3
1,342.65
1061
4
25
1,306.61
962
3
C2
1,377.41
1012
3
F4
1,341.93
1062
4
26
1,305.88
963
3
C3
1,376.71
1013
3
F5
1,341.22
1063
4
27
1,305.15
964
3
C4
1,376.00
1014
3
F6
1,340.50
1064
4
28
1,304.43
965
3
C5
1,375.30
1015
3
F7
1,339.78
1065
4
29
1,303.70
966
3
C6
1,374.59
1016
3
F8
1,339.07
1066
4
2A
1,302.97
967
3
C7
1,373.89
1017
3
F9
1,338.35
1067
4
2B
1,302.24
968
3
C8
1,373.18
1018
3
FA
1,337.64
1068
4
2C
1,301.51
969
3
C9
1,372.48
1019
3
FB
1,336.92
1069
4
2D
1,300.79
970
3
CA
1,371.77
1020
3
FC
1,336.20
1070
4
2E
1,300.06
971
3
CB
1,371.06
1021
3
FD
1,335.49
1071
4
2F
1,299.33
972
3
CC
1,370.36
1022
3
FE
1,334.77
1072
4
30
1,298.60
973
3
CD
1,369.65
1023
3
FF
1,334.05
1073
4
31
1,297.87
974
3
CE
1,368.94
1024
4
00
1,333.33
1074
4
32
1,297.14
975
3
CF
1,368.24
1025
4
01
1,332.62
1075
4
33
1,296.41
976
3
D0
1,367.53
1026
4
02
1,331.90
1076
4
34
1,295.68
977
3
D1
1,366.82
1027
4
03
1,331.18
1077
4
35
1,294.95
978
3
D2
1,366.12
1028
4
04
1,330.46
1078
4
36
1,294.21
979
3
D3
1,365.41
1029
4
05
1,329.74
1079
4
37
1,293.48
980
3
D4
1,364.70
1030
4
06
1,329.02
1080
4
38
1,292.75
981
3
D5
1,363.99
1031
4
07
1,328.30
1081
4
39
1,292.02
982
3
D6
1,363.28
1032
4
08
1,327.58
1082
4
3A
1,291.29
983
3
D7
1,362.57
1033
4
09
1,326.86
1083
4
3B
1,290.56
984
3
D8
1,361.87
1034
4
0A
1,326.14
1084
4
3C
1,289.82
985
3
D9
1,361.16
1035
4
0B
1,325.42
1085
4
3D
1,289.09
986
3
DA
1,360.45
1036
4
0C
1,324.70
1086
4
3E
1,288.36
987
3
DB
1,359.74
1037
4
0D
1,323.98
1087
4
3F
1,287.62
988
3
DC
1,359.03
1038
4
0E
1,323.26
1088
4
40
1,286.89
989
3
DD
1,358.32
1039
4
0F
1,322.54
1089
4
41
1,286.16
990
3
DE
1,357.61
1040
4
10
1,321.82
1090
4
42
1,285.42
991
3
DF
1,356.90
1041
4
11
1,321.10
1091
4
43
1,284.69
992
3
E0
1,356.19
1042
4
12
1,320.37
1092
4
44
1,283.95
993
3
E1
1,355.48
1043
4
13
1,319.65
1093
4
45
1,283.22
994
3
E2
1,354.77
1044
4
14
1,318.93
1094
4
46
1,282.48
995
3
E3
1,354.06
1045
4
15
1,318.21
1095
4
47
1,281.75
996
3
E4
1,353.34
1046
4
16
1,317.48
1096
4
48
1,281.01
997
3
E5
1,352.63
1047
4
17
1,316.76
1097
4
49
1,280.27
998
3
E6
1,351.92
1048
4
18
1,316.04
1098
4
4A
1,279.54
999
3
E7
1,351.21
1049
4
19
1,315.31
1099
4
4B
1,278.80
1000
3
E8
1,350.50
1050
4
1A
1,314.59
1100
4
4C
1,278.06
1001
3
E9
1,349.78
1051
4
1B
1,313.86
1101
4
4D
1,277.33
1002
3
EA
1,349.07
1052
4
1C
1,313.14
1102
4
4E
1,276.59
8-26
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
1103
4
4F
1,275.85
1153
4
81
1,238.61
1203
4
B3
1,200.60
1104
4
50
1,275.11
1154
4
82
1,237.85
1204
4
B4
1,199.83
1105
4
51
1,274.38
1155
4
83
1,237.10
1205
4
B5
1,199.07
1106
4
52
1,273.64
1156
4
84
1,236.35
1206
4
B6
1,198.30
1107
4
53
1,272.90
1157
4
85
1,235.60
1207
4
B7
1,197.53
1108
4
54
1,272.16
1158
4
86
1,234.84
1208
4
B8
1,196.76
1109
4
55
1,271.42
1159
4
87
1,234.09
1209
4
B9
1,195.99
1110
4
56
1,270.68
1160
4
88
1,233.33
1210
4
BA
1,195.22
1111
4
57
1,269.94
1161
4
89
1,232.58
1211
4
BB
1,194.45
1112
4
58
1,269.20
1162
4
8A
1,231.82
1212
4
BC
1,193.68
1113
4
59
1,268.46
1163
4
8B
1,231.07
1213
4
BD
1,192.90
1114
4
5A
1,267.72
1164
4
8C
1,230.31
1214
4
BE
1,192.13
1115
4
5B
1,266.98
1165
4
8D
1,229.56
1215
4
BF
1,191.36
1116
4
5C
1,266.24
1166
4
8E
1,228.80
1216
4
C0
1,190.59
1117
4
5D
1,265.50
1167
4
8F
1,228.05
1217
4
C1
1,189.81
1118
4
5E
1,264.75
1168
4
90
1,227.29
1218
4
C2
1,189.04
1119
4
5F
1,264.01
1169
4
91
1,226.53
1219
4
C3
1,188.27
1120
4
60
1,263.27
1170
4
92
1,225.77
1220
4
C4
1,187.49
1121
4
61
1,262.53
1171
4
93
1,225.02
1221
4
C5
1,186.72
1122
4
62
1,261.78
1172
4
94
1,224.26
1222
4
C6
1,185.95
1123
4
63
1,261.04
1173
4
95
1,223.50
1223
4
C7
1,185.17
1124
4
64
1,260.30
1174
4
96
1,222.74
1224
4
C8
1,184.40
1125
4
65
1,259.55
1175
4
97
1,221.98
1225
4
C9
1,183.62
1126
4
66
1,258.81
1176
4
98
1,221.22
1226
4
CA
1,182.84
1127
4
67
1,258.06
1177
4
99
1,220.46
1227
4
CB
1,182.07
1128
4
68
1,257.32
1178
4
9A
1,219.70
1228
4
CC
1,181.29
1129
4
69
1,256.57
1179
4
9B
1,218.94
1229
4
CD
1,180.51
1130
4
6A
1,255.83
1180
4
9C
1,218.18
1230
4
CE
1,179.74
1131
4
6B
1,255.08
1181
4
9D
1,217.42
1231
4
CF
1,178.96
1132
4
6C
1,254.34
1182
4
9E
1,216.66
1232
4
D0
1,178.18
1133
4
6D
1,253.59
1183
4
9F
1,215.90
1233
4
D1
1,177.40
1134
4
6E
1,252.85
1184
4
A0
1,215.14
1234
4
D2
1,176.62
1135
4
6F
1,252.10
1185
4
A1
1,214.38
1235
4
D3
1,175.84
1136
4
70
1,251.35
1186
4
A2
1,213.61
1236
4
D4
1,175.06
1137
4
71
1,250.60
1187
4
A3
1,212.85
1237
4
D5
1,174.28
1138
4
72
1,249.86
1188
4
A4
1,212.09
1238
4
D6
1,173.50
1139
4
73
1,249.11
1189
4
A5
1,211.32
1239
4
D7
1,172.72
1140
4
74
1,248.36
1190
4
A6
1,210.56
1240
4
D8
1,171.94
1141
4
75
1,247.61
1191
4
A7
1,209.80
1241
4
D9
1,171.16
1142
4
76
1,246.86
1192
4
A8
1,209.03
1242
4
DA
1,170.38
1143
4
77
1,246.11
1193
4
A9
1,208.27
1243
4
DB
1,169.60
1144
4
78
1,245.36
1194
4
AA
1,207.50
1244
4
DC
1,168.82
1145
4
79
1,244.61
1195
4
AB
1,206.74
1245
4
DD
1,168.03
1146
4
7A
1,243.86
1196
4
AC
1,205.97
1246
4
DE
1,167.25
1147
4
7B
1,243.11
1197
4
AD
1,205.21
1247
4
DF
1,166.47
1148
4
7C
1,242.36
1198
4
AE
1,204.44
1248
4
E0
1,165.68
1149
4
7D
1,241.61
1199
4
AF
1,203.67
1249
4
E1
1,164.90
1150
4
7E
1,240.86
1200
4
B0
1,202.91
1250
4
E2
1,164.11
1151
4
7F
1,240.11
1201
4
B1
1,202.14
1251
4
E3
1,163.33
1152
4
80
1,239.36
1202
4
B2
1,201.37
1252
4
E4
1,162.54
MOTOROLA
MC145540
8-27
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
1253
4
E5
1,161.76
1303
5
17
1,121.97
1353
1254
4
E6
1,160.97
1304
5
18
1,121.16
1354
5
49
1,081.13
5
4A
1255
4
E7
1,160.18
1305
5
19
1,120.36
1,080.30
1355
5
4B
1256
4
E8
1,159.40
1306
5
1A
1,079.48
1,119.55
1356
5
4C
1257
4
E9
1,158.61
1307
5
1,078.65
1B
1,118.74
1357
5
4D
1,077.82
1258
4
EA
1,157.82
1308
1259
4
EB
1,157.03
1309
5
1C
1,117.94
1358
5
4E
1,076.99
5
1D
1,117.13
1359
5
4F
1260
4
EC
1,156.25
1,076.15
1310
5
1E
1,116.32
1360
5
50
1261
4
ED
1,075.32
1,155.46
1311
5
1F
1,115.51
1361
5
51
1,074.49
1262
4
1263
4
EE
1,154.67
1312
5
20
1,114.70
1362
5
52
1,073.66
EF
1,153.88
1313
5
21
1,113.89
1363
5
53
1264
1,072.83
4
F0
1,153.09
1314
5
22
1,113.08
1364
5
54
1,071.99
1265
4
F1
1,152.30
1315
5
23
1,112.27
1365
5
55
1,071.16
1266
4
F2
1,151.51
1316
5
24
1,111.46
1366
5
56
1,070.33
1267
4
F3
1,150.72
1317
5
25
1,110.65
1367
5
57
1,069.49
1268
4
F4
1,149.92
1318
5
26
1,109.84
1368
5
58
1,068.66
1269
4
F5
1,149.13
1319
5
27
1,109.02
1369
5
59
1,067.82
1270
4
F6
1,148.34
1320
5
28
1,108.21
1370
5
5A
1,066.98
1271
4
F7
1,147.55
1321
5
29
1,107.40
1371
5
5B
1,066.15
1272
4
F8
1,146.75
1322
5
2A
1,106.58
1372
5
5C
1,065.31
1273
4
F9
1,145.96
1323
5
2B
1,105.77
1373
5
5D
1,064.47
1274
4
FA
1,145.17
1324
5
2C
1,104.95
1374
5
5E
1,063.63
1275
4
FB
1,144.37
1325
5
2D
1,104.14
1375
5
5F
1,062.80
1276
4
FC
1,143.58
1326
5
2E
1,103.32
1376
5
60
1,061.96
1277
4
FD
1,142.78
1327
5
2F
1,102.51
1377
5
61
1,061.12
1278
4
FE
1,141.99
1328
5
30
1,101.69
1378
5
62
1,060.28
1279
4
FF
1,141.19
1329
5
31
1,100.87
1379
5
63
1,059.44
1280
5
00
1,140.40
1330
5
32
1,100.06
1380
5
64
1,058.60
1281
5
01
1,139.60
1331
5
33
1,099.24
1381
5
65
1,057.75
1282
5
02
1,138.80
1332
5
34
1,098.42
1382
5
66
1,056.91
1283
5
03
1,138.00
1333
5
35
1,097.60
1383
5
67
1,056.07
1284
5
04
1,137.21
1334
5
36
1,096.78
1384
5
68
1,055.23
1285
5
05
1,136.41
1335
5
37
1,095.96
1385
5
69
1,054.38
1286
5
06
1,135.61
1336
5
38
1,095.14
1386
5
6A
1,053.54
1287
5
07
1,134.81
1337
5
39
1,094.32
1387
5
6B
1,052.69
1288
5
08
1,134.01
1338
5
3A
1,093.50
1388
5
6C
1,051.85
1289
5
09
1,133.21
1339
5
3B
1,092.68
1389
5
6D
1,051.00
1290
5
0A
1,132.41
1340
5
3C
1,091.86
1390
5
6E
1,050.16
1291
5
0B
1,131.61
1341
5
3D
1,091.04
1391
5
6F
1,049.31
1292
5
0C
1,130.81
1342
5
3E
1,090.21
1392
5
70
1,048.46
1293
5
0D
1,130.01
1343
5
3F
1,089.39
1393
5
71
1,047.61
1294
5
0E
1,129.21
1344
5
40
1,088.57
1394
5
72
1,046.77
1295
5
0F
1,128.40
1345
5
41
1,087.74
1395
5
73
1,045.92
1296
5
10
1,127.60
1346
5
42
1,086.92
1396
5
74
1,045.07
1297
5
11
1,126.80
1347
5
43
1,086.09
1397
5
75
1,044.22
1298
5
12
1,125.99
1348
5
44
1,085.27
1398
5
76
1,043.37
1299
5
13
1,125.19
1349
5
45
1,084.44
1399
5
77
1,042.52
1300
5
14
1,124.39
1350
5
46
1,083.61
1400
5
78
1,041.66
1301
5
15
1,123.58
1351
5
47
1,082.79
1401
5
79
1,040.81
1302
5
16
1,122.78
1352
5
48
1,081.96
1402
5
7A
1,039.96
8-28
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
1403
5
1404
5
1405
5
1406
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
7B
1,039.11
1453
5
AD
995.73
1503
5
DF
950.82
7C
1,038.25
1454
5
AE
994.85
1504
5
E0
949.90
7D
1,037.40
1455
5
AF
993.97
1505
5
E1
948.99
5
7E
1,036.54
1456
5
B0
993.08
1506
5
E2
948.07
1407
5
7F
1,035.69
1457
5
B1
992.20
1507
5
E3
947.15
1408
5
80
1,034.83
1458
5
B2
991.31
1508
5
E4
946.23
1409
5
81
1,033.98
1459
5
B3
990.43
1509
5
E5
945.31
1410
5
82
1,033.12
1460
5
B4
989.54
1510
5
E6
944.39
1411
5
83
1,032.26
1461
5
B5
988.66
1511
5
E7
943.47
1412
5
84
1,031.40
1462
5
B6
987.77
1512
5
E8
942.55
1413
5
85
1,030.55
1463
5
B7
986.88
1513
5
E9
941.63
1414
5
86
1,029.69
1464
5
B8
985.99
1514
5
EA
940.71
1415
5
87
1,028.83
1465
5
B9
985.10
1515
5
EB
939.78
1416
5
88
1,027.97
1466
5
BA
984.21
1516
5
EC
938.86
1417
5
89
1,027.11
1467
5
BB
983.32
1517
5
ED
937.93
1418
5
8A
1,026.24
1468
5
BC
982.43
1518
5
EE
937.01
1419
5
8B
1,025.38
1469
5
BD
981.54
1519
5
EF
936.08
1420
5
8C
1,024.52
1470
5
BE
980.65
1520
5
F0
935.15
1421
5
8D
1,023.66
1471
5
BF
979.75
1521
5
F1
934.23
1422
5
8E
1,022.79
1472
5
C0
978.86
1522
5
F2
933.30
1423
5
8F
1,021.93
1473
5
C1
977.96
1523
5
F3
932.37
1424
5
90
1,021.06
1474
5
C2
977.07
1524
5
F4
931.44
1425
5
91
1,020.20
1475
5
C3
976.17
1525
5
F5
930.51
1426
5
92
1,019.33
1476
5
C4
975.28
1526
5
F6
929.57
1427
5
93
1,018.47
1477
5
C5
974.38
1527
5
F7
928.64
1428
5
94
1,017.60
1478
5
C6
973.48
1528
5
F8
927.71
1429
5
95
1,016.73
1479
5
C7
972.58
1529
5
F9
926.77
1430
5
96
1,015.86
1480
5
C8
971.68
1530
5
FA
925.84
1431
5
97
1,014.99
1481
5
C9
970.78
1531
5
FB
924.90
1432
5
98
1,014.13
1482
5
CA
969.88
1532
5
FC
923.97
1433
5
99
1,013.26
1483
5
CB
968.98
1533
5
FD
923.03
1434
5
9A
1,012.38
1484
5
CC
968.08
1534
5
FE
922.09
1435
5
9B
1,011.51
1485
5
CD
967.18
1535
5
FF
921.15
1436
5
9C
1,010.64
1486
5
CE
966.28
1536
6
00
920.21
1437
5
9D
1,009.77
1487
5
CF
965.37
1537
6
01
919.27
1438
5
9E
1,008.90
1488
5
D0
964.47
1538
6
02
918.33
1439
5
9F
1,008.02
1489
5
D1
963.56
1539
6
03
917.39
1440
5
A0
1,007.15
1490
5
D2
962.66
1540
6
04
916.45
1441
5
A1
1,006.28
1491
5
D3
961.75
1541
6
05
915.50
1442
5
A2
1,005.40
1492
5
D4
960.84
1542
6
06
914.56
1443
5
A3
1,004.52
1493
5
D5
959.93
1543
6
07
913.61
1444
5
A4
1,003.65
1494
5
D6
959.03
1544
6
08
912.67
1445
5
A5
1,002.77
1495
5
D7
958.12
1545
6
09
911.72
1446
5
A6
1,001.89
1496
5
D8
957.21
1546
6
0A
910.77
1447
5
A7
1,001.01
1497
5
D9
956.30
1547
6
0B
909.83
1448
5
A8
1,000.14
1498
5
DA
955.38
1548
6
0C
908.88
1449
5
A9
999.26
1499
5
DB
954.47
1549
6
0D
907.93
1450
5
AA
998.38
1500
5
DC
953.56
1550
6
0E
906.98
1451
5
AB
997.50
1501
5
DD
952.65
1551
6
0F
906.03
1452
5
AC
996.61
1502
5
DE
951.73
1552
6
10
905.07
MOTOROLA
HEX
BR4
MC145540
8-29
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
1553
1554
6
11
904.12
1603
6
43
855.34
1653
6
75
804.08
6
12
903.17
1604
6
44
854.34
1654
6
76
803.03
1555
6
13
902.21
1605
6
45
853.34
1655
6
77
801.97
1556
6
14
901.25
1606
6
46
852.34
1656
6
78
800.92
1557
6
15
900.30
1607
6
47
851.33
1657
6
79
799.86
1558
6
16
899.34
1608
6
48
850.33
1658
6
7A
798.80
1559
6
17
898.38
1609
6
49
849.33
1659
6
7B
797.74
1560
6
18
897.42
1610
6
4A
848.32
1660
6
7C
796.68
1561
6
19
896.46
1611
6
4B
847.31
1661
6
7D
795.62
1562
6
1A
895.50
1612
6
4C
846.31
1662
6
7E
794.55
1563
6
1B
894.54
1613
6
4D
845.30
1663
6
7F
793.49
1564
6
1C
893.58
1614
6
4E
844.29
1664
6
80
792.42
1565
6
1D
892.61
1615
6
4F
843.28
1665
6
81
791.36
1566
6
1E
891.65
1616
6
50
842.27
1666
6
82
790.29
1567
6
1F
890.69
1617
6
51
841.25
1667
6
83
789.22
1568
6
20
889.72
1618
6
52
840.24
1668
6
84
788.15
1569
6
21
888.75
1619
6
53
839.23
1669
6
85
787.08
1570
6
22
887.78
1620
6
54
838.21
1670
6
86
786.00
1571
6
23
886.82
1621
6
55
837.19
1671
6
87
784.93
1572
6
24
885.85
1622
6
56
836.18
1672
6
88
783.85
1573
6
25
884.88
1623
6
57
835.16
1673
6
89
782.78
1574
6
26
883.90
1624
6
58
834.14
1674
6
8A
781.70
1575
6
27
882.93
1625
6
59
833.12
1675
6
8B
780.62
1576
6
28
881.96
1626
6
5A
832.09
1676
6
8C
779.54
1577
6
29
880.99
1627
6
5B
831.07
1677
6
8D
778.45
1578
6
2A
880.01
1628
6
5C
830.05
1678
6
8E
777.37
1579
6
2B
879.04
1629
6
5D
829.02
1679
6
8F
776.28
1580
6
2C
878.06
1630
6
5E
828.00
1680
6
90
775.20
1581
6
2D
877.08
1631
6
5F
826.97
1681
6
91
774.11
1582
6
2E
876.10
1632
6
60
825.94
1682
6
92
773.02
1583
6
2F
875.12
1633
6
61
824.91
1683
6
93
771.93
1584
6
30
874.14
1634
6
62
823.88
1684
6
94
770.84
1585
6
31
873.16
1635
6
63
822.85
1685
6
95
769.75
1586
6
32
872.18
1636
6
64
821.81
1686
6
96
768.65
1587
6
33
871.20
1637
6
65
820.78
1687
6
97
767.56
1588
6
34
870.21
1638
6
66
819.75
1688
6
98
766.46
1589
6
35
869.23
1639
6
67
818.71
1689
6
99
765.36
1590
6
36
868.24
1640
6
68
817.67
1690
6
9A
764.26
1591
6
37
867.25
1641
6
69
816.63
1691
6
9B
763.16
1592
6
38
866.27
1642
6
6A
815.59
1692
6
9C
762.06
1593
6
39
865.28
1643
6
6B
814.55
1693
6
9D
760.95
1594
6
3A
864.29
1644
6
6C
813.51
1694
6
9E
759.85
1595
6
3B
863.30
1645
6
6D
812.47
1695
6
9F
758.74
1596
6
3C
862.31
1646
6
6E
811.42
1696
6
A0
757.63
1597
6
3D
861.31
1647
6
6F
810.38
1697
6
A1
756.52
1598
6
3E
860.32
1648
6
70
809.33
1698
6
A2
755.41
1599
6
3F
859.33
1649
6
71
808.28
1699
6
A3
754.30
1600
6
40
858.33
1650
6
72
807.23
1700
6
A4
753.18
1601
6
41
857.33
1651
6
73
806.18
1701
6
A5
752.07
1602
6
42
856.34
1652
6
74
805.13
1702
6
A6
750.95
8-30
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
1703
6
A7
749.83
1753
1704
6
A8
748.71
1754
6
D9
691.88
1803
6
DA
690.67
1804
7
0B
629.17
7
0C
1705
6
A9
747.59
1755
6
DB
689.47
627.86
1805
7
0D
1706
6
AA
746.47
1756
6
DC
626.55
688.26
1806
7
0E
1707
6
AB
745.34
1757
6
625.23
DD
687.05
1807
7
0F
623.91
1708
1709
6
AC
744.22
1758
6
AD
743.09
1759
6
DE
685.84
1808
7
10
622.59
6
DF
684.63
1809
7
11
1710
6
AE
741.96
621.26
1760
6
E0
683.41
1810
7
12
1711
6
AF
619.94
740.83
1761
6
E1
682.19
1811
7
13
618.61
1712
6
1713
6
B0
739.70
1762
6
E2
680.98
1812
7
14
617.27
B1
738.56
1763
6
E3
679.76
1813
7
15
1714
615.94
6
B2
737.43
1764
6
E4
678.53
1814
7
16
614.60
1715
6
B3
736.29
1765
6
E5
677.31
1815
7
17
613.26
1716
6
B4
735.15
1766
6
E6
676.08
1816
7
18
611.92
1717
6
B5
734.01
1767
6
E7
674.85
1817
7
19
610.57
1718
6
B6
732.87
1768
6
E8
673.62
1818
7
1A
609.22
1719
6
B7
731.73
1769
6
E9
672.39
1819
7
1B
607.87
1720
6
B8
730.59
1770
6
EA
671.15
1820
7
1C
606.51
1721
6
B9
729.44
1771
6
EB
669.92
1821
7
1D
605.16
1722
6
BA
728.29
1772
6
EC
668.68
1822
7
1E
603.80
1723
6
BB
727.14
1773
6
ED
667.44
1823
7
1F
602.43
1724
6
BC
725.99
1774
6
EE
666.19
1824
7
20
601.07
1725
6
BD
724.84
1775
6
EF
664.95
1825
7
21
599.70
1726
6
BE
723.69
1776
6
F0
663.70
1826
7
22
598.33
1727
6
BF
722.53
1777
6
F1
662.45
1827
7
23
596.95
1728
6
C0
721.37
1778
6
F2
661.20
1828
7
24
595.58
1729
6
C1
720.21
1779
6
F3
659.95
1829
7
25
594.20
1730
6
C2
719.05
1780
6
F4
658.69
1830
7
26
592.81
1731
6
C3
717.89
1781
6
F5
657.43
1831
7
27
591.43
1732
6
C4
716.73
1782
6
F6
656.17
1832
7
28
590.04
1733
6
C5
715.56
1783
6
F7
654.91
1833
7
29
588.65
1734
6
C6
714.39
1784
6
F8
653.64
1834
7
2A
587.25
1735
6
C7
713.22
1785
6
F9
652.38
1835
7
2B
585.85
1736
6
C8
712.05
1786
6
FA
651.11
1836
7
2C
584.45
1737
6
C9
710.88
1787
6
FB
649.84
1837
7
2D
583.05
1738
6
CA
709.70
1788
6
FC
648.56
1838
7
2E
581.64
1739
6
CB
708.53
1789
6
FD
647.29
1839
7
2F
580.23
1740
6
CC
707.35
1790
6
FE
646.01
1840
7
30
578.81
1741
6
CD
706.17
1791
6
FF
644.73
1841
7
31
577.40
1742
6
CE
704.99
1792
7
00
643.44
1842
7
32
575.97
1743
6
CF
703.81
1793
7
01
642.16
1843
7
33
574.55
1744
6
D0
702.62
1794
7
02
640.87
1844
7
34
573.12
1745
6
D1
701.43
1795
7
03
639.58
1845
7
35
571.69
1746
6
D2
700.25
1796
7
04
638.29
1846
7
36
570.26
1747
6
D3
699.06
1797
7
05
636.99
1847
7
37
568.82
1748
6
D4
697.86
1798
7
06
635.70
1848
7
38
567.38
1749
6
D5
696.67
1799
7
07
634.40
1849
7
39
565.94
1750
6
D6
695.47
1800
7
08
633.10
1850
7
3A
564.49
1751
6
D7
694.28
1801
7
09
631.79
1851
7
3B
563.04
1752
6
D8
693.08
1802
7
0A
630.48
1852
7
3C
561.58
MOTOROLA
MC145540
8-31
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
1853
7
3D
560.13
1903
7
6F
481.99
1953
7
A1
389.33
1854
7
3E
558.66
1904
7
70
480.31
1954
7
A2
387.26
1855
7
3F
557.20
1905
7
71
478.62
1955
7
A3
385.18
1856
7
40
555.73
1906
7
72
476.92
1956
7
A4
383.08
1857
7
41
554.26
1907
7
73
475.22
1957
7
A5
380.98
1858
7
42
552.78
1908
7
74
473.51
1958
7
A6
378.87
1859
7
43
551.30
1909
7
75
471.80
1959
7
A7
376.74
1860
7
44
549.82
1910
7
76
470.08
1960
7
A8
374.60
1861
7
45
548.33
1911
7
77
468.35
1961
7
A9
372.45
1862
7
46
546.84
1912
7
78
466.62
1962
7
AA
370.29
1863
7
47
545.34
1913
7
79
464.88
1963
7
AB
368.11
1864
7
48
543.85
1914
7
7A
463.14
1964
7
AC
365.93
1865
7
49
542.34
1915
7
7B
461.39
1965
7
AD
363.73
1866
7
4A
540.84
1916
7
7C
459.63
1966
7
AE
361.52
1867
7
4B
539.33
1917
7
7D
457.87
1967
7
AF
359.29
1868
7
4C
537.81
1918
7
7E
456.10
1968
7
B0
357.05
1869
7
4D
536.29
1919
7
7F
454.32
1969
7
B1
354.80
1870
7
4E
534.77
1920
7
80
452.54
1970
7
B2
352.53
1871
7
4F
533.24
1921
7
81
450.75
1971
7
B3
350.25
1872
7
50
531.71
1922
7
82
448.95
1972
7
B4
347.95
1873
7
51
530.18
1923
7
83
447.15
1973
7
B5
345.64
1874
7
52
528.64
1924
7
84
445.34
1974
7
B6
343.31
1875
7
53
527.09
1925
7
85
443.52
1975
7
B7
340.97
1876
7
54
525.55
1926
7
86
441.69
1976
7
B8
338.62
1877
7
55
524.00
1927
7
87
439.86
1977
7
B9
336.24
1878
7
56
522.44
1928
7
88
438.02
1978
7
BA
333.85
1879
7
57
520.88
1929
7
89
436.17
1979
7
BB
331.45
1880
7
58
519.31
1930
7
8A
434.32
1980
7
BC
329.02
1881
7
59
517.74
1931
7
8B
432.46
1981
7
BD
326.58
1882
7
5A
516.17
1932
7
8C
430.59
1982
7
BE
324.12
1883
7
5B
514.59
1933
7
8D
428.71
1983
7
BF
321.64
1884
7
5C
513.01
1934
7
8E
426.82
1984
7
C0
319.14
1885
7
5D
511.42
1935
7
8F
424.93
1985
7
C1
316.63
1886
7
5E
509.83
1936
7
90
423.03
1986
7
C2
314.09
1887
7
5F
508.23
1937
7
91
421.12
1987
7
C3
311.54
1888
7
60
506.63
1938
7
92
419.20
1988
7
C4
308.96
1889
7
61
505.02
1939
7
93
417.27
1989
7
C5
306.36
1890
7
62
503.41
1940
7
94
415.34
1990
7
C6
303.74
1891
7
63
501.79
1941
7
95
413.39
1991
7
C7
301.10
1892
7
64
500.17
1942
7
96
411.44
1992
7
C8
298.43
1893
7
65
498.54
1943
7
97
409.48
1993
7
C9
295.75
1894
7
66
496.91
1944
7
98
407.50
1994
7
CA
293.03
1895
7
67
495.28
1945
7
99
405.52
1995
7
CB
290.29
1896
7
68
493.63
1946
7
9A
403.53
1996
7
CC
287.53
1897
7
69
491.99
1947
7
9B
401.53
1997
7
CD
284.74
1898
7
6A
490.33
1948
7
9C
399.52
1998
7
CE
281.92
1899
7
6B
488.68
1949
7
9D
397.51
1999
7
CF
279.08
1900
7
6C
487.01
1950
7
9E
395.48
2000
7
D0
276.21
1901
7
6D
485.35
1951
7
9F
393.44
2001
7
D1
273.30
1902
7
6E
483.67
1952
7
A0
391.39
2002
7
D2
270.37
8-32
MC145540
MOTOROLA
Table 8-2. Frequency Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
BCD
HEX
BR5
HEX
BR4
FREQUENCY
2003
7
D3
267.40
2019
7
E3
214.52
2034
7
F2
148.96
2004
7
D4
264.40
2020
7
E4
210.78
2035
7
F3
143.54
2005
7
D5
261.37
2021
7
E5
206.98
2036
7
F4
137.90
2006
7
D6
258.30
2022
7
E6
203.10
2037
7
F5
132.02
2007
7
D7
255.20
2023
7
E7
199.15
2038
7
F6
125.87
2008
7
D8
252.06
2024
7
E8
195.12
2039
7
F7
119.41
2009
7
D9
248.88
2025
7
E9
191.00
2040
7
F8
112.58
2010
7
DA
245.66
2026
7
EA
186.79
2041
7
F9
105.30
2011
7
DB
242.39
2027
7
EB
182.49
2042
7
FA
97.49
2012
7
DC
239.08
2028
7
EC
178.09
2043
7
FB
88.99
2013
7
DD
235.73
2029
7
ED
173.57
2044
7
FC
79.59
2014
7
DE
232.33
2030
7
EE
168.93
2045
7
FD
68.92
2015
7
DF
228.88
2031
7
EF
164.17
2046
7
FE
56.27
2016
7
E0
225.37
2032
7
F0
159.26
2047
7
FF
39.79
2017
7
E1
221.81
2033
7
F1
154.20
2048
8
00
0.00
2018
7
E2
218.20
MOTOROLA
MC145540
8-33
Table 8-3. Attenuation Coefficients for Tone Generator
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
2047
7
FF
1.1204
3.21
2001
7
D1
1.0952
3.01
1955
7
A3
1.0700
2.81
2046
7
FE
1.1198
3.20
2000
7
D0
1.0946
3.00
1954
7
A2
1.0695
2.80
2045
7
FD
1.1193
3.20
1999
7
CF
1.0941
3.00
1953
7
A1
1.0689
2.80
2044
7
FC
1.1187
3.19
1998
7
CE
1.0935
3.00
1952
7
A0
1.0684
2.79
2043
7
FB
1.1182
3.19
1997
7
CD
1.0930
2.99
1951
7
9F
1.0678
2.79
2042
7
FA
1.1176
3.18
1996
7
CC
1.0924
2.99
1950
7
9E
1.0673
2.78
2041
7
F9
1.1171
3.18
1995
7
CB
1.0919
2.98
1949
7
9D
1.0667
2.78
2040
7
F8
1.1165
3.18
1994
7
CA
1.0913
2.98
1948
7
9C
1.0662
2.78
2039
7
F7
1.1160
3.17
1993
7
C9
1.0908
2.97
1947
7
9B
1.0656
2.77
2038
7
F6
1.1154
3.17
1992
7
C8
1.0903
2.97
1946
7
9A
1.0651
2.77
2037
7
F5
1.1149
3.16
1991
7
C7
1.0897
2.96
1945
7
99
1.0645
2.76
2036
7
F4
1.1143
3.16
1990
7
C6
1.0892
2.96
1944
7
98
1.0640
2.76
2035
7
F3
1.1138
3.15
1989
7
C5
1.0886
2.96
1943
7
97
1.0634
2.75
2034
7
F2
1.1132
3.15
1988
7
C4
1.0881
2.95
1942
7
96
1.0629
2.75
2033
7
F1
1.1127
3.15
1987
7
C3
1.0875
2.95
1941
7
95
1.0623
2.74
2032
7
F0
1.1121
3.14
1986
7
C2
1.0870
2.94
1940
7
94
1.0618
2.74
2031
7
EF
1.1116
3.14
1985
7
C1
1.0864
2.94
1939
7
93
1.0612
2.73
2030
7
EE
1.1110
3.13
1984
7
C0
1.0859
2.93
1938
7
92
1.0607
2.73
2029
7
ED
1.1105
3.13
1983
7
BF
1.0853
2.93
1937
7
91
1.0601
2.73
2028
7
EC
1.1100
3.12
1982
7
BE
1.0848
2.93
1936
7
90
1.0596
2.72
2027
7
EB
1.1094
3.12
1981
7
BD
1.0842
2.92
1935
7
8F
1.0591
2.72
2026
7
EA
1.1089
3.12
1980
7
BC
1.0837
2.92
1934
7
8E
1.0585
2.71
2025
7
E9
1.1083
3.11
1979
7
BB
1.0831
2.91
1933
7
8D
1.0580
2.71
2024
7
E8
1.1078
3.11
1978
7
BA
1.0826
2.91
1932
7
8C
1.0574
2.70
2023
7
E7
1.1072
3.10
1977
7
B9
1.0820
2.90
1931
7
8B
1.0569
2.70
2022
7
E6
1.1067
3.10
1976
7
B8
1.0815
2.90
1930
7
8A
1.0563
2.69
2021
7
E5
1.1061
3.09
1975
7
B7
1.0809
2.89
1929
7
89
1.0558
2.69
2020
7
E4
1.1056
3.09
1974
7
B6
1.0804
2.89
1928
7
88
1.0552
2.69
2019
7
E3
1.1050
3.09
1973
7
B5
1.0799
2.89
1927
7
87
1.0547
2.68
2018
7
E2
1.1045
3.08
1972
7
B4
1.0793
2.88
1926
7
86
1.0541
2.68
2017
7
E1
1.1039
3.08
1971
7
B3
1.0788
2.88
1925
7
85
1.0536
2.67
2016
7
E0
1.1034
3.07
1970
7
B2
1.0782
2.87
1924
7
84
1.0530
2.67
2015
7
DF
1.1028
3.07
1969
7
B1
1.0777
2.87
1923
7
83
1.0525
2.66
2014
7
DE
1.1023
3.06
1968
7
B0
1.0771
2.86
1922
7
82
1.0519
2.66
2013
7
DD
1.1017
3.06
1967
7
AF
1.0766
2.86
1921
7
81
1.0514
2.65
2012
7
DC
1.1012
3.06
1966
7
AE
1.0760
2.85
1920
7
80
1.0508
2.65
2011
7
DB
1.1006
3.05
1965
7
AD
1.0755
2.85
1919
7
7F
1.0503
2.64
2010
7
DA
1.1001
3.05
1964
7
AC
1.0749
2.85
1918
7
7E
1.0497
2.64
2009
7
D9
1.0996
3.04
1963
7
AB
1.0744
2.84
1917
7
7D
1.0492
2.64
2008
7
D8
1.0990
3.04
1962
7
AA
1.0738
2.84
1916
7
7C
1.0487
2.63
2007
7
D7
1.0985
3.03
1961
7
A9
1.0733
2.83
1915
7
7B
1.0481
2.63
2006
7
D6
1.0979
3.03
1960
7
A8
1.0727
2.83
1914
7
7A
1.0476
2.62
2005
7
D5
1.0974
3.03
1959
7
A7
1.0722
2.82
1913
7
79
1.0470
2.62
2004
7
D4
1.0968
3.02
1958
7
A6
1.0716
2.82
1912
7
78
1.0465
2.61
2003
7
D3
1.0963
3.02
1957
7
A5
1.0711
2.82
1911
7
77
1.0459
2.61
2002
7
D2
1.0957
3.01
1956
7
A4
1.0705
2.81
1910
7
76
1.0454
2.60
8-34
MC145540
MOTOROLA
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
1909
7
75
1.0448
2.60
1863
7
47
1.0196
2.39
1817
7
19
0.9945
2.17
1908
7
74
1.0443
2.59
1862
7
46
1.0191
2.38
1816
7
18
0.9939
2.17
1907
7
73
1.0437
2.59
1861
7
45
1.0186
2.38
1815
7
17
0.9934
2.16
1906
7
72
1.0432
2.59
1860
7
44
1.0180
2.37
1814
7
16
0.9928
2.16
1905
7
71
1.0426
2.58
1859
7
43
1.0175
2.37
1813
7
15
0.9923
2.15
1904
7
70
1.0421
2.58
1858
7
42
1.0169
2.36
1812
7
14
0.9917
2.15
1903
7
6F
1.0415
2.57
1857
7
41
1.0164
2.36
1811
7
13
0.9912
2.14
1902
7
6E
1.0410
2.57
1856
7
40
1.0158
2.35
1810
7
12
0.9906
2.14
1901
7
6D
1.0404
2.56
1855
7
3F
1.0153
2.35
1809
7
11
0.9901
2.13
1900
7
6C
1.0399
2.56
1854
7
3E
1.0147
2.35
1808
7
10
0.9895
2.13
1899
7
6B
1.0394
2.55
1853
7
3D
1.0142
2.34
1807
7
0F
0.9890
2.12
1898
7
6A
1.0388
2.55
1852
7
3C
1.0136
2.34
1806
7
0E
0.9884
2.12
1897
7
69
1.0383
2.54
1851
7
3B
1.0131
2.33
1805
7
0D
0.9879
2.11
1896
7
68
1.0377
2.54
1850
7
3A
1.0125
2.33
1804
7
0C
0.9874
2.11
1895
7
67
1.0372
2.54
1849
7
39
1.0120
2.32
1803
7
0B
0.9868
2.10
1894
7
66
1.0366
2.53
1848
7
38
1.0114
2.32
1802
7
0A
0.9863
2.10
1893
7
65
1.0361
2.53
1847
7
37
1.0109
2.31
1801
7
09
0.9857
2.09
1892
7
64
1.0355
2.52
1846
7
36
1.0103
2.31
1800
7
08
0.9852
2.09
1891
7
63
1.0350
2.52
1845
7
35
1.0098
2.30
1799
7
07
0.9846
2.08
1890
7
62
1.0344
2.51
1844
7
34
1.0092
2.30
1798
7
06
0.9841
2.08
1889
7
61
1.0339
2.51
1843
7
33
1.0087
2.29
1797
7
05
0.9835
2.07
1888
7
60
1.0333
2.50
1842
7
32
1.0082
2.29
1796
7
04
0.9830
2.07
1887
7
5F
1.0328
2.50
1841
7
31
1.0076
2.28
1795
7
03
0.9824
2.06
1886
7
5E
1.0322
2.49
1840
7
30
1.0071
2.28
1794
7
02
0.9819
2.06
1885
7
5D
1.0317
2.49
1839
7
2F
1.0065
2.27
1793
7
01
0.9813
2.05
1884
7
5C
1.0311
2.48
1838
7
2E
1.0060
2.27
1792
7
00
0.9808
2.05
1883
7
5B
1.0306
2.48
1837
7
2D
1.0054
2.27
1791
6
FF
0.9802
2.05
1882
7
5A
1.0300
2.48
1836
7
2C
1.0049
2.26
1790
6
FE
0.9797
2.04
1881
7
59
1.0295
2.47
1835
7
2B
1.0043
2.26
1789
6
FD
0.9791
2.04
1880
7
58
1.0290
2.47
1834
7
2A
1.0038
2.25
1788
6
FC
0.9786
2.03
1879
7
57
1.0284
2.46
1833
7
29
1.0032
2.25
1787
6
FB
0.9781
2.03
1878
7
56
1.0279
2.46
1832
7
28
1.0027
2.24
1786
6
FA
0.9775
2.02
1877
7
55
1.0273
2.45
1831
7
27
1.0021
2.24
1785
6
F9
0.9770
2.02
1876
7
54
1.0268
2.45
1830
7
26
1.0016
2.23
1784
6
F8
0.9764
2.01
1875
7
53
1.0262
2.44
1829
7
25
1.0010
2.23
1783
6
F7
0.9759
2.01
1874
7
52
1.0257
2.44
1828
7
24
1.0005
2.22
1782
6
F6
0.9753
2.00
1873
7
51
1.0251
2.43
1827
7
23
0.9999
2.22
1781
6
F5
0.9748
2.00
1872
7
50
1.0246
2.43
1826
7
22
0.9994
2.21
1780
6
F4
0.9742
1.99
1871
7
4F
1.0240
2.42
1825
7
21
0.9988
2.21
1779
6
F3
0.9737
1.99
1870
7
4E
1.0235
2.42
1824
7
20
0.9983
2.20
1778
6
F2
0.9731
1.98
1869
7
4D
1.0229
2.42
1823
7
1F
0.9978
2.20
1777
6
F1
0.9726
1.98
1868
7
4C
1.0224
2.41
1822
7
1E
0.9972
2.19
1776
6
F0
0.9720
1.97
1867
7
4B
1.0218
2.41
1821
7
1D
0.9967
2.19
1775
6
EF
0.9715
1.97
1866
7
4A
1.0213
2.40
1820
7
1C
0.9961
2.18
1774
6
EE
0.9709
1.96
1865
7
49
1.0207
2.40
1819
7
1B
0.9956
2.18
1773
6
ED
0.9704
1.96
1864
7
48
1.0202
2.39
1818
7
1A
0.9950
2.18
1772
6
EC
0.9698
1.95
MOTOROLA
MC145540
8-35
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
1771
6
EB
0.9693
1.95
1725
6
BD
0.9441
1.72
1679
6
8F
0.9189
1.48
1770
6
EA
0.9687
1.94
1724
6
BC
0.9436
1.71
1678
6
8E
0.9184
1.48
1769
6
E9
0.9682
1.94
1723
6
BB
0.9430
1.71
1677
6
8D
0.9178
1.47
1768
6
E8
0.9677
1.93
1722
6
BA
0.9425
1.70
1676
6
8C
0.9173
1.47
1767
6
E7
0.9671
1.93
1721
6
B9
0.9419
1.70
1675
6
8B
0.9168
1.46
1766
6
E6
0.9666
1.92
1720
6
B8
0.9414
1.69
1674
6
8A
0.9162
1.46
1765
6
E5
0.9660
1.92
1719
6
B7
0.9408
1.69
1673
6
89
0.9157
1.45
1764
6
E4
0.9655
1.91
1718
6
B6
0.9403
1.68
1672
6
88
0.9151
1.45
1763
6
E3
0.9649
1.91
1717
6
B5
0.9397
1.68
1671
6
87
0.9146
1.44
1762
6
E2
0.9644
1.90
1716
6
B4
0.9392
1.67
1670
6
86
0.9140
1.44
1761
6
E1
0.9638
1.90
1715
6
B3
0.9386
1.67
1669
6
85
0.9135
1.43
1760
6
E0
0.9633
1.89
1714
6
B2
0.9381
1.66
1668
6
84
0.9129
1.43
1759
6
DF
0.9627
1.89
1713
6
B1
0.9375
1.66
1667
6
83
0.9124
1.42
1758
6
DE
0.9622
1.88
1712
6
B0
0.9370
1.65
1666
6
82
0.9118
1.42
1757
6
DD
0.9616
1.88
1711
6
AF
0.9365
1.65
1665
6
81
0.9113
1.41
1756
6
DC
0.9611
1.87
1710
6
AE
0.9359
1.64
1664
6
80
0.9107
1.41
1755
6
DB
0.9605
1.87
1709
6
AD
0.9354
1.64
1663
6
7F
0.9102
1.40
1754
6
DA
0.9600
1.86
1708
6
AC
0.9348
1.63
1662
6
7E
0.9096
1.40
1753
6
D9
0.9594
1.86
1707
6
AB
0.9343
1.63
1661
6
7D
0.9091
1.39
1752
6
D8
0.9589
1.85
1706
6
AA
0.9337
1.62
1660
6
7C
0.9085
1.39
1751
6
D7
0.9583
1.85
1705
6
A9
0.9332
1.62
1659
6
7B
0.9080
1.38
1750
6
D6
0.9578
1.84
1704
6
A8
0.9326
1.61
1658
6
7A
0.9074
1.37
1749
6
D5
0.9573
1.84
1703
6
A7
0.9321
1.61
1657
6
79
0.9069
1.37
1748
6
D4
0.9567
1.83
1702
6
A6
0.9315
1.60
1656
6
78
0.9064
1.36
1747
6
D3
0.9562
1.83
1701
6
A5
0.9310
1.60
1655
6
77
0.9058
1.36
1746
6
D2
0.9556
1.82
1700
6
A4
0.9304
1.59
1654
6
76
0.9053
1.35
1745
6
D1
0.9551
1.82
1699
6
A3
0.9299
1.59
1653
6
75
0.9047
1.35
1744
6
D0
0.9545
1.81
1698
6
A2
0.9293
1.58
1652
6
74
0.9042
1.34
1743
6
CF
0.9540
1.81
1697
6
A1
0.9288
1.58
1651
6
73
0.9036
1.34
1742
6
CE
0.9534
1.80
1696
6
A0
0.9282
1.57
1650
6
72
0.9031
1.33
1741
6
CD
0.9529
1.80
1695
6
9F
0.9277
1.57
1649
6
71
0.9025
1.33
1740
6
CC
0.9523
1.79
1694
6
9E
0.9272
1.56
1648
6
70
0.9020
1.32
1739
6
CB
0.9518
1.79
1693
6
9D
0.9266
1.56
1647
6
6F
0.9014
1.32
1738
6
CA
0.9512
1.78
1692
6
9C
0.9261
1.55
1646
6
6E
0.9009
1.31
1737
6
C9
0.9507
1.78
1691
6
9B
0.9255
1.55
1645
6
6D
0.9003
1.31
1736
6
C8
0.9501
1.77
1690
6
9A
0.9250
1.54
1644
6
6C
0.8998
1.30
1735
6
C7
0.9496
1.77
1689
6
99
0.9244
1.54
1643
6
6B
0.8992
1.30
1734
6
C6
0.9490
1.76
1688
6
98
0.9239
1.53
1642
6
6A
0.8987
1.29
1733
6
C5
0.9485
1.76
1687
6
97
0.9233
1.53
1641
6
69
0.8981
1.29
1732
6
C4
0.9479
1.75
1686
6
96
0.9228
1.52
1640
6
68
0.8976
1.28
1731
6
C3
0.9474
1.75
1685
6
95
0.9222
1.52
1639
6
67
0.8970
1.27
1730
6
C2
0.9469
1.74
1684
6
94
0.9217
1.51
1638
6
66
0.8965
1.27
1729
6
C1
0.9463
1.74
1683
6
93
0.9211
1.50
1637
6
65
0.8960
1.26
1728
6
C0
0.9458
1.73
1682
6
92
0.9206
1.50
1636
6
64
0.8954
1.26
1727
6
BF
0.9452
1.73
1681
6
91
0.9200
1.49
1635
6
63
0.8949
1.25
1726
6
BE
0.9447
1.72
1680
6
90
0.9195
1.49
1634
6
62
0.8943
1.25
8-36
MC145540
MOTOROLA
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
1633
6
61
0.8938
1.24
1587
6
33
0.8686
0.99
1541
6
05
0.8434
0.74
1632
6
60
0.8932
1.24
1586
6
32
0.8680
0.99
1540
6
04
0.8429
0.73
1631
6
5F
0.8927
1.23
1585
6
31
0.8675
0.98
1539
6
03
0.8423
0.73
1630
6
5E
0.8921
1.23
1584
6
30
0.8669
0.98
1538
6
02
0.8418
0.72
1629
6
5D
0.8916
1.22
1583
6
2F
0.8664
0.97
1537
6
01
0.8412
0.72
1628
6
5C
0.8910
1.22
1582
6
2E
0.8659
0.97
1536
6
00
0.8407
0.71
1627
6
5B
0.8905
1.21
1581
6
2D
0.8653
0.96
1535
5
FF
0.8401
0.71
1626
6
5A
0.8899
1.21
1580
6
2C
0.8648
0.96
1534
5
FE
0.8396
0.70
1625
6
59
0.8894
1.20
1579
6
2B
0.8642
0.95
1533
5
FD
0.8390
0.69
1624
6
58
0.8888
1.19
1578
6
2A
0.8637
0.95
1532
5
FC
0.8385
0.69
1623
6
57
0.8883
1.19
1577
6
29
0.8631
0.94
1531
5
FB
0.8379
0.68
1622
6
56
0.8877
1.18
1576
6
28
0.8626
0.93
1530
5
FA
0.8374
0.68
1621
6
55
0.8872
1.18
1575
6
27
0.8620
0.93
1529
5
F9
0.8368
0.67
1620
6
54
0.8866
1.17
1574
6
26
0.8615
0.92
1528
5
F8
0.8363
0.67
1619
6
53
0.8861
1.17
1573
6
25
0.8609
0.92
1527
5
F7
0.8357
0.66
1618
6
52
0.8856
1.16
1572
6
24
0.8604
0.91
1526
5
F6
0.8352
0.65
1617
6
51
0.8850
1.16
1571
6
23
0.8598
0.91
1525
5
F5
0.8347
0.65
1616
6
50
0.8845
1.15
1570
6
22
0.8593
0.90
1524
5
F4
0.8341
0.64
1615
6
4F
0.8839
1.15
1569
6
21
0.8587
0.90
1523
5
F3
0.8336
0.64
1614
6
4E
0.8834
1.14
1568
6
20
0.8582
0.89
1522
5
F2
0.8330
0.63
1613
6
4D
0.8828
1.14
1567
6
1F
0.8576
0.88
1521
5
F1
0.8325
0.63
1612
6
4C
0.8823
1.13
1566
6
1E
0.8571
0.88
1520
5
F0
0.8319
0.62
1611
6
4B
0.8817
1.13
1565
6
1D
0.8565
0.87
1519
5
EF
0.8314
0.61
1610
6
4A
0.8812
1.12
1564
6
1C
0.8560
0.87
1518
5
EE
0.8308
0.61
1609
6
49
0.8806
1.11
1563
6
1B
0.8555
0.86
1517
5
ED
0.8303
0.60
1608
6
48
0.8801
1.11
1562
6
1A
0.8549
0.86
1516
5
EC
0.8297
0.60
1607
6
47
0.8795
1.10
1561
6
19
0.8544
0.85
1515
5
EB
0.8292
0.59
1606
6
46
0.8790
1.10
1560
6
18
0.8538
0.85
1514
5
EA
0.8286
0.59
1605
6
45
0.8784
1.09
1559
6
17
0.8533
0.84
1513
5
E9
0.8281
0.58
1604
6
44
0.8779
1.09
1558
6
16
0.8527
0.83
1512
5
E8
0.8275
0.57
1603
6
43
0.8773
1.08
1557
6
15
0.8522
0.83
1511
5
E7
0.8270
0.57
1602
6
42
0.8768
1.08
1556
6
14
0.8516
0.82
1510
5
E6
0.8264
0.56
1601
6
41
0.8763
1.07
1555
6
13
0.8511
0.82
1509
5
E5
0.8259
0.56
1600
6
40
0.8757
1.07
1554
6
12
0.8505
0.81
1508
5
E4
0.8254
0.55
1599
6
3F
0.8752
1.06
1553
6
11
0.8500
0.81
1507
5
E3
0.8248
0.55
1598
6
3E
0.8746
1.05
1552
6
10
0.8494
0.80
1506
5
E2
0.8243
0.54
1597
6
3D
0.8741
1.05
1551
6
0F
0.8489
0.80
1505
5
E1
0.8237
0.53
1596
6
3C
0.8735
1.04
1550
6
0E
0.8483
0.79
1504
5
E0
0.8232
0.53
1595
6
3B
0.8730
1.04
1549
6
0D
0.8478
0.78
1503
5
DF
0.8226
0.52
1594
6
3A
0.8724
1.03
1548
6
0C
0.8472
0.78
1502
5
DE
0.8221
0.52
1593
6
39
0.8719
1.03
1547
6
0B
0.8467
0.77
1501
5
DD
0.8215
0.51
1592
6
38
0.8713
1.02
1546
6
0A
0.8461
0.77
1500
5
DC
0.8210
0.51
1591
6
37
0.8708
1.02
1545
6
09
0.8456
0.76
1499
5
DB
0.8204
0.50
1590
6
36
0.8702
1.01
1544
6
08
0.8451
0.76
1498
5
DA
0.8199
0.49
1589
6
35
0.8697
1.01
1543
6
07
0.8445
0.75
1497
5
D9
0.8193
0.49
1588
6
34
0.8691
1.00
1542
6
06
0.8440
0.74
1496
5
D8
0.8188
0.48
MOTOROLA
MC145540
8-37
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
1495
5
D7
0.8182
0.48
1449
5
A9
0.7931
0.20
1403
5
7B
0.7679
–0.08
1494
5
D6
0.8177
0.47
1448
5
A8
0.7925
0.20
1402
5
7A
0.7673
–0.08
1493
5
D5
0.8171
0.46
1447
5
A7
0.7920
0.19
1401
5
79
0.7668
–0.09
1492
5
D4
0.8166
0.46
1446
5
A6
0.7914
0.19
1400
5
78
0.7662
–0.09
1491
5
D3
0.8160
0.45
1445
5
A5
0.7909
0.18
1399
5
77
0.7657
–0.10
1490
5
D2
0.8155
0.45
1444
5
A4
0.7903
0.17
1398
5
76
0.7651
–0.11
1489
5
D1
0.8150
0.44
1443
5
A3
0.7898
0.17
1397
5
75
0.7646
–0.11
1488
5
D0
0.8144
0.44
1442
5
A2
0.7892
0.16
1396
5
74
0.7641
–0.12
1487
5
CF
0.8139
0.43
1441
5
A1
0.7887
0.16
1395
5
73
0.7635
–0.13
1486
5
CE
0.8133
0.42
1440
5
A0
0.7881
0.15
1394
5
72
0.7630
–0.13
1485
5
CD
0.8128
0.42
1439
5
9F
0.7876
0.14
1393
5
71
0.7624
–0.14
1484
5
CC
0.8122
0.41
1438
5
9E
0.7870
0.14
1392
5
70
0.7619
–0.14
1483
5
CB
0.8117
0.41
1437
5
9D
0.7865
0.13
1391
5
6F
0.7613
–0.15
1482
5
CA
0.8111
0.40
1436
5
9C
0.7859
0.13
1390
5
6E
0.7608
–0.16
1481
5
C9
0.8106
0.39
1435
5
9B
0.7854
0.12
1389
5
6D
0.7602
–0.16
1480
5
C8
0.8100
0.39
1434
5
9A
0.7848
0.11
1388
5
6C
0.7597
–0.17
1479
5
C7
0.8095
0.38
1433
5
99
0.7843
0.11
1387
5
6B
0.7591
–0.18
1478
5
C6
0.8089
0.38
1432
5
98
0.7838
0.10
1386
5
6A
0.7586
–0.18
1477
5
C5
0.8084
0.37
1431
5
97
0.7832
0.10
1385
5
69
0.7580
–0.19
1476
5
C4
0.8078
0.36
1430
5
96
0.7827
0.09
1384
5
68
0.7575
–0.19
1475
5
C3
0.8073
0.36
1429
5
95
0.7821
0.08
1383
5
67
0.7569
–0.20
1474
5
C2
0.8067
0.35
1428
5
94
0.7816
0.08
1382
5
66
0.7564
–0.21
1473
5
C1
0.8062
0.35
1427
5
93
0.7810
0.07
1381
5
65
0.7558
–0.21
1472
5
C0
0.8056
0.34
1426
5
92
0.7805
0.07
1380
5
64
0.7553
–0.22
1471
5
BF
0.8051
0.34
1425
5
91
0.7799
0.06
1379
5
63
0.7547
–0.23
1470
5
BE
0.8046
0.33
1424
5
90
0.7794
0.05
1378
5
62
0.7542
–0.23
1469
5
BD
0.8040
0.32
1423
5
8F
0.7788
0.05
1377
5
61
0.7537
–0.24
1468
5
BC
0.8035
0.32
1422
5
8E
0.7783
0.04
1376
5
60
0.7531
–0.24
1467
5
BB
0.8029
0.31
1421
5
8D
0.7777
0.04
1375
5
5F
0.7526
–0.25
1466
5
BA
0.8024
0.31
1420
5
8C
0.7772
0.03
1374
5
5E
0.7520
–0.26
1465
5
B9
0.8018
0.30
1419
5
8B
0.7766
0.02
1373
5
5D
0.7515
–0.26
1464
5
B8
0.8013
0.29
1418
5
8A
0.7761
0.02
1372
5
5C
0.7509
–0.27
1463
5
B7
0.8007
0.29
1417
5
89
0.7755
0.01
1371
5
5B
0.7504
–0.28
1462
5
B6
0.8002
0.28
1416
5
88
0.7750
0.00
1370
5
5A
0.7498
–0.28
1461
5
B5
0.7996
0.28
1415
5
87
0.7744
0.00
1369
5
59
0.7493
–0.29
1460
5
B4
0.7991
0.27
1414
5
86
0.7739
–0.01
1368
5
58
0.7487
–0.30
1459
5
B3
0.7985
0.26
1413
5
85
0.7734
–0.01
1367
5
57
0.7482
–0.30
1458
5
B2
0.7980
0.26
1412
5
84
0.7728
–0.02
1366
5
56
0.7476
–0.31
1457
5
B1
0.7974
0.25
1411
5
83
0.7723
–0.03
1365
5
55
0.7471
–0.31
1456
5
B0
0.7969
0.25
1410
5
82
0.7717
–0.03
1364
5
54
0.7465
–0.32
1455
5
AF
0.7963
0.24
1409
5
81
0.7712
–0.04
1363
5
53
0.7460
–0.33
1454
5
AE
0.7958
0.23
1408
5
80
0.7706
–0.04
1362
5
52
0.7454
–0.33
1453
5
AD
0.7952
0.23
1407
5
7F
0.7701
–0.05
1361
5
51
0.7449
–0.34
1452
5
AC
0.7947
0.22
1406
5
7E
0.7695
–0.06
1360
5
50
0.7443
–0.35
1451
5
AB
0.7942
0.22
1405
5
7D
0.7690
–0.06
1359
5
4F
0.7438
–0.35
1450
5
AA
0.7936
0.21
1404
5
7C
0.7684
–0.07
1358
5
4E
0.7433
–0.36
8-38
MC145540
MOTOROLA
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
1357
5
4D
0.7427
–0.37
1311
5
1F
0.7175
–0.66
1265
4
F1
0.6924
–0.97
1356
5
4C
0.7422
–0.37
1310
5
1E
0.7170
–0.67
1264
4
F0
0.6918
–0.98
1355
5
4B
0.7416
–0.38
1309
5
1D
0.7164
–0.68
1263
4
EF
0.6913
–0.99
1354
5
4A
0.7411
–0.38
1308
5
1C
0.7159
–0.68
1262
4
EE
0.6907
–1.00
1353
5
49
0.7405
–0.39
1307
5
1B
0.7153
–0.69
1261
4
ED
0.6902
–1.00
1352
5
48
0.7400
–0.40
1306
5
1A
0.7148
–0.70
1260
4
EC
0.6896
–1.01
1351
5
47
0.7394
–0.40
1305
5
19
0.7142
–0.70
1259
4
EB
0.6891
–1.02
1350
5
46
0.7389
–0.41
1304
5
18
0.7137
–0.71
1258
4
EA
0.6885
–1.02
1349
5
45
0.7383
–0.42
1303
5
17
0.7132
–0.72
1257
4
E9
0.6880
–1.03
1348
5
44
0.7378
–0.42
1302
5
16
0.7126
–0.72
1256
4
E8
0.6874
–1.04
1347
5
43
0.7372
–0.43
1301
5
15
0.7121
–0.73
1255
4
E7
0.6869
–1.04
1346
5
42
0.7367
–0.44
1300
5
14
0.7115
–0.74
1254
4
E6
0.6863
–1.05
1345
5
41
0.7361
–0.44
1299
5
13
0.7110
–0.74
1253
4
E5
0.6858
–1.06
1344
5
40
0.7356
–0.45
1298
5
12
0.7104
–0.75
1252
4
E4
0.6852
–1.06
1343
5
3F
0.7350
–0.46
1297
5
11
0.7099
–0.76
1251
4
E3
0.6847
–1.07
1342
5
3E
0.7345
–0.46
1296
5
10
0.7093
–0.76
1250
4
E2
0.6841
–1.08
1341
5
3D
0.7339
–0.47
1295
5
0F
0.7088
–0.77
1249
4
E1
0.6836
–1.09
1340
5
3C
0.7334
–0.47
1294
5
0E
0.7082
–0.78
1248
4
E0
0.6830
–1.09
1339
5
3B
0.7329
–0.48
1293
5
0D
0.7077
–0.78
1247
4
DF
0.6825
–1.10
1338
5
3A
0.7323
–0.49
1292
5
0C
0.7071
–0.79
1246
4
DE
0.6820
–1.11
1337
5
39
0.7318
–0.49
1291
5
0B
0.7066
–0.80
1245
4
DD
0.6814
–1.11
1336
5
38
0.7312
–0.50
1290
5
0A
0.7060
–0.80
1244
4
DC
0.6809
–1.12
1335
5
37
0.7307
–0.51
1289
5
09
0.7055
–0.81
1243
4
DB
0.6803
–1.13
1334
5
36
0.7301
–0.51
1288
5
08
0.7049
–0.82
1242
4
DA
0.6798
–1.13
1333
5
35
0.7296
–0.52
1287
5
07
0.7044
–0.83
1241
4
D9
0.6792
–1.14
1332
5
34
0.7290
–0.53
1286
5
06
0.7038
–0.83
1240
4
D8
0.6787
–1.15
1331
5
33
0.7285
–0.53
1285
5
05
0.7033
–0.84
1239
4
D7
0.6781
–1.16
1330
5
32
0.7279
–0.54
1284
5
04
0.7028
–0.85
1238
4
D6
0.6776
–1.16
1329
5
31
0.7274
–0.55
1283
5
03
0.7022
–0.85
1237
4
D5
0.6770
–1.17
1328
5
30
0.7268
–0.55
1282
5
02
0.7017
–0.86
1236
4
D4
0.6765
–1.18
1327
5
2F
0.7263
–0.56
1281
5
01
0.7011
–0.87
1235
4
D3
0.6759
–1.18
1326
5
2E
0.7257
–0.57
1280
5
00
0.7006
–0.87
1234
4
D2
0.6754
–1.19
1325
5
2D
0.7252
–0.57
1279
4
FF
0.7000
–0.88
1233
4
D1
0.6748
–1.20
1324
5
2C
0.7246
–0.58
1278
4
FE
0.6995
–0.89
1232
4
D0
0.6743
–1.20
1323
5
2B
0.7241
–0.59
1277
4
FD
0.6989
–0.89
1231
4
CF
0.6737
–1.21
1322
5
2A
0.7235
–0.59
1276
4
FC
0.6984
–0.90
1230
4
CE
0.6732
–1.22
1321
5
29
0.7230
–0.60
1275
4
FB
0.6978
–0.91
1229
4
CD
0.6726
–1.23
1320
5
28
0.7225
–0.61
1274
4
FA
0.6973
–0.91
1228
4
CC
0.6721
–1.23
1319
5
27
0.7219
–0.61
1273
4
F9
0.6967
–0.92
1227
4
CB
0.6716
–1.24
1318
5
26
0.7214
–0.62
1272
4
F8
0.6962
–0.93
1226
4
CA
0.6710
–1.25
1317
5
25
0.7208
–0.63
1271
4
F7
0.6956
–0.93
1225
4
C9
0.6705
–1.25
1316
5
24
0.7203
–0.63
1270
4
F6
0.6951
–0.94
1224
4
C8
0.6699
–1.26
1315
5
23
0.7197
–0.64
1269
4
F5
0.6945
–0.95
1223
4
C7
0.6694
–1.27
1314
5
22
0.7192
–0.64
1268
4
F4
0.6940
–0.95
1222
4
C6
0.6688
–1.28
1313
5
21
0.7186
–0.65
1267
4
F3
0.6934
–0.96
1221
4
C5
0.6683
–1.28
1312
5
20
0.7181
–0.66
1266
4
F2
0.6929
–0.97
1220
4
C4
0.6677
–1.29
MOTOROLA
MC145540
8-39
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
1219
4
C3
0.6672
–1.30
1173
4
95
0.6420
–1.63
1127
4
67
0.6168
–1.98
1218
4
C2
0.6666
–1.30
1172
4
94
0.6415
–1.64
1126
4
66
0.6163
–1.99
1217
4
C1
0.6661
–1.31
1171
4
93
0.6409
–1.65
1125
4
65
0.6157
–1.99
1216
4
C0
0.6655
–1.32
1170
4
92
0.6404
–1.65
1124
4
64
0.6152
–2.00
1215
4
BF
0.6650
–1.33
1169
4
91
0.6398
–1.66
1123
4
63
0.6146
–2.01
1214
4
BE
0.6644
–1.33
1168
4
90
0.6393
–1.67
1122
4
62
0.6141
–2.02
1213
4
BD
0.6639
–1.34
1167
4
8F
0.6387
–1.68
1121
4
61
0.6135
–2.02
1212
4
BC
0.6633
–1.35
1166
4
8E
0.6382
–1.68
1120
4
60
0.6130
–2.03
1211
4
BB
0.6628
–1.35
1165
4
8D
0.6376
–1.69
1119
4
5F
0.6124
–2.04
1210
4
BA
0.6623
–1.36
1164
4
8C
0.6371
–1.70
1118
4
5E
0.6119
–2.05
1209
4
B9
0.6617
–1.37
1163
4
8B
0.6365
–1.71
1117
4
5D
0.6114
–2.06
1208
4
B8
0.6612
–1.38
1162
4
8A
0.6360
–1.71
1116
4
5C
0.6108
–2.06
1207
4
B7
0.6606
–1.38
1161
4
89
0.6354
–1.72
1115
4
5B
0.6103
–2.07
1206
4
B6
0.6601
–1.39
1160
4
88
0.6349
–1.73
1114
4
5A
0.6097
–2.08
1205
4
B5
0.6595
–1.40
1159
4
87
0.6343
–1.74
1113
4
59
0.6092
–2.09
1204
4
B4
0.6590
–1.40
1158
4
86
0.6338
–1.74
1112
4
58
0.6086
–2.09
1203
4
B3
0.6584
–1.41
1157
4
85
0.6332
–1.75
1111
4
57
0.6081
–2.10
1202
4
B2
0.6579
–1.42
1156
4
84
0.6327
–1.76
1110
4
56
0.6075
–2.11
1201
4
B1
0.6573
–1.43
1155
4
83
0.6321
–1.77
1109
4
55
0.6070
–2.12
1200
4
B0
0.6568
–1.43
1154
4
82
0.6316
–1.77
1108
4
54
0.6064
–2.13
1199
4
AF
0.6562
–1.44
1153
4
81
0.6311
–1.78
1107
4
53
0.6059
–2.13
1198
4
AE
0.6557
–1.45
1152
4
80
0.6305
–1.79
1106
4
52
0.6053
–2.14
1197
4
AD
0.6551
–1.45
1151
4
7F
0.6300
–1.80
1105
4
51
0.6048
–2.15
1196
4
AC
0.6546
–1.46
1150
4
7E
0.6294
–1.80
1104
4
50
0.6042
–2.16
1195
4
AB
0.6540
–1.47
1149
4
7D
0.6289
–1.81
1103
4
4F
0.6037
–2.17
1194
4
AA
0.6535
–1.48
1148
4
7C
0.6283
–1.82
1102
4
4E
0.6031
–2.17
1193
4
A9
0.6529
–1.48
1147
4
7B
0.6278
–1.83
1101
4
4D
0.6026
–2.18
1192
4
A8
0.6524
–1.49
1146
4
7A
0.6272
–1.83
1100
4
4C
0.6020
–2.19
1191
4
A7
0.6519
–1.50
1145
4
79
0.6267
–1.84
1099
4
4B
0.6015
–2.20
1190
4
A6
0.6513
–1.51
1144
4
78
0.6261
–1.85
1098
4
4A
0.6010
–2.20
1189
4
A5
0.6508
–1.51
1143
4
77
0.6256
–1.86
1097
4
49
0.6004
–2.21
1188
4
A4
0.6502
–1.52
1142
4
76
0.6250
–1.86
1096
4
48
0.5999
–2.22
1187
4
A3
0.6497
–1.53
1141
4
75
0.6245
–1.87
1095
4
47
0.5993
–2.23
1186
4
A2
0.6491
–1.54
1140
4
74
0.6239
–1.88
1094
4
46
0.5988
–2.24
1185
4
A1
0.6486
–1.54
1139
4
73
0.6234
–1.89
1093
4
45
0.5982
–2.24
1184
4
A0
0.6480
–1.55
1138
4
72
0.6228
–1.89
1092
4
44
0.5977
–2.25
1183
4
9F
0.6475
–1.56
1137
4
71
0.6223
–1.90
1091
4
43
0.5971
–2.26
1182
4
9E
0.6469
–1.56
1136
4
70
0.6217
–1.91
1090
4
42
0.5966
–2.27
1181
4
9D
0.6464
–1.57
1135
4
6F
0.6212
–1.92
1089
4
41
0.5960
–2.28
1180
4
9C
0.6458
–1.58
1134
4
6E
0.6207
–1.92
1088
4
40
0.5955
–2.28
1179
4
9B
0.6453
–1.59
1133
4
6D
0.6201
–1.93
1087
4
3F
0.5949
–2.29
1178
4
9A
0.6447
–1.59
1132
4
6C
0.6196
–1.94
1086
4
3E
0.5944
–2.30
1177
4
99
0.6442
–1.60
1131
4
6B
0.6190
–1.95
1085
4
3D
0.5938
–2.31
1176
4
98
0.6436
–1.61
1130
4
6A
0.6185
–1.96
1084
4
3C
0.5933
–2.32
1175
4
97
0.6431
–1.62
1129
4
69
0.6179
–1.96
1083
4
3B
0.5927
–2.32
1174
4
96
0.6425
–1.62
1128
4
68
0.6174
–1.97
1082
4
3A
0.5922
–2.33
8-40
MC145540
MOTOROLA
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
1081
4
39
0.5916
–2.34
1035
4
0B
0.5665
–2.72
989
3
DD
0.5413
–3.11
1080
4
38
0.5911
–2.35
1034
4
0A
0.5659
–2.73
988
3
DC
0.5407
–3.12
1079
4
37
0.5906
–2.36
1033
4
09
0.5654
–2.73
987
3
DB
0.5402
–3.13
1078
4
36
0.5900
–2.36
1032
4
08
0.5648
–2.74
986
3
DA
0.5397
–3.14
1077
4
35
0.5895
–2.37
1031
4
07
0.5643
–2.75
985
3
D9
0.5391
–3.15
1076
4
34
0.5889
–2.38
1030
4
06
0.5637
–2.76
984
3
D8
0.5386
–3.16
1075
4
33
0.5884
–2.39
1029
4
05
0.5632
–2.77
983
3
D7
0.5380
–3.17
1074
4
32
0.5878
–2.40
1028
4
04
0.5626
–2.78
982
3
D6
0.5375
–3.17
1073
4
31
0.5873
–2.40
1027
4
03
0.5621
–2.79
981
3
D5
0.5369
–3.18
1072
4
30
0.5867
–2.41
1026
4
02
0.5615
–2.79
980
3
D4
0.5364
–3.19
1071
4
2F
0.5862
–2.42
1025
4
01
0.5610
–2.80
979
3
D3
0.5358
–3.20
1070
4
2E
0.5856
–2.43
1024
4
00
0.5605
–2.81
978
3
D2
0.5353
–3.21
1069
4
2D
0.5851
–2.44
1023
3
FF
0.5599
–2.82
977
3
D1
0.5347
–3.22
1068
4
2C
0.5845
–2.45
1022
3
FE
0.5594
–2.83
976
3
D0
0.5342
–3.23
1067
4
2B
0.5840
–2.45
1021
3
FD
0.5588
–2.84
975
3
CF
0.5336
–3.24
1066
4
2A
0.5834
–2.46
1020
3
FC
0.5583
–2.84
974
3
CE
0.5331
–3.25
1065
4
29
0.5829
–2.47
1019
3
FB
0.5577
–2.85
973
3
CD
0.5325
–3.25
1064
4
28
0.5823
–2.48
1018
3
FA
0.5572
–2.86
972
3
CC
0.5320
–3.26
1063
4
27
0.5818
–2.49
1017
3
F9
0.5566
–2.87
971
3
CB
0.5314
–3.27
1062
4
26
0.5812
–2.49
1016
3
F8
0.5561
–2.88
970
3
CA
0.5309
–3.28
1061
4
25
0.5807
–2.50
1015
3
F7
0.5555
–2.89
969
3
C9
0.5303
–3.29
1060
4
24
0.5802
–2.51
1014
3
F6
0.5550
–2.90
968
3
C8
0.5298
–3.30
1059
4
23
0.5796
–2.52
1013
3
F5
0.5544
–2.90
967
3
C7
0.5293
–3.31
1058
4
22
0.5791
–2.53
1012
3
F4
0.5539
–2.91
966
3
C6
0.5287
–3.32
1057
4
21
0.5785
–2.54
1011
3
F3
0.5533
–2.92
965
3
C5
0.5282
–3.33
1056
4
20
0.5780
–2.54
1010
3
F2
0.5528
–2.93
964
3
C4
0.5276
–3.34
1055
4
1F
0.5774
–2.55
1009
3
F1
0.5522
–2.94
963
3
C3
0.5271
–3.34
1054
4
1E
0.5769
–2.56
1008
3
F0
0.5517
–2.95
962
3
C2
0.5265
–3.35
1053
4
1D
0.5763
–2.57
1007
3
EF
0.5511
–2.96
961
3
C1
0.5260
–3.36
1052
4
1C
0.5758
–2.58
1006
3
EE
0.5506
–2.96
960
3
C0
0.5254
–3.37
1051
4
1B
0.5752
–2.58
1005
3
ED
0.5501
–2.97
959
3
BF
0.5249
–3.38
1050
4
1A
0.5747
–2.59
1004
3
EC
0.5495
–2.98
958
3
BE
0.5243
–3.39
1049
4
19
0.5741
–2.60
1003
3
EB
0.5490
–2.99
957
3
BD
0.5238
–3.40
1048
4
18
0.5736
–2.61
1002
3
EA
0.5484
–3.00
956
3
BC
0.5232
–3.41
1047
4
17
0.5730
–2.62
1001
3
E9
0.5479
–3.01
955
3
BB
0.5227
–3.42
1046
4
16
0.5725
–2.63
1000
3
E8
0.5473
–3.02
954
3
BA
0.5221
–3.43
1045
4
15
0.5719
–2.63
999
3
E7
0.5468
–3.03
953
3
B9
0.5216
–3.43
1044
4
14
0.5714
–2.64
998
3
E6
0.5462
–3.03
952
3
B8
0.5210
–3.44
1043
4
13
0.5708
–2.65
997
3
E5
0.5457
–3.04
951
3
B7
0.5205
–3.45
1042
4
12
0.5703
–2.66
996
3
E4
0.5451
–3.05
950
3
B6
0.5199
–3.46
1041
4
11
0.5698
–2.67
995
3
E3
0.5446
–3.06
949
3
B5
0.5194
–3.47
1040
4
10
0.5692
–2.68
994
3
E2
0.5440
–3.07
948
3
B4
0.5189
–3.48
1039
4
0F
0.5687
–2.68
993
3
E1
0.5435
–3.08
947
3
B3
0.5183
–3.49
1038
4
0E
0.5681
–2.69
992
3
E0
0.5429
–3.09
946
3
B2
0.5178
–3.50
1037
4
0D
0.5676
–2.70
991
3
DF
0.5424
–3.10
945
3
B1
0.5172
–3.51
1036
4
0C
0.5670
–2.71
990
3
DE
0.5418
–3.10
944
3
B0
0.5167
–3.52
MOTOROLA
MC145540
8-41
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
943
3
AF
0.5161
–3.53
897
3
81
0.4909
–3.96
851
3
53
0.4658
–4.42
942
3
AE
0.5156
–3.54
896
3
80
0.4904
–3.97
850
3
52
0.4652
–4.43
941
3
AD
0.5150
–3.54
895
3
7F
0.4898
–3.98
849
3
51
0.4647
–4.44
940
3
AC
0.5145
–3.55
894
3
7E
0.4893
–3.99
848
3
50
0.4641
–4.45
939
3
AB
0.5139
–3.56
893
3
7D
0.4888
–4.00
847
3
4F
0.4636
–4.46
938
3
AA
0.5134
–3.57
892
3
7C
0.4882
–4.01
846
3
4E
0.4630
–4.47
937
3
A9
0.5128
–3.58
891
3
7B
0.4877
–4.02
845
3
4D
0.4625
–4.48
936
3
A8
0.5123
–3.59
890
3
7A
0.4871
–4.03
844
3
4C
0.4619
–4.49
935
3
A7
0.5117
–3.60
889
3
79
0.4866
–4.04
843
3
4B
0.4614
–4.50
934
3
A6
0.5112
–3.61
888
3
78
0.4860
–4.05
842
3
4A
0.4608
–4.51
933
3
A5
0.5106
–3.62
887
3
77
0.4855
–4.06
841
3
49
0.4603
–4.52
932
3
A4
0.5101
–3.63
886
3
76
0.4849
–4.07
840
3
48
0.4597
–4.53
931
3
A3
0.5095
–3.64
885
3
75
0.4844
–4.08
839
3
47
0.4592
–4.54
930
3
A2
0.5090
–3.65
884
3
74
0.4838
–4.09
838
3
46
0.4586
–4.55
929
3
A1
0.5085
–3.66
883
3
73
0.4833
–4.10
837
3
45
0.4581
–4.56
928
3
A0
0.5079
–3.67
882
3
72
0.4827
–4.11
836
3
44
0.4576
–4.57
927
3
9F
0.5074
–3.68
881
3
71
0.4822
–4.12
835
3
43
0.4570
–4.58
926
3
9E
0.5068
–3.68
880
3
70
0.4816
–4.13
834
3
42
0.4565
–4.59
925
3
9D
0.5063
–3.69
879
3
6F
0.4811
–4.14
833
3
41
0.4559
–4.60
924
3
9C
0.5057
–3.70
878
3
6E
0.4805
–4.15
832
3
40
0.4554
–4.61
923
3
9B
0.5052
–3.71
877
3
6D
0.4800
–4.16
831
3
3F
0.4548
–4.62
922
3
9A
0.5046
–3.72
876
3
6C
0.4794
–4.17
830
3
3E
0.4543
–4.64
921
3
99
0.5041
–3.73
875
3
6B
0.4789
–4.18
829
3
3D
0.4537
–4.65
920
3
98
0.5035
–3.74
874
3
6A
0.4784
–4.19
828
3
3C
0.4532
–4.66
919
3
97
0.5030
–3.75
873
3
69
0.4778
–4.20
827
3
3B
0.4526
–4.67
918
3
96
0.5024
–3.76
872
3
68
0.4773
–4.21
826
3
3A
0.4521
–4.68
917
3
95
0.5019
–3.77
871
3
67
0.4767
–4.22
825
3
39
0.4515
–4.69
916
3
94
0.5013
–3.78
870
3
66
0.4762
–4.23
824
3
38
0.4510
–4.70
915
3
93
0.5008
–3.79
869
3
65
0.4756
–4.24
823
3
37
0.4504
–4.71
914
3
92
0.5002
–3.80
868
3
64
0.4751
–4.25
822
3
36
0.4499
–4.72
913
3
91
0.4997
–3.81
867
3
63
0.4745
–4.26
821
3
35
0.4493
–4.73
912
3
90
0.4992
–3.82
866
3
62
0.4740
–4.27
820
3
34
0.4488
–4.74
911
3
8F
0.4986
–3.83
865
3
61
0.4734
–4.28
819
3
33
0.4483
–4.75
910
3
8E
0.4981
–3.84
864
3
60
0.4729
–4.29
818
3
32
0.4477
–4.76
909
3
8D
0.4975
–3.85
863
3
5F
0.4723
–4.30
817
3
31
0.4472
–4.77
908
3
8C
0.4970
–3.86
862
3
5E
0.4718
–4.31
816
3
30
0.4466
–4.78
907
3
8B
0.4964
–3.86
861
3
5D
0.4712
–4.32
815
3
2F
0.4461
–4.79
906
3
8A
0.4959
–3.87
860
3
5C
0.4707
–4.33
814
3
2E
0.4455
–4.80
905
3
89
0.4953
–3.88
859
3
5B
0.4701
–4.34
813
3
2D
0.4450
–4.81
904
3
88
0.4948
–3.89
858
3
5A
0.4696
–4.35
812
3
2C
0.4444
–4.83
903
3
87
0.4942
–3.90
857
3
59
0.4690
–4.36
811
3
2B
0.4439
–4.84
902
3
86
0.4937
–3.91
856
3
58
0.4685
–4.37
810
3
2A
0.4433
–4.85
901
3
85
0.4931
–3.92
855
3
57
0.4680
–4.38
809
3
29
0.4428
–4.86
900
3
84
0.4926
–3.93
854
3
56
0.4674
–4.39
808
3
28
0.4422
–4.87
899
3
83
0.4920
–3.94
853
3
55
0.4669
–4.40
807
3
27
0.4417
–4.88
898
3
82
0.4915
–3.95
852
3
54
0.4663
–4.41
806
3
26
0.4411
–4.89
8-42
MC145540
MOTOROLA
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
805
3
25
0.4406
–4.90
759
2
F7
0.4154
–5.41
713
2
C9
0.3902
–5.95
804
3
24
0.4400
–4.91
758
2
F6
0.4149
–5.42
712
2
C8
0.3897
–5.97
803
3
23
0.4395
–4.92
757
2
F5
0.4143
–5.43
711
2
C7
0.3891
–5.98
802
3
22
0.4389
–4.93
756
2
F4
0.4138
–5.45
710
2
C6
0.3886
–5.99
801
3
21
0.4384
–4.94
755
2
F3
0.4132
–5.46
709
2
C5
0.3880
–6.00
800
3
20
0.4379
–4.95
754
2
F2
0.4127
–5.47
708
2
C4
0.3875
–6.02
799
3
1F
0.4373
–4.97
753
2
F1
0.4121
–5.48
707
2
C3
0.3870
–6.03
798
3
1E
0.4368
–4.98
752
2
F0
0.4116
–5.49
706
2
C2
0.3864
–6.04
797
3
1D
0.4362
–4.99
751
2
EF
0.4110
–5.50
705
2
C1
0.3859
–6.05
796
3
1C
0.4357
–5.00
750
2
EE
0.4105
–5.52
704
2
C0
0.3853
–6.07
795
3
1B
0.4351
–5.01
749
2
ED
0.4099
–5.53
703
2
BF
0.3848
–6.08
794
3
1A
0.4346
–5.02
748
2
EC
0.4094
–5.54
702
2
BE
0.3842
–6.09
793
3
19
0.4340
–5.03
747
2
EB
0.4088
–5.55
701
2
BD
0.3837
–6.10
792
3
18
0.4335
–5.04
746
2
EA
0.4083
–5.56
700
2
BC
0.3831
–6.11
791
3
17
0.4329
–5.05
745
2
E9
0.4077
–5.57
699
2
BB
0.3826
–6.13
790
3
16
0.4324
–5.06
744
2
E8
0.4072
–5.59
698
2
BA
0.3820
–6.14
789
3
15
0.4318
–5.08
743
2
E7
0.4067
–5.60
697
2
B9
0.3815
–6.15
788
3
14
0.4313
–5.09
742
2
E6
0.4061
–5.61
696
2
B8
0.3809
–6.16
787
3
13
0.4307
–5.10
741
2
E5
0.4056
–5.62
695
2
B7
0.3804
–6.18
786
3
12
0.4302
–5.11
740
2
E4
0.4050
–5.63
694
2
B6
0.3798
–6.19
785
3
11
0.4296
–5.12
739
2
E3
0.4045
–5.64
693
2
B5
0.3793
–6.20
784
3
10
0.4291
–5.13
738
2
E2
0.4039
–5.66
692
2
B4
0.3787
–6.21
783
3
0F
0.4285
–5.14
737
2
E1
0.4034
–5.67
691
2
B3
0.3782
–6.23
782
3
0E
0.4280
–5.15
736
2
E0
0.4028
–5.68
690
2
B2
0.3776
–6.24
781
3
0D
0.4275
–5.16
735
2
DF
0.4023
–5.69
689
2
B1
0.3771
–6.25
780
3
0C
0.4269
–5.17
734
2
DE
0.4017
–5.70
688
2
B0
0.3766
–6.27
779
3
0B
0.4264
–5.19
733
2
DD
0.4012
–5.71
687
2
AF
0.3760
–6.28
778
3
0A
0.4258
–5.20
732
2
DC
0.4006
–5.73
686
2
AE
0.3755
–6.29
777
3
09
0.4253
–5.21
731
2
DB
0.4001
–5.74
685
2
AD
0.3749
–6.30
776
3
08
0.4247
–5.22
730
2
DA
0.3995
–5.75
684
2
AC
0.3744
–6.32
775
3
07
0.4242
–5.23
729
2
D9
0.3990
–5.76
683
2
AB
0.3738
–6.33
774
3
06
0.4236
–5.24
728
2
D8
0.3984
–5.77
682
2
AA
0.3733
–6.34
773
3
05
0.4231
–5.25
727
2
D7
0.3979
–5.79
681
2
A9
0.3727
–6.35
772
3
04
0.4225
–5.26
726
2
D6
0.3974
–5.80
680
2
A8
0.3722
–6.37
771
3
03
0.4220
–5.28
725
2
D5
0.3968
–5.81
679
2
A7
0.3716
–6.38
770
3
02
0.4214
–5.29
724
2
D4
0.3963
–5.82
678
2
A6
0.3711
–6.39
769
3
01
0.4209
–5.30
723
2
D3
0.3957
–5.83
677
2
A5
0.3705
–6.41
768
3
00
0.4203
–5.31
722
2
D2
0.3952
–5.85
676
2
A4
0.3700
–6.42
767
2
FF
0.4198
–5.32
721
2
D1
0.3946
–5.86
675
2
A3
0.3694
–6.43
766
2
FE
0.4192
–5.33
720
2
D0
0.3941
–5.87
674
2
A2
0.3689
–6.44
765
2
FD
0.4187
–5.34
719
2
CF
0.3935
–5.88
673
2
A1
0.3683
–6.46
764
2
FC
0.4181
–5.35
718
2
CE
0.3930
–5.89
672
2
A0
0.3678
–6.47
763
2
FB
0.4176
–5.37
717
2
CD
0.3924
–5.91
671
2
9F
0.3672
–6.48
762
2
FA
0.4171
–5.38
716
2
CC
0.3919
–5.92
670
2
9E
0.3667
–6.50
761
2
F9
0.4165
–5.39
715
2
CB
0.3913
–5.93
669
2
9D
0.3662
–6.51
760
2
F8
0.4160
–5.40
714
2
CA
0.3908
–5.94
668
2
9C
0.3656
–6.52
MOTOROLA
MC145540
8-43
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
667
2
9B
0.3651
–6.53
621
2
6D
0.3399
–7.15
575
2
3F
0.3147
–7.82
666
2
9A
0.3645
–6.55
620
2
6C
0.3393
–7.17
574
2
3E
0.3142
–7.84
665
2
99
0.3640
–6.56
619
2
6B
0.3388
–7.18
573
2
3D
0.3136
–7.85
664
2
98
0.3634
–6.57
618
2
6A
0.3382
–7.20
572
2
3C
0.3131
–7.87
663
2
97
0.3629
–6.59
617
2
69
0.3377
–7.21
571
2
3B
0.3125
–7.88
662
2
96
0.3623
–6.60
616
2
68
0.3371
–7.23
570
2
3A
0.3120
–7.90
661
2
95
0.3618
–6.61
615
2
67
0.3366
–7.24
569
2
39
0.3114
–7.91
660
2
94
0.3612
–6.63
614
2
66
0.3361
–7.25
568
2
38
0.3109
–7.93
659
2
93
0.3607
–6.64
613
2
65
0.3355
–7.27
567
2
37
0.3103
–7.95
658
2
92
0.3601
–6.65
612
2
64
0.3350
–7.28
566
2
36
0.3098
–7.96
657
2
91
0.3596
–6.67
611
2
63
0.3344
–7.30
565
2
35
0.3092
–7.98
656
2
90
0.3590
–6.68
610
2
62
0.3339
–7.31
564
2
34
0.3087
–7.99
655
2
8F
0.3585
–6.69
609
2
61
0.3333
–7.32
563
2
33
0.3081
–8.01
654
2
8E
0.3579
–6.71
608
2
60
0.3328
–7.34
562
2
32
0.3076
–8.02
653
2
8D
0.3574
–6.72
607
2
5F
0.3322
–7.35
561
2
31
0.3070
–8.04
652
2
8C
0.3568
–6.73
606
2
5E
0.3317
–7.37
560
2
30
0.3065
–8.05
651
2
8B
0.3563
–6.75
605
2
5D
0.3311
–7.38
559
2
2F
0.3059
–8.07
650
2
8A
0.3558
–6.76
604
2
5C
0.3306
–7.40
558
2
2E
0.3054
–8.08
649
2
89
0.3552
–6.77
603
2
5B
0.3300
–7.41
557
2
2D
0.3049
–8.10
648
2
88
0.3547
–6.79
602
2
5A
0.3295
–7.42
556
2
2C
0.3043
–8.12
647
2
87
0.3541
–6.80
601
2
59
0.3289
–7.44
555
2
2B
0.3038
–8.13
646
2
86
0.3536
–6.81
600
2
58
0.3284
–7.45
554
2
2A
0.3032
–8.15
645
2
85
0.3530
–6.83
599
2
57
0.3278
–7.47
553
2
29
0.3027
–8.16
644
2
84
0.3525
–6.84
598
2
56
0.3273
–7.48
552
2
28
0.3021
–8.18
643
2
83
0.3519
–6.85
597
2
55
0.3267
–7.50
551
2
27
0.3016
–8.19
642
2
82
0.3514
–6.87
596
2
54
0.3262
–7.51
550
2
26
0.3010
–8.21
641
2
81
0.3508
–6.88
595
2
53
0.3257
–7.53
549
2
25
0.3005
–8.23
640
2
80
0.3503
–6.89
594
2
52
0.3251
–7.54
548
2
24
0.2999
–8.24
639
2
7F
0.3497
–6.91
593
2
51
0.3246
–7.56
547
2
23
0.2994
–8.26
638
2
7E
0.3492
–6.92
592
2
50
0.3240
–7.57
546
2
22
0.2988
–8.27
637
2
7D
0.3486
–6.93
591
2
4F
0.3235
–7.59
545
2
21
0.2983
–8.29
636
2
7C
0.3481
–6.95
590
2
4E
0.3229
–7.60
544
2
20
0.2977
–8.30
635
2
7B
0.3475
–6.96
589
2
4D
0.3224
–7.61
543
2
1F
0.2972
–8.32
634
2
7A
0.3470
–6.97
588
2
4C
0.3218
–7.63
542
2
1E
0.2966
–8.34
633
2
79
0.3465
–6.99
587
2
4B
0.3213
–7.64
541
2
1D
0.2961
–8.35
632
2
78
0.3459
–7.00
586
2
4A
0.3207
–7.66
540
2
1C
0.2955
–8.37
631
2
77
0.3454
–7.02
585
2
49
0.3202
–7.67
539
2
1B
0.2950
–8.38
630
2
76
0.3448
–7.03
584
2
48
0.3196
–7.69
538
2
1A
0.2945
–8.40
629
2
75
0.3443
–7.04
583
2
47
0.3191
–7.70
537
2
19
0.2939
–8.42
628
2
74
0.3437
–7.06
582
2
46
0.3185
–7.72
536
2
18
0.2934
–8.43
627
2
73
0.3432
–7.07
581
2
45
0.3180
–7.73
535
2
17
0.2928
–8.45
626
2
72
0.3426
–7.09
580
2
44
0.3174
–7.75
534
2
16
0.2923
–8.47
625
2
71
0.3421
–7.10
579
2
43
0.3169
–7.76
533
2
15
0.2917
–8.48
624
2
70
0.3415
–7.11
578
2
42
0.3163
–7.78
532
2
14
0.2912
–8.50
623
2
6F
0.3410
–7.13
577
2
41
0.3158
–7.79
531
2
13
0.2906
–8.51
622
2
6E
0.3404
–7.14
576
2
40
0.3153
–7.81
530
2
12
0.2901
–8.53
8-44
MC145540
MOTOROLA
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
529
2
11
0.2895
–8.55
483
1
E3
0.2644
–9.34
437
1
B5
0.2392
–10.21
528
2
10
0.2890
–8.56
482
1
E2
0.2638
–9.36
436
1
B4
0.2386
–10.23
527
2
0F
0.2884
–8.58
481
1
E1
0.2633
–9.37
435
1
B3
0.2381
–10.25
526
2
0E
0.2879
–8.60
480
1
E0
0.2627
–9.39
434
1
B2
0.2375
–10.27
525
2
0D
0.2873
–8.61
479
1
DF
0.2622
–9.41
433
1
B1
0.2370
–10.29
524
2
0C
0.2868
–8.63
478
1
DE
0.2616
–9.43
432
1
B0
0.2364
–10.31
523
2
0B
0.2862
–8.65
477
1
DD
0.2611
–9.45
431
1
AF
0.2359
–10.33
522
2
0A
0.2857
–8.66
476
1
DC
0.2605
–9.46
430
1
AE
0.2353
–10.35
521
2
09
0.2852
–8.68
475
1
DB
0.2600
–9.48
429
1
AD
0.2348
–10.37
520
2
08
0.2846
–8.70
474
1
DA
0.2594
–9.50
428
1
AC
0.2343
–10.39
519
2
07
0.2841
–8.71
473
1
D9
0.2589
–9.52
427
1
AB
0.2337
–10.41
518
2
06
0.2835
–8.73
472
1
D8
0.2583
–9.54
426
1
AA
0.2332
–10.43
517
2
05
0.2830
–8.75
471
1
D7
0.2578
–9.56
425
1
A9
0.2326
–10.45
516
2
04
0.2824
–8.76
470
1
D6
0.2572
–9.57
424
1
A8
0.2321
–10.47
515
2
03
0.2819
–8.78
469
1
D5
0.2567
–9.59
423
1
A7
0.2315
–10.49
514
2
02
0.2813
–8.80
468
1
D4
0.2561
–9.61
422
1
A6
0.2310
–10.51
513
2
01
0.2808
–8.81
467
1
D3
0.2556
–9.63
421
1
A5
0.2304
–10.53
512
2
00
0.2802
–8.83
466
1
D2
0.2550
–9.65
420
1
A4
0.2299
–10.55
511
1
FF
0.2797
–8.85
465
1
D1
0.2545
–9.67
419
1
A3
0.2293
–10.57
510
1
FE
0.2791
–8.87
464
1
D0
0.2540
–9.69
418
1
A2
0.2288
–10.59
509
1
FD
0.2786
–8.88
463
1
CF
0.2534
–9.71
417
1
A1
0.2282
–10.61
508
1
FC
0.2780
–8.90
462
1
CE
0.2529
–9.72
416
1
A0
0.2277
–10.63
507
1
FB
0.2775
–8.92
461
1
CD
0.2523
–9.74
415
1
9F
0.2271
–10.66
506
1
FA
0.2769
–8.93
460
1
CC
0.2518
–9.76
414
1
9E
0.2266
–10.68
505
1
F9
0.2764
–8.95
459
1
CB
0.2512
–9.78
413
1
9D
0.2260
–10.70
504
1
F8
0.2758
–8.97
458
1
CA
0.2507
–9.80
412
1
9C
0.2255
–10.72
503
1
F7
0.2753
–8.99
457
1
C9
0.2501
–9.82
411
1
9B
0.2249
–10.74
502
1
F6
0.2748
–9.00
456
1
C8
0.2496
–9.84
410
1
9A
0.2244
–10.76
501
1
F5
0.2742
–9.02
455
1
C7
0.2490
–9.86
409
1
99
0.2239
–10.78
500
1
F4
0.2737
–9.04
454
1
C6
0.2485
–9.88
408
1
98
0.2233
–10.80
499
1
F3
0.2731
–9.05
453
1
C5
0.2479
–9.89
407
1
97
0.2228
–10.82
498
1
F2
0.2726
–9.07
452
1
C4
0.2474
–9.91
406
1
96
0.2222
–10.85
497
1
F1
0.2720
–9.09
451
1
C3
0.2468
–9.93
405
1
95
0.2217
–10.87
496
1
F0
0.2715
–9.11
450
1
C2
0.2463
–9.95
404
1
94
0.2211
–10.89
495
1
EF
0.2709
–9.12
449
1
C1
0.2457
–9.97
403
1
93
0.2206
–10.91
494
1
EE
0.2704
–9.14
448
1
C0
0.2452
–9.99
402
1
92
0.2200
–10.93
493
1
ED
0.2698
–9.16
447
1
BF
0.2446
–10.01
401
1
91
0.2195
–10.95
492
1
EC
0.2693
–9.18
446
1
BE
0.2441
–10.03
400
1
90
0.2189
–10.98
491
1
EB
0.2687
–9.20
445
1
BD
0.2436
–10.05
399
1
8F
0.2184
–11.00
490
1
EA
0.2682
–9.21
444
1
BC
0.2430
–10.07
398
1
8E
0.2178
–11.02
489
1
E9
0.2676
–9.23
443
1
BB
0.2425
–10.09
397
1
8D
0.2173
–11.04
488
1
E8
0.2671
–9.25
442
1
BA
0.2419
–10.11
396
1
8C
0.2167
–11.06
487
1
E7
0.2665
–9.27
441
1
B9
0.2414
–10.13
395
1
8B
0.2162
–11.08
486
1
E6
0.2660
–9.28
440
1
B8
0.2408
–10.15
394
1
8A
0.2156
–11.11
485
1
E5
0.2654
–9.30
439
1
B7
0.2403
–10.17
393
1
89
0.2151
–11.13
484
1
E4
0.2649
–9.32
438
1
B6
0.2397
–10.19
392
1
88
0.2145
–11.15
MOTOROLA
MC145540
8-45
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
391
1
87
0.2140
–11.17
345
1
59
0.1888
–12.26
299
1
2B
0.1636
–13.50
390
1
86
0.2135
–11.20
344
1
58
0.1883
–12.29
298
1
2A
0.1631
–13.53
389
1
85
0.2129
–11.22
343
1
57
0.1877
–12.31
297
1
29
0.1626
–13.56
388
1
84
0.2124
–11.24
342
1
56
0.1872
–12.34
296
1
28
0.1620
–13.59
387
1
83
0.2118
–11.26
341
1
55
0.1866
–12.36
295
1
27
0.1615
–13.62
386
1
82
0.2113
–11.29
340
1
54
0.1861
–12.39
294
1
26
0.1609
–13.65
385
1
81
0.2107
–11.31
339
1
53
0.1855
–12.41
293
1
25
0.1604
–13.68
384
1
80
0.2102
–11.33
338
1
52
0.1850
–12.44
292
1
24
0.1598
–13.71
383
1
7F
0.2096
–11.35
337
1
51
0.1844
–12.46
291
1
23
0.1593
–13.74
382
1
7E
0.2091
–11.38
336
1
50
0.1839
–12.49
290
1
22
0.1587
–13.77
381
1
7D
0.2085
–11.40
335
1
4F
0.1834
–12.52
289
1
21
0.1582
–13.80
380
1
7C
0.2080
–11.42
334
1
4E
0.1828
–12.54
288
1
20
0.1576
–13.83
379
1
7B
0.2074
–11.44
333
1
4D
0.1823
–12.57
287
1
1F
0.1571
–13.86
378
1
7A
0.2069
–11.47
332
1
4C
0.1817
–12.59
286
1
1E
0.1565
–13.89
377
1
79
0.2063
–11.49
331
1
4B
0.1812
–12.62
285
1
1D
0.1560
–13.92
376
1
78
0.2058
–11.51
330
1
4A
0.1806
–12.65
284
1
1C
0.1554
–13.95
375
1
77
0.2052
–11.54
329
1
49
0.1801
–12.67
283
1
1B
0.1549
–13.98
374
1
76
0.2047
–11.56
328
1
48
0.1795
–12.70
282
1
1A
0.1543
–14.01
373
1
75
0.2041
–11.58
327
1
47
0.1790
–12.73
281
1
19
0.1538
–14.04
372
1
74
0.2036
–11.61
326
1
46
0.1784
–12.75
280
1
18
0.1532
–14.07
371
1
73
0.2031
–11.63
325
1
45
0.1779
–12.78
279
1
17
0.1527
–14.10
370
1
72
0.2025
–11.65
324
1
44
0.1773
–12.81
278
1
16
0.1522
–14.14
369
1
71
0.2020
–11.68
323
1
43
0.1768
–12.83
277
1
15
0.1516
–14.17
368
1
70
0.2014
–11.70
322
1
42
0.1762
–12.86
276
1
14
0.1511
–14.20
367
1
6F
0.2009
–11.72
321
1
41
0.1757
–12.89
275
1
13
0.1505
–14.23
366
1
6E
0.2003
–11.75
320
1
40
0.1751
–12.91
274
1
12
0.1500
–14.26
365
1
6D
0.1998
–11.77
319
1
3F
0.1746
–12.94
273
1
11
0.1494
–14.29
364
1
6C
0.1992
–11.79
318
1
3E
0.1740
–12.97
272
1
10
0.1489
–14.33
363
1
6B
0.1987
–11.82
317
1
3D
0.1735
–13.00
271
1
0F
0.1483
–14.36
362
1
6A
0.1981
–11.84
316
1
3C
0.1730
–13.02
270
1
0E
0.1478
–14.39
361
1
69
0.1976
–11.87
315
1
3B
0.1724
–13.05
269
1
0D
0.1472
–14.42
360
1
68
0.1970
–11.89
314
1
3A
0.1719
–13.08
268
1
0C
0.1467
–14.45
359
1
67
0.1965
–11.91
313
1
39
0.1713
–13.11
267
1
0B
0.1461
–14.49
358
1
66
0.1959
–11.94
312
1
38
0.1708
–13.13
266
1
0A
0.1456
–14.52
357
1
65
0.1954
–11.96
311
1
37
0.1702
–13.16
265
1
09
0.1450
–14.55
356
1
64
0.1948
–11.99
310
1
36
0.1697
–13.19
264
1
08
0.1445
–14.58
355
1
63
0.1943
–12.01
309
1
35
0.1691
–13.22
263
1
07
0.1439
–14.62
354
1
62
0.1937
–12.04
308
1
34
0.1686
–13.25
262
1
06
0.1434
–14.65
353
1
61
0.1932
–12.06
307
1
33
0.1680
–13.27
261
1
05
0.1428
–14.68
352
1
60
0.1927
–12.09
306
1
32
0.1675
–13.30
260
1
04
0.1423
–14.72
351
1
5F
0.1921
–12.11
305
1
31
0.1669
–13.33
259
1
03
0.1418
–14.75
350
1
5E
0.1916
–12.14
304
1
30
0.1664
–13.36
258
1
02
0.1412
–14.78
349
1
5D
0.1910
–12.16
303
1
2F
0.1658
–13.39
257
1
01
0.1407
–14.82
348
1
5C
0.1905
–12.19
302
1
2E
0.1653
–13.42
256
1
00
0.1401
–14.85
347
1
5B
0.1899
–12.21
301
1
2D
0.1647
–13.45
255
0
FF
0.1396
–14.89
346
1
5A
0.1894
–12.24
300
1
2C
0.1642
–13.47
254
0
FE
0.1390
–14.92
8-46
MC145540
MOTOROLA
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
253
0
FD
0.1385
–14.95
207
0
CF
0.1133
–16.70
161
0
A1
0.0881
–18.88
252
0
FC
0.1379
–14.99
206
0
CE
0.1127
–16.74
160
0
A0
0.0876
–18.93
251
0
FB
0.1374
–15.02
205
0
CD
0.1122
–16.78
159
0
9F
0.0870
–18.99
250
0
FA
0.1368
–15.06
204
0
CC
0.1117
–16.82
158
0
9E
0.0865
–19.04
249
0
F9
0.1363
–15.09
203
0
CB
0.1111
–16.87
157
0
9D
0.0859
–19.10
248
0
F8
0.1357
–15.13
202
0
CA
0.1106
–16.91
156
0
9C
0.0854
–19.15
247
0
F7
0.1352
–15.16
201
0
C9
0.1100
–16.95
155
0
9B
0.0848
–19.21
246
0
F6
0.1346
–15.20
200
0
C8
0.1095
–17.00
154
0
9A
0.0843
–19.27
245
0
F5
0.1341
–15.23
199
0
C7
0.1089
–17.04
153
0
99
0.0837
–19.32
244
0
F4
0.1335
–15.27
198
0
C6
0.1084
–17.08
152
0
98
0.0832
–19.38
243
0
F3
0.1330
–15.30
197
0
C5
0.1078
–17.13
151
0
97
0.0826
–19.44
242
0
F2
0.1325
–15.34
196
0
C4
0.1073
–17.17
150
0
96
0.0821
–19.49
241
0
F1
0.1319
–15.38
195
0
C3
0.1067
–17.22
149
0
95
0.0815
–19.55
240
0
F0
0.1314
–15.41
194
0
C2
0.1062
–17.26
148
0
94
0.0810
–19.61
239
0
EF
0.1308
–15.45
193
0
C1
0.1056
–17.31
147
0
93
0.0805
–19.67
238
0
EE
0.1303
–15.49
192
0
C0
0.1051
–17.35
146
0
92
0.0799
–19.73
237
0
ED
0.1297
–15.52
191
0
BF
0.1045
–17.40
145
0
91
0.0794
–19.79
236
0
EC
0.1292
–15.56
190
0
BE
0.1040
–17.44
144
0
90
0.0788
–19.85
235
0
EB
0.1286
–15.60
189
0
BD
0.1034
–17.49
143
0
8F
0.0783
–19.91
234
0
EA
0.1281
–15.63
188
0
BC
0.1029
–17.53
142
0
8E
0.0777
–19.97
233
0
E9
0.1275
–15.67
187
0
BB
0.1023
–17.58
141
0
8D
0.0772
–20.03
232
0
E8
0.1270
–15.71
186
0
BA
0.1018
–17.63
140
0
8C
0.0766
–20.09
231
0
E7
0.1264
–15.74
185
0
B9
0.1013
–17.67
139
0
8B
0.0761
–20.16
230
0
E6
0.1259
–15.78
184
0
B8
0.1007
–17.72
138
0
8A
0.0755
–20.22
229
0
E5
0.1253
–15.82
183
0
B7
0.1002
–17.77
137
0
89
0.0750
–20.28
228
0
E4
0.1248
–15.86
182
0
B6
0.0996
–17.82
136
0
88
0.0744
–20.35
227
0
E3
0.1242
–15.90
181
0
B5
0.0991
–17.86
135
0
87
0.0739
–20.41
226
0
E2
0.1237
–15.93
180
0
B4
0.0985
–17.91
134
0
86
0.0733
–20.47
225
0
E1
0.1231
–15.97
179
0
B3
0.0980
–17.96
133
0
85
0.0728
–20.54
224
0
E0
0.1226
–16.01
178
0
B2
0.0974
–18.01
132
0
84
0.0722
–20.61
223
0
DF
0.1221
–16.05
177
0
B1
0.0969
–18.06
131
0
83
0.0717
–20.67
222
0
DE
0.1215
–16.09
176
0
B0
0.0963
–18.11
130
0
82
0.0712
–20.74
221
0
DD
0.1210
–16.13
175
0
AF
0.0958
–18.16
129
0
81
0.0706
–20.80
220
0
DC
0.1204
–16.17
174
0
AE
0.0952
–18.21
128
0
80
0.0701
–20.87
219
0
DB
0.1199
–16.21
173
0
AD
0.0947
–18.26
127
0
7F
0.0695
–20.94
218
0
DA
0.1193
–16.25
172
0
AC
0.0941
–18.31
126
0
7E
0.0690
–21.01
217
0
D9
0.1188
–16.29
171
0
AB
0.0936
–18.36
125
0
7D
0.0684
–21.08
216
0
D8
0.1182
–16.33
170
0
AA
0.0930
–18.41
124
0
7C
0.0679
–21.15
215
0
D7
0.1177
–16.37
169
0
A9
0.0925
–18.46
123
0
7B
0.0673
–21.22
214
0
D6
0.1171
–16.41
168
0
A8
0.0919
–18.51
122
0
7A
0.0668
–21.29
213
0
D5
0.1166
–16.45
167
0
A7
0.0914
–18.56
121
0
79
0.0662
–21.36
212
0
D4
0.1160
–16.49
166
0
A6
0.0909
–18.61
120
0
78
0.0657
–21.43
211
0
D3
0.1155
–16.53
165
0
A5
0.0903
–18.67
119
0
77
0.0651
–21.51
210
0
D2
0.1149
–16.57
164
0
A4
0.0898
–18.72
118
0
76
0.0646
–21.58
209
0
D1
0.1144
–16.61
163
0
A3
0.0892
–18.77
117
0
75
0.0640
–21.65
208
0
D0
0.1138
–16.66
162
0
A2
0.0887
–18.83
116
0
74
0.0635
–21.73
MOTOROLA
MC145540
8-47
Table 8-3. Attenuation Coefficients for Tone Generator (continued)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
BCD
HEX
BR5
HEX
BR4
VOLTS
RMS
dBm
(600Ω)
115
0
73
0.0629
–21.80
76
0
4C
0.0416
–25.40
37
0
25
0.0203
–31.65
114
0
72
0.0624
–21.88
75
0
4B
0.0410
–25.52
36
0
24
0.0197
–31.89
113
0
71
0.0618
–21.96
74
0
4A
0.0405
–25.63
35
0
23
0.0192
–32.14
112
0
70
0.0613
–22.03
73
0
49
0.0400
–25.75
34
0
22
0.0186
–32.39
111
0
6F
0.0608
–22.11
72
0
48
0.0394
–25.87
33
0
21
0.0181
–32.65
110
0
6E
0.0602
–22.19
71
0
47
0.0389
–25.99
32
0
20
0.0175
–32.91
109
0
6D
0.0597
–22.27
70
0
46
0.0383
–26.11
31
0
1F
0.0170
–33.19
108
0
6C
0.0591
–22.35
69
0
45
0.0378
–26.24
30
0
1E
0.0164
–33.47
107
0
6B
0.0586
–22.43
68
0
44
0.0372
–26.37
29
0
1D
0.0159
–33.77
106
0
6A
0.0580
–22.51
67
0
43
0.0367
–26.50
28
0
1C
0.0153
–34.07
105
0
69
0.0575
–22.59
66
0
42
0.0361
–26.63
27
0
1B
0.0148
–34.39
104
0
68
0.0569
–22.68
65
0
41
0.0356
–26.76
26
0
1A
0.0142
–34.72
103
0
67
0.0564
–22.76
64
0
40
0.0350
–26.89
25
0
19
0.0137
–35.06
102
0
66
0.0558
–22.84
63
0
3F
0.0345
–27.03
24
0
18
0.0131
–35.41
101
0
65
0.0553
–22.93
62
0
3E
0.0339
–27.17
23
0
17
0.0126
–35.78
100
0
64
0.0547
–23.02
61
0
3D
0.0334
–27.31
22
0
16
0.0120
–36.17
99
0
63
0.0542
–23.10
60
0
3C
0.0328
–27.45
21
0
15
0.0115
–36.57
98
0
62
0.0536
–23.19
59
0
3B
0.0323
–27.60
20
0
14
0.0109
–37.00
97
0
61
0.0531
–23.28
58
0
3A
0.0317
–27.75
19
0
13
0.0104
–37.44
96
0
60
0.0525
–23.37
57
0
39
0.0312
–27.90
18
0
12
0.0099
–37.91
95
0
5F
0.0520
–23.46
56
0
38
0.0306
–28.05
17
0
11
0.0093
–38.41
94
0
5E
0.0514
–23.55
55
0
37
0.0301
–28.21
16
0
10
0.0088
–38.93
93
0
5D
0.0509
–23.65
54
0
36
0.0296
–28.37
15
0
0F
0.0082
–39.49
92
0
5C
0.0504
–23.74
53
0
35
0.0290
–28.53
14
0
0E
0.0077
–40.09
91
0
5B
0.0498
–23.84
52
0
34
0.0285
–28.70
13
0
0D
0.0071
–40.74
90
0
5A
0.0493
–23.93
51
0
33
0.0279
–28.87
12
0
0C
0.0066
–41.43
89
0
59
0.0487
–24.03
50
0
32
0.0274
–29.04
11
0
0B
0.0060
–42.19
88
0
58
0.0482
–24.13
49
0
31
0.0268
–29.21
10
0
0A
0.0055
–43.02
87
0
57
0.0476
–24.23
48
0
30
0.0263
–29.39
9
0
09
0.0049
–43.93
86
0
56
0.0471
–24.33
47
0
2F
0.0257
–29.57
8
0
08
0.0044
–44.95
85
0
55
0.0465
–24.43
46
0
2E
0.0252
–29.76
7
0
07
0.0038
–46.11
84
0
54
0.0460
–24.53
45
0
2D
0.0246
–29.95
6
0
06
0.0033
–47.45
83
0
53
0.0454
–24.64
44
0
2C
0.0241
–30.15
5
0
05
0.0027
–49.04
82
0
52
0.0449
–24.74
43
0
2B
0.0235
–30.35
4
0
04
0.0022
–50.98
81
0
51
0.0443
–24.85
42
0
2A
0.0230
–30.55
3
0
03
0.0016
–53.47
80
0
50
0.0438
–24.95
41
0
29
0.0224
–30.76
2
0
02
0.0011
–57.00
79
0
4F
0.0432
–25.06
40
0
28
0.0219
–30.98
1
0
01
0.0005
–63.02
78
0
4E
0.0427
–25.17
39
0
27
0.0213
–31.20
0
0
00
0.0000
–∞
77
0
4D
0.0421
–25.29
38
0
26
0.0208
–31.42
8-48
MC145540
MOTOROLA
NOTES
NOTES
NOTES
NOTES
10/1/93
MOTOROLA DISTRIBUTOR AND WORLDWIDE SALES OFFICES
AUTHORIZED NORTH AMERICAN DISTRIBUTORS
UNITED STATES
Sunnyvale
ALABAMA
Torrance
Huntsville
Arrow/Schweber Electronics . (205)837-6955
Future Electronics . . . . . . . . . (205)830-2322
Hall-Mark Electronics . . . . . . (205)837-8700
Hall-Mark Electronics . . . . . . (205)837-8700
Newark . . . . . . . . . . . . . . . . . . (205)837-9091
Time Electronics . . . . . . . . . . . (205)721-1133
Arizona
Chandler
Hamilton/Avnet Electronics . . (602)961-0836
Phoenix
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Newark Electronics . . . . . . . .
Wyle Laboratories . . . . . . . . .
Time Electronics . . . . . . . . . . (714)669-0100
West Hills
Newark . . . . . . . . . . . . . . . . . . (818)888-3718
Woodland Hills
Hamilton/Avnet Electronics . . (818)594-0404
Richardson Electronics . . . . (615)594-5600
COLORADO
Broomfield
CALIFORNIA
Time Electronics Corporate . . (818)707-2890
Belmont
Richardson Electronics . . . . (415)592-9225
Calabassas
Arrow/Schweber Electronics . (818)880-9686
Wyle Laboratories . . . . . . . . . (818)880-9000
Chatsworth
Future Electronics . . . . . . . . . (818)772-6240
Hall-Mark Electronics . . . . . . (818)773-4500
Time Electronics . . . . . . . . . . (818)998-7200
Costa Mesa
Hamilton/Avnet Electronics . . (714)754-6092
Culver City
Hamilton/Avnet Corporate . . (213)558-2000
Gardena
Hamilton/Avnet Electronics . . (213)516-6498
Irvine
(714)587-0404
(714)250-4141
(714)727-6000
(714)753-9953
(714)863-9953
Mountain View
Richardson Electronics . . . . (415)960-6900
Orange
Newark . . . . . . . . . . . . . . . . . . (714)634-8224
Rocklin
Hall-Mark Electronics . . . . . . (916)624-9781
Sacramento
Hamilton/Avnet Electronics . . (916)925-2216
Newark . . . . . . . . . . . . . . . . . . (916)721-1633
Wyle Laboratories . . . . . . . . . (916)638-5282
San Diego
(619)565-4800
(619)278-5020
(619)268-1201
(619)571-8730
(619)569-9877
(619)565-9171
San Francisco
Newark . . . . . . . . . . . . . . . . . . (415)571-5300
San Jose
Arrow/Schweber Electronics . (408)441-9700
Arrow/Schweber Electronics . (408)428-6400
Future Electronics . . . . . . . . . . (408)434-1122
Hall-Mark Electronics . . . . . . (408)432-4000
Santa Clara
Wyle Laboratories . . . . . . . . . (408)727-2500
Future Electronics . . . . . . . . . (404)441-7676
Newark . . . . . . . . . . . . . . . . . . (404)448-1300
Time Electronics . . . . . . . . . . (404)368-0969
ILLINOIS
Bensenville
Hamilton/Avnet Electronics . . (708)860-7700
Chicago
Future Electronics . . . . . . . . . (708)882-1255
Itasca
Newark . . . . . . . . . . . . . . . . . . (719)592-9494
Arrow/Schweber Electronics
(708)250-0500
LaFox
Denver
Newark . . . . . . . . . . . . . . . . . . (303)757-3351
Richardson Electronics . . . . (708)208-2401
Schaumburg
(303)799-0258
(303)790-1662
(303)740-1000
(303)721-8882
Thornton
Agoura Hills
Norcross
Newark Electronics Corp. . . (312)784-5100
Colorado Springs
Arrow/Schweber Electronics .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Time Electronics . . . . . . . . . .
Arrow/Schweber Electronics . (404)497-1300
Hall-Mark Electronics . . . . . . (404)623-4400
Hamilton/Avnet Electronics . . . (404)446-0611
Hoffman Estates
Englewood
Arrow/Schweber Electronics . (602)431-0030
Time Electronics . . . . . . . . . . (602)967-2000
Arrow/Schweber Electronics
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Newark . . . . . . . . . . . . . . . . . .
Wyle Laboratories . . . . . . . . .
Time Electronics . . . . . . . . . . (310)320-0880
Tustin
Future Electronics . . . . . . . . . (303)421-0123
(602)968-7140
(602)437-1200
(602)864-9905
(602)437-2088
Tempe
Arrow/Schweber Electronics
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Wyle Laboratories Corporate .
Wyle Laboratories . . . . . . . . .
Duluth
Hamilton/Avnet Electronics . . (408)743-3300
Time Electronics . . . . . . . . . . (408)734-9888
Wyle Laboratories . . . . . . . . . (303)457-9953
CONNECTICUT
Bethel
Future Electronics . . . . . . . . . (203)743-9594
Cheshire
Hall-Mark Electronics . . . . . . (203)271-2844
Danbury
Hamilton/Avnet Electronics . . (203)743-6077
Southbury
Time Electronics . . . . . . . . . . (203)271-3200
Wallingfort
Arrow/Schweber Electronics . (203)265-7741
Windsor
Newark . . . . . . . . . . . . . . . . . . (203)683-8860
FLORIDA
Altamonte Springs
Future Electronics . . . . . . . . . (407)767-8414
Casselberry
Hall-Mark Electronics . . . . . . (407)830-5855
Clearwater
Future Electronics . . . . . . . . . (813)530-1222
Hall-Mark Electronics . . . . . . (813)541-7440
Deerfield Beach
Arrow/Schweber Electronics . (305)429-8200
Ft. Lauderdale
Hamilton/Avnet Electronics . . (305)767-6377
Time Electronics . . . . . . . . . . (305)484-1778
Lake Mary
Arrow/Schweber Electronics . (407)333-9300
Orlando
Hamilton/Avnet Electronics . . (407)628-3888
Newark . . . . . . . . . . . . . . . . . . (407)896-8350
Time Electronics . . . . . . . . . . (407)841-6565
Plantation
Newark . . . . . . . . . . . . . . . . . . (305)424-4400
Pompano Beach
Hall-Mark Electronics . . . . . . (305)971-9280
Tampa/St. Petersburg
Hamilton/Avnet Electronics . . (813)573-3930
Newark . . . . . . . . . . . . . . . . . . (813)287-1578
Time Electronics . . . . . . . . . . (407)841-6565
Winter Park
Richardson Electronics . . . . (407)644-1453
GEORGIA
Atlanta
Time Electronics . . . . . . . . . . (404)351-3545
Newark . . . . . . . . . . . . . . . . . . (708)310-8980
Time Electronics . . . . . . . . . . (708)303-3000
Wooddale
Hall-Mark Electronics . . . . . . (708)860-3800
INDIANA
Indianapolis
Arrow/Schweber Electronics .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Newark . . . . . . . . . . . . . . . . . .
Time Electronics . . . . . . . . . .
(317)299-2071
(317)872-8875
(317)844-9333
(317)259-0085
(708)303-3000
Ft. Wayne
Newark . . . . . . . . . . . . . . . . . . (219)484-0766
IOWA
Cedar Rapids
Hamilton/Avnet Electronics . . (319)362-4757
Newark . . . . . . . . . . . . . . . . . . (319)393-3800
Time Electronics . . . . . . . . . . (314)391-6444
KANSAS
Lenexa
Arrow/Schweber Electronics . (913)541-9542
Hall-Mark Electronics . . . . . . (913)888-4747
Overland Park
Hamilton/Avnet Electronics . . (913)888-8900
Newark . . . . . . . . . . . . . . . . . . (913)677-0727
Time Electronics . . . . . . . . . . (314)391-6444
MARYLAND
Beltsville
Newark . . . . . . . . . . . . . . . . . . (301)604-1700
Columbia
Arrow/Schweber Electronics .
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Time Electronics . . . . . . . . . .
(301)596-7800
(301)290-0600
(301)988-9800
(301)995-3500
(301)964-3090
MASSACHUSETTS
Billerica
Hall-Mark Electronics . . . . . . (508)667-0902
Boston
Arrow/Schweber Electronics . (508)658-0900
Hamilton/Avnet Electronics . . (508)531-7430
Bolton
Future Corporate . . . . . . . . . . (508)779-3000
Burlington
Wyle Laboratories . . . . . . . . . (617)272-7300
Methuen
Newark . . . . . . . . . . . . . . . . . . (508)683-0913
Norwell
Richardson Electronics . . . . (617)871-5162
Peabody
Time Electronics . . . . . . . . . . (508)532-9900
10/1/93
AUTHORIZED DISTRIBUTORS – continued
UNITED STATES – continued
MICHIGAN
Detroit
Newark . . . . . . . . . . . . . . . . . . (313)967-0600
Grand Rapids
Hamilton/Avnet Electronics . . (616)243-8805
Livonia
Arrow/Schweber Electronics .
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Time Electronics . . . . . . . . . .
(313)462-2290
(313)261-5270
(313)462-1205
(313)347-4270
(614)794-3301
(612)941-5280
(612)944-2200
(612)881-2600
(612)943-2433
Minneapolis
Hamilton/Avnet Electronics . . (612)932-0600
Newark . . . . . . . . . . . . . . . . . . (612)331-6350
MISSOURI
Earth City
Hall-Mark Electronics . . . . . . (314)291-5350
Hamilton/Avnet Electronics . . (314)537-1600
St. Louis
Arrow/Schweber Electronics .
Future Electronics . . . . . . . . .
Newark . . . . . . . . . . . . . . . . . .
Time Electronics . . . . . . . . . .
(314)567-6888
(314)469-6805
(314)298-2505
(314)391-6444
NEW HAMPSHIRE
Manchester
Hamilton/Avnet Electronics . . (603)624-9400
Syracuse
Hamilton/Avnet Electronics . . (315)437-2641
Time Electronics . . . . . . . . . . (315)432-0355
NORTH CAROLINA
Charlotte
Greensboro
Newark . . . . . . . . . . . . . . . . . . (919)292-7240
Raleigh
Arrow/Schweber Electronics . (919)876-3132
Future Electronics . . . . . . . . . . (919)790-7111
Hall-Mark Electronics . . . . . . (919)872-0712
Hamilton/Avnet Electronics . . (919)878-0810
Time Electronics . . . . . . . . . . (919)693-5166
OHIO
Centerville
Arrow/Schweber Electronics . (513)435-5563
Cleveland
(216)349-4632
(216)349-5100
(216)391-9330
(614)794-3301
Columbus
Hamilton/Avnet Electronics . . (614)882-7004
Newark . . . . . . . . . . . . . . . . . . (614)431-0809
Time Electronics . . . . . . . . . . (614)794-3301
Dayton
NEW JERSEY
Cherry Hill
Hamilton/Avnet Electronics . . (609)424-0100
Fairfield
Future Electronics . . . . . . . . . (201)299-0400
Newark . . . . . . . . . . . . . . . . . . (201)882-0300
Marlton
Hamilton/Avnet Electronics . . (513)439-6700
Newark . . . . . . . . . . . . . . . . . . (513)294-8980
Time Electronics . . . . . . . . . . (614)794-3301
Mayfield Heights
Future Electronics . . . . . . . . . (216)449-6996
Solon
Arrow/Schweber Electronics . (216)248-3990
Arrow/Schweber Electronics . (609)596-8000
Future Electronics . . . . . . . . . (609)778-7600
Mount Laurel
Hall-Mark Electronics . . . . . . (609)235-1900
Pinebrook
Arrow/Schweber Electronics . (201)227-7880
Parsippany
Hall-Mark Electronics . . . . . . (201)515-3000
Hamilton/Avnet Electronics . . (201)575-3390
Wayne
Time Electronics . . . . . . . . . . (201)785-8250
NEW MEXICO
Albuquerque
Alliance Electronics . . . . . . . (505)292-3360
Hamilton/Avnet Electronics . . (505)345-0001
Newark . . . . . . . . . . . . . . . . . . (505)828-1878
NEW YORK
Commack
Newark . . . . . . . . . . . . . . . . . . (516)499-1216
Fairport
Hall-Mark Electronics . . . . . . (716)425-3300
Hauppauge
Arrow/Schweber Electronics .
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Richardson Electronics . . . . (516)872-4400
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Newark . . . . . . . . . . . . . . . . . .
Time Electronics . . . . . . . . . .
Toledo
Hamilton/Avnet Electronics . . (419)242-6610
Worthington
Hall-Mark Electronics . . . . . . (614)888-3313
OKLAHOMA
Tulsa
Hall-Mark Electronics . . . . . . . (918)254-6110
Hamilton/Avnet Electronics . . (918)252-7297
Newark . . . . . . . . . . . . . . . . . . (918)252-5070
OREGON
Beaverton
Arrow/Almac Electronics Corp. (503)629-8090
Future Electronics . . . . . . . . . (503)645-9454
Wyle Laboratories . . . . . . . . . (503)643-7900
Portland
Hamilton/Avnet Electronics . . (503)627-0201
Newark . . . . . . . . . . . . . . . . . . (503)297-1984
Time Electronics . . . . . . . . . . (503)626-2979
PENNSYLVANIA
Erie
Hamilton/Avnet Electronics . . (814)455-6767
(516)231-1000
(516)234-4000
(516)737-0600
(516)231-9800
Liverpool
Future Electronics . . . . . . . . . (315)451-2371
Pittsford
Newark . . . . . . . . . . . . . . . . . . (716)381-4244
Rochester
Arrow/Schweber Electronics . (716)427-0300
Newark . . . . . . . . . . . . . . . . . . (412)788-4790
Time Electronics . . . . . . . . . . (614)794-3301
TENNESSEE
Franklin
Richardson Electronics . . . . (615)791-4900
Rockville Centre
Future Electronics . . . . . . . . . (704)455-9030
Richardson Electronics . . . . (704)548-9042
MINNESOTA
Eden Prairie
Arrow/Schweber Electronics .
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Time Electronics . . . . . . . . . .
Future Electronics . . . . . . . . . . (716)272-1120
Hall-Mark Electronics . . . . . . (716)425-3300
Hamilton/Avnet Electronics . . (716)292-0730
Richardson Electronics . . . . . (716)264-1100
Time Electronics . . . . . . . . . . (315)432-0355
King of Prussia
Newark . . . . . . . . . . . . . . . . . . (215)265-0933
Montgomeryville
Richardson Electronics . . . . (215)628-0805
Philadelphia
Hall-Mark Electronics . . . . . . (215)355-7300
Time Electronics . . . . . . . . . . (609)596-6700
Pittsburgh
Arrow/Schweber Electronics . (412)963-6807
Hamilton/Avnet Electronics . . (412)281-4150
Knoxville
Newark . . . . . . . . . . . . . . . . . . (615)588-6493
TEXAS
Austin
Arrow/Schweber Electronics .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Newark . . . . . . . . . . . . . . . . . .
Time Electronics . . . . . . . . . .
Wyle Laboratories . . . . . . . . .
(512)835-4180
(512)258-8848
(512)832-4306
(512)338-0287
(512)346-7346
(512)345-8853
Carollton
Arrow/Schweber Electronics . (214)380-6464
Dallas
Future Electronics . . . . . . . . .
Hall-Mark Corporate . . . . . . .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Richardson Electronics . . . .
Time Electronics . . . . . . . . . .
Wyle Laboratories . . . . . . . . .
(214)437-2437
(214)343-5000
(214)553-4300
(214)308-8140
(214)239-3680
(214)644-4644
(214)235-9953
Ft. Worth
Allied Electronics . . . . . . . . . . (817)336-5401
Houston
Arrow/Schweber Electronics .
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Hamilton/Avnet Electronics . .
Newark . . . . . . . . . . . . . . . . . .
Time Electronics . . . . . . . . . .
Wyle Laboratories . . . . . . . . .
(713)530-4700
(713)556-8696
(713)781-6100
(713)240-7898
(713)270-4800
(713)530-0800
(713)879-9953
Richardson
Newark . . . . . . . . . . . . . . . . . . (214)235-1998
UTAH
Salt Lake City
Arrow/Schweber Electronics .
Future Electronics . . . . . . . . .
Hamilton/Avnet Electronics . .
Newark . . . . . . . . . . . . . . . . . .
(801)973-6913
(801)972-8489
(801)972-2800
(801)261-5660
West Valley City
Hall-Mark Electronics . . . . . . (801)972-1008
Time Electronics . . . . . . . . . . (801)973-8494
Wyle Laboratories . . . . . . . . . (801)974-9953
WASHINGTON
Bellevue
Almac Electronics Corp. . . .
Future Electronics . . . . . . . . .
Hall-Mark Electronics . . . . . .
Newark . . . . . . . . . . . . . . . . . .
Richardson Electronics . . . .
(206)643-9992
(206)881-8199
(206)547-0415
(206)641-9800
(206)646-7224
Redmond
Hamilton/Avnet Electronics . . (206)241-8555
Time Electronics . . . . . . . . . . (206)820-1525
Wyle Laboratories . . . . . . . . . . (206)881-1150
Spokane
Arrow/Almac Electronics Corp. (509)924-9500
WISCONSIN
Brookfield
Arrow/Schweber Electronics . (414)792-0150
Milwaukee
Time Electronics . . . . . . . . . . (708)303-3000
New Berlin
Hall-Mark Electronics . . . . . . (414)797-7844
Hamilton/Avnet Electronics . . (414)784-4510
Waukesha
Future Electronics . . . . . . . . . (414)786-1884
Wauwatosa
Newark . . . . . . . . . . . . . . . . . . (414)453-9100
10/1/93
AUTHORIZED DISTRIBUTORS – continued
CANADA
ALBERTA
Calgary
Electro Sonic Inc. . . . . . . . . (403)255-9550
Future Electronics . . . . . . . . . (403)250-5550
Hamilton/Avnet Electronics . . (800)663-5500
Edmonton
Future Electronics . . . . . . . . . (403)438-2858
Hamilton/Avnet Electronics . (800)663-5500
BRITISH COLUMBIA
Vancouver
Arrow Electronics . . . . . . . . . (604)421-2333
Electro Sonic Inc. . . . . . . . . . . (604)273-2911
Future Electronics . . . . . . . . . . (604)294-1166
Hamilton/Avnet Electronics . . (604)420-4101
Newark . . . . . . . . . . . . . . . . . . (800)463-9275
MANITOBA
Winnipeg
Electro Sonic Inc. . . . . . . . . (204)783-3105
Future Electronics . . . . . . . . . . (204)786-7711
Hamilton/Avnet Electronics . . (800)663-5500
ONTARIO
Ottawa
Arrow Electronics . . . . . . . . .
Electro Sonic Inc. . . . . . . . . .
Future Electronics . . . . . . . . .
Hamilton/Avnet Electronics . .
Electro Sonic Inc. . . . . . . . . .
Future Electronics . . . . . . . . .
Hamilton/Avnet Electronics . .
Newark . . . . . . . . . . . . . . . . . .
Richardson Electronics . . . .
(416)494-1666
(416)612-9200
(416)564-6060
(800)463-9275
(800)348-5530
QUEBEC
Montreal
(613)226-6903
(613)728-8333
(613)820-8313
(613)226-1700
Toronto
Arrow Electronics . . . . . . . . . . (514)421-7411
Future Electronics . . . . . . . . . (514)694-7710
Hamilton/Avnet Electronics . . (514)335-1000
Newark . . . . . . . . . . . . . . . . . . (800)463-9275
Richardson Electronics . . . . (800)348-5530
Quebec City
Arrow Electronics . . . . . . . . . (416)670-7769
Future Electronics . . . . . . . . . (418)877-6666
SALES OFFICES
UNITED STATES
ALABAMA, Huntsville . . . . . . . . (205)464-6800
ARIZONA, Tempe . . . . . . . . . . . . (602)897-5056
CALIFORNIA, Agoura Hills . . . . (818)706-1929
CALIFORNIA, Los Angeles . . . . (310)417-8848
CALIFORNIA, Irvine . . . . . . . . . . (714)753-7360
CALIFORNIA, Roseville . . . . . . . (916)922-7152
CALIFORNIA, San Diego . . . . . (619)541-2163
CALIFORNIA, Sunnyvale . . . . . (408)749-0510
COLORADO, Colorado Springs . (719)599-7497
COLORADO, Denver . . . . . . . . . (303)337-3434
CONNECTICUT, Wallingford . . . (203)949-4100
FLORIDA, Maitland . . . . . . . . . . . (407)628-2636
FLORIDA, Pompano Beach/
Ft. Lauderdale . . . . . . . . . . . . . . (305)486-9776
FLORIDA, Clearwater . . . . . . . . . (813)538-7750
GEORGIA, Atlanta . . . . . . . . . . . (404)729-7100
IDAHO, Boise . . . . . . . . . . . . . . . . (208)323-9413
ILLINOIS, Chicago/
Hoffman Estates . . . . . . . . . . . . (708)490-9500
INDIANA, Fort Wayne . . . . . . . . (219)436-5818
INDIANA, Indianapolis . . . . . . . . (317)571-0400
INDIANA, Kokomo . . . . . . . . . . . (317)457-6634
IOWA, Cedar Rapids . . . . . . . . . . (319)373-1328
KANSAS, Kansas City/Mission . (913)451-8555
MARYLAND, Columbia . . . . . . . (410)381-1570
MASSACHUSETTS, Marlborough (508)481-8100
MASSACHUSETTS, Woburn . . (617)932-9700
MICHIGAN, Detroit . . . . . . . . . . . (313)347-6800
MINNESOTA, Minnetonka . . . . . (612)932-1500
MISSOURI, St. Louis . . . . . . . . . (314)275-7380
NEW JERSEY, Fairfield . . . . . . . (201)808-2400
NEW YORK, Fairport . . . . . . . . . (716)425-4000
NEW YORK, Hauppauge . . . . . . (516)361-7000
NEW YORK, Poughkeepsie/
Fishkill . . . . . . . . . . . . . . . . . . . . . (914)896-0511
NORTH CAROLINA, Raleigh . . (919)870-4355
OHIO, Cleveland . . . . . . . . . . . . . (216)349-3100
OHIO, Columbus/Worthington . . (614)431-8492
OHIO, Dayton . . . . . . . . . . . . . . . . (513)495-6800
OKLAHOMA, Tulsa . . . . . . . . . . (800)544-9496
OREGON, Portland . . . . . . . . . . . (503)641-3681
PENNSYLVANIA, Colmar . . . . . (215)997-1020
Philadelphia/Horsham . . . . . . . (215)957-4100
TENNESSEE, Knoxville . . . . . . . (615)690-5593
TEXAS, Austin . . . . . . . . . . . . . . .
TEXAS, Houston . . . . . . . . . . . . .
TEXAS, Plano . . . . . . . . . . . . . . .
VIRGINIA, Richmond . . . . . . . . .
WASHINGTON, Bellevue . . . . . .
Seattle Access . . . . . . . . . . . . .
WISCONSIN, Milwaukee/
Brookfield . . . . . . . . . . . . . . . . . .
(512)873-2000
(800)343-2692
(214)516-5100
(804)285-2100
(206)454-4160
(206)622-9960
(414)792-0122
Field Applications Engineering Available
Through All Sales Offices
CANADA
BRITISH COLUMBIA, Vancouver . (604)293-7650
ONTARIO, Toronto . . . . . . . . . . . (416)497-8181
ONTARIO, Ottawa . . . . . . . . . . . . (613)226-3491
QUEBEC, Montreal . . . . . . . . . . . (514)731-6881
INTERNATIONAL
AUSTRALIA, Melbourne . . . . . . (61-3)887-0711
AUSTRALIA, Sydney . . . . . . . . . 61(2)906-3855
BRAZIL, Sao Paulo . . . . . . . . . . 55(11)815-4200
CHINA, Beijing . . . . . . . . . . . . . . . . . 86-505-2180
FINLAND, Helsinki . . . . . . . . . 358-0-351 61191
car phone . . . . . . . . . . . . . . . . . . 358(49)211501
FRANCE, Paris/Vanves . . . . . . 33(1)40 955 900
GERMANY, Langenhagen/
Hannover . . . . . . . . . . . . . . . . . . 49(511)789911
GERMANY, Munich . . . . . . . . . . . . 49 89 92103-0
GERMANY, Nurenberg . . . . . . . . 49 911 64-3044
GERMANY, Sindelfingen . . . . . . 49 7031 69 910
GERMANY, Wiesbaden . . . . . . . 49 611 761921
HONG KONG, Kwai Fong . . . . . . . 852-4808333
Tai Po . . . . . . . . . . . . . . . . . . . . . . . 852-6668333
INDIA, Bangalore . . . . . . . . . . . (91-812)627094
ISRAEL, Tel Aviv . . . . . . . . . . . . 972(3)753-8222
ITALY, Milan . . . . . . . . . . . . . . . . . . . . 39(2)82201
JAPAN, Aizu . . . . . . . . . . . . . . . . 81(241)272231
JAPAN, Atsugi . . . . . . . . . . . . . 81(0462)23-0761
JAPAN, Kumagaya . . . . . . . . . 81(0485)26-2600
JAPAN, Kyushu . . . . . . . . . . . . 81(092)771-4212
JAPAN, Mito . . . . . . . . . . . . . . . 81(0292)26-2340
JAPAN, Nagoya . . . . . . . . . . . 81(052)232-1621
JAPAN, Osaka . . . . . . . . . . . . . . 81(06)305-1801
JAPAN, Sendai . . . . . . . . . . . . . 81(22)268-4333
JAPAN, Tachikawa . . . . . . . . . 81(0425)23-6700
JAPAN, Tokyo . . . . . . . . . . . . . 81(03)3440-3311
JAPAN, Yokohama . . . . . . . . . 81(045)472-2751
KOREA, Pusan . . . . . . . . . . . . . 82(51)4635-035
KOREA, Seoul . . . . . . . . . . . . . . . . 82(2)554-5118
MALAYSIA, Penang . . . . . . . . . . . . 60(4)374514
MEXICO, Mexico City . . . . . . . . . 52(5)282-2864
MEXICO, Guadalajara . . . . . . . . 52(36)21-8977
Marketing . . . . . . . . . . . . . . . . . . 52(36)21-9023
Customer Service . . . . . . . . . . 52(36)669-9160
NETHERLANDS, Best . . . . . . . (31)4998 612 11
PUERTO RICO, San Juan . . . . . (809)793-2170
SINGAPORE . . . . . . . . . . . . . . . . . . (65)2945438
SPAIN, Madrid . . . . . . . . . . . . . . . 34(1)457-8204
or . . . . . . . . . . . . . . . . . . . . . . . . . 34(1)457-8254
SWEDEN, Solna . . . . . . . . . . . . . 46(8)734-8800
SWITZERLAND, Geneva . . . . . 41(22)799 11 11
SWITZERLAND, Zurich . . . . . . . 41(1)730-4074
TAIWAN, Taipei . . . . . . . . . . . . . 886(2)717-7089
THAILAND, Bangkok . . . . . . . . . (66-2)254-4910
UNITED KINGDOM, Aylesbury . . 44(296)395-252
FULL LINE REPRESENTATIVES
CALIFORNIA, Loomis
Galena Technology Group . . .
COLORADO, Grand Junction
Cheryl Lee Whitely . . . . . . . . . .
KANSAS, Wichita
Melinda Shores/Kelly Greiving .
NEVADA, Reno
Galena Technology Group . . .
NEW MEXICO, Albuquerque
S&S Technologies, Inc. . . . . . .
UTAH, Salt Lake City
Utah Component Sales, inc. . .
WASHINGTON, Spokane
Doug Kenley . . . . . . . . . . . . . . .
ARGENTINA, Buenos Aires
Argonics, S.A. . . . . . . . . . . . . . .
(916)652-0268
(303)243-9658
(316)838-0190
(702)746-0642
(505)298-7177
(801)561-5099
(509)924-2322
(541)343-1787
HYBRID/MCM COMPONENT
SUPPLIERS
Chip Supply . . . . . . . . . . . . . . . . .
Elmo Semiconductor . . . . . . . . . .
Minco Technology Labs Inc. . . . .
Semi Dice Inc. . . . . . . . . . . . . . . .
(407)298-7100
(818)768-7400
(512)834-2022
(310)594-4631
This page intentionally left blank.
This page intentionally left blank.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
Mfax: [email protected] – TOUCHTONE 1–602–244–6609
Motorola Fax Back System
– US & Canada ONLY 1–800–774–1848
– http://sps.motorola.com/mfax/
HOME PAGE: http://motorola.com/sps/
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,
4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
CUSTOMER FOCUS CENTER: 1–800–521–6274
MC145540/D