P L4981 功率因数拉品集成电路崎特点反应用 . -23- ·元"件卡片, L4981 功率_4\教1:.集成~.告输特点怠鑫周 d 武汉冶金科拉大学 肋骨朝略 武汉汽丰工业大学 刘芙攀 由于坠x>st 电路筒单、实现成本低,是应用最广 1. 简介 泛的功率因数校正电路。除了上述特点以外,与整流 功率因数校正电路 (PFC) 分为有源和无源两 桥串联的电惑能减少商频噪声,减少 RFI 输入滤被 种。无源校正电路通常由大容量的电感、电容和工 嚣的体积,降低成本。由于在电感去磁时输出由电源 作于工频电摞的整流器组成。有源校正电路往往工 供电,电感只存储一部分用于输出的能量,因此电感 作于离频开关状态,它们的体积小、重量轻,比元源 的体积也可以减小。图 2 是此电路的原理框图。 校正电路效率高。图 1 是功率因数校正电路的三种 2. 功率因数校正集成电路 L4981 的内 不同结梅形式。 不同的结构形式各有其特点,现分述如下: 部结构 若用集成电路实现图 2 的控制电路,可使控制电 A 类: ·功率因数离 2 路更简洁,可靠性更高。L4981 是意大利 .Vout~Vin; SG&…Thomson 公司生产的功率因数校正电路,其内 .滤披电路体积小 3 部结构框图见图 3 所示。它由内部基准稳压器、振荡 ·无短路保护 z 器、误差放大器、乘法器、峰值电流比校器、驱动和控制 .开关电压 =Vout; 逻辑电路等几部分组成。能完全实现固 2 中电路的功 ·门极驱动信号接地。 能。 B 类: 2.1 特点 ·功率因数低 3 .工作电压范围宽 21- 25V; .Vout~Vin; ·内含欠压镇定; .滤被电路体飘大 3 ·内含基准电压源 3 .有短路保护; ·具有闭环控制的误差放大器 3 .开关电压 =Vin; .具有过压保护电路; ·门极驱动信号浮地。 ·外国控制电路简单: C 类z ·使用和调节方便; .功率因戴高 3 ·性价比高。 .V,ωt 为任意值 3 • 2.2 引脚功能 .滤被电路体积大; L4981 采用 20 引脚双列直插式封装,图 3 给出 .有短路保护; 了 L4981 的内部结构,各引脚功能如下: .开关电压 =Vin+Vo 1 脚:模拟地; .门极驱动信号津地。 2 脚:峰值电流栓测端: 」 了 图 1 功率因数校正电路的不同形式 ,、 (dJ外 t& 是..件)1999 年第 7 期 -24- 1999 年 7 月 01 Vout 4 + 昂2 Boost 型功率因数校正电路的原理框图 3 脚 z 输出电压过压检测端: 14 脚:电压反馈输入端; 4 脚 z 输入侧交流电流栓测端 3 15 脚:欠压反馈输入端: 5 脚:电流放大器输出端 s "脚:同步信号鸭 6 脚 z 比例因子 E 17、 18 脚:分别为振荡器外接电阻、电容蝙 3 7 脚 z 输入侧交流电压 RMS 值检测端 3 19 脚:电源; 8 脚:乘法器输出端: 20 脚:功率管门极驱动倍号 9 脚 z 电流反馈输入端$ ' 3. 应用电路 10 脚:数字地 E 11 脚 z 参考电压 3 采用 L4981 的功率因数校正电路如图 4 所 12 脚:恒流源; 示。用 L4981 设计开关电源,所增加的成本不多,而 13 脚:电压误差放大器输出端: 性能价格比却大大提高了,为 SMPS 的发展提供了 i9T Vcc 151 • 10 12牛' .0 ss S-GNI) 圈3 ~ι咀,-~~ .;i#:'- 亨利气俨 、钮 ,自 户----比~~四…E帽酣吨组画吁厂有 a 式 "p..(那B U锦1 的内部结掏 ‘… hf昏 "?"""",~:C:-'~:-=:" i4,",,,,'. .:"'" 叫 咱『吁阿阶呐睛T甲仲咿『在牢…?士尊可?可±需品町~'~'"阳明7><1羁票'圃'击~冒咽'自罢'醺 件\iVLO L4981 功牢固 •.桂正集成电路的特点反应用 F -254也 L J U 广 飞飞 R15 180kO 11 L4981A 13 ' 3 R10 3OkO 固4 采用 U98lA 组成的功率因数校正电路 一种全新型的设计方案。 电话 :σ755--3224835, 3237214 捕者注: 传真 :075乡斗224473 咨询编号 :990709 对上述器件感兴趣者,请与混树中电奇彩公司联系。 ........….... ... …….趟,世..由险'险划..甜...…...司...姐..划....由曲t-.…..由峙...... ·元黯件快讯 具有 2.1GHz 带宽的新型示波器校准器 5820A 世界著名的电子计量标准仪器生产商美国福捧克公司 (FLUKE) 新近推出的福禄克示波器校准器 S820A 是在其经济型到∞A 示披器校准器基础上研制的,并将校准技术提高到一个全新水平,以满足带宽 2.1GHz的需要。S820A 示波器校准器能提供完整、灵活的示波器校准方案,以校准迅速、操作简单、价格合 , 理、实用方便等优点支持所有的模拟和数字示披器校准。 5820A 具有 2.1GHz 电平正弦被/ l50ps快活、 600MHz电平正弦波m∞ps 快沿;前面板电流环路可校准电流探头,直流电压测试功能校准参考信号:可调 脉冲宽度为 1- 筑K>ns,具有 250阳的分辨率,以满足复杂的触发信号测试;通道间的偏移时间从 -10ns- + 3Ons.以栓验触发的建立和保持时间;土 0.33ppm 的频率基准包含计数器功能,并提供更好的测试余量 ;S 通 道输出选择提供了快速、自动的校准条件:校准软件包含多种自动校准程序,可使校准质量得到有敢保证。 福禄克公筒北京办事处校准器/通用测试仪器部是该公司在国内的代理,先后推出 55∞IA/5520A/ 5700A/S7'1fJA 多功能校准器、到∞IAl5820A 示波器校准器等全新概念的新产品。福裸克公司研制示被器校 准嚣的历史已近 30 年,近五年该公司示披器校准器占世界销量的 70% 。福襟克公司的示披器校准器在中国 有非常广泛的用户群。(王承军供稿) 咨询编号 :990718 对上述器件感抖趣者,可与美国福禄克公司北京办事处枝准器/通用测试仪器部联系。 电话: (010) 65123435 - 33 传真: (010)65123437 网址 :http://wwW.f1 uke.com 扣 , ~.';吃白沙市睛银唱唱 .'< ~如4孟",''/、 J吨J、./1 0' r.-.....-,.、 &,A.I. ~3mm 圆芯上绕 .5T , C16 选用 军电容外,均可 250W 富固军因黯黯电用翻型 H 芙电攫 己频钮可用竖式 在普通彩电的开关电源 所示,电容 Cl 和 C2 、滤波扼流圈 TRl 组 东珠海市拱北 中,输入交流市电经整流后 直接加到滤波电容两端,只 成输入滤波电路。桥式整流电路、功率因 数校正 (PFC) 控制器 IC2(IA981A) 、升压 有限公司供本 有市电瞬时电压超过滤波电 电感 TR2 、功率开关管 T3 、二极管 D9 等 ~散件 40 元, 七筒等, 见《电 容的电压时,滤波也容才充 元件组成功率因数校正电路,使输入电庄 电,因此输入电流的波形 -:1)"11-: 常窄的脉 与输入电流基本上同相位。功率变压器 缝广告。联系 冲。这种脉冲电流包含有非常大的谐波分 TR3 、功率开关管 T4 和 PWM 控制器 ICl 756-8873203 量,只有基波电流与输入电压同相位,因 (TEA2261) 组成反激式降压变换器,把功 ·此普通彩电开关电源的功率因数很低。这 率因数校正电路输出的 4∞v 直流电压变 种开关电源的谐搜电流污染电网,干扰其 换为彩电所需的士 14V 、+ 135V 、+ 15V 、 他电子设备,已成为电网中公害。此外, + 7.5V 直流电压。脉冲变压器 TR4 ,集 在这种电源中,输入电流的有效值较大, 因此必须增大保险丝和传输线的规格。同 该电源的主要技术参数如下: 网中彩电的数量非常大,因此总功率非常 输入电压范围 176V - 270V; 大,在三相四线制供电系统中,三相输入 额定输出功率 250W; 电流均流过零线,由于各相输入电流的三 次、六次和九次谐波同相位,因此,中线中的谐波电流非常大,甚至可能超过相线 功率因数> O. 98( 满载时) ; 备用状态输入功率 3W; 直流预稳电压4OOV( 功率因数校正 8 装置,所以中线常常因过热而着火,造成 效率> 80%; 重大事故。为了解决这些问题,在各类开 工作频率 关电源中,必须增加功率因数校正电路。 / 电路输出电压) ; 新型彩电的开关电源实际电路如下图 15kHz 。 口西安王鸿麟 . 飞 4 ,、 f / 成电路 IC3(TEA5170) 等元件组成反馈控 制电路,稳定+ 135V 电压。 时,虽然每台彩电的功率并不大,但是电 /中的电流。由于中线上不允许加过流保护 • , J 飞j 、'"ι黯. A - " 鸣' 新型彩电的卅天也 o"~* 际电路如卡|剑 FS eRW EA- ν·、d G515500 6515400 DCJ STT -=r S06 2νU OU咱4 血。 ···noa 『 c-3ι TR2 u T'' , J' q4 oumw '』- nu., BMpnT co 问 3 2 … 1 ~→ +14\. eitFJZ -4 6 RRI1 1· 哨 ω +15 ν 讲一。 工 riu + 7. 5ν( ~ T4 BUH1515 。 -g . 同 IJ) h MM 贯U 瞅招黯蹲叫" n cs 1υ , 10M •• R34 -lK '" . __..... __n 、 、响-- ........ ...... .. 4. • 7υ L4981A L4981B ® POWER FACTOR CORRECTOR CONTROL BOOST PWM UP TO 0.99P.F. LIMIT LINE CURRENT DISTORTION TO < 5% UNIVERSAL INPUT MAINS FEED FORWARD LINE AND LOAD REGULATION AVERAGE CURRENT MODE PWM FOR MINIMUM NOISE SENSITIVITY HIGH CURRENT BIPOLAR AND DMOS TOTEM POLE OUTPUT LOW START-UP CURRENT (0.3mA TYP.) UNDER VOLTAGE LOCKOUT WITH HYSTERESIS AND PROGRAMMABLE TURN ON THRESHOLD OVERVOLTAGE, OVERCURRENT PROTECTION PRECISE 2% ON CHIP REFERENCE EXTERNALLY AVAILABLE SOFT START DESCRIPTION The L4981 I.C. provides the necessary features to achieve a very high power factor up to 0.99. Realized in BCD 60II technology this power factor corrector (PFC) pre-regulator contains all the con- MULTIPOWER BCD TECHNOLOGY DIP20 SO20 ORDERING NUMBERS: L4981X (DIP20) L4981XD (SO20) trol functions for designing a high efficiency-mode power supply with sinusoidal line current consumption. The L4981 can be easily used in systems with mains voltages between 85V to 265V without any line switch. This new PFC offers the possibility to work at fixed frequency (L4981A) or modulated frequency (L4981B) optimizing the size of the in- BLOCK DIAGRAM November 2001 1/16 L4981A - L4981B put filter; both the operating frequency modes working with an average current mode PWM controller, maintaining sinusoidal line current without slope compensation. Besides power MOSFET gate driver, precise voltage reference (externally available), error amplifier, undervoltage lockout, current sense and the soft start are included. To limit the number of the external components, the device integrates protections as overvoltage and overcurrent. The overcurrent level can be programmed using a simple resistor for L4981A. For a better precision and for L4981B an external divider must be used. ABSOLUTE MAXIMUM RATINGS Symbol Pin VCC 19 20 IGDRV Parameter Supply Voltage (ICC ≤50mA) (*) Gate driv. output peak current (t = 1µs) . VGDRV SINK SOURCE Unit V Α 1.5 A Gate driv. output voltage t = 0.1µs -1 V Voltages at pins 3, 14, 7, 6, 12, 15 -0.3 to 9 V VVA-OUT 13 Error Amplifier Voltage IAC 4 AC Input Current VCA-OUT 5 Voltages at pin 8, 9 Current Amplifier Volt. (Isource = -20mA; Isink = 20mA) VROSC ICOSC IFREQ-MOD 17 11, 18 18 16 VSYNC VIPK 16 2 -0.3 to 8.5 V 5 mA -0.5 to 7 -0.3 to 8.5 V V -0.3 to 3 -0.3 to 7 15 5 V V mA mA -0.3 to 7 -0.3 to 5.5 -2 V V V W Voltage at pin 17 Voltage at pin 11, 18 Input Sink Current Frequency Modulation Sink Current (L4981B) Sync. Voltage (L4981A) Voltage at pin 2 Voltage at Pin 2 t = 1µs Ptot Power Dissipation at Tamb = 70°C (DIP20) 1 (SO20) 0.6 W Top Power Dissipation at Tamb = 70°C Operating Ambient Temperature StorageTemperature -40 to 125 -55 to 150 °C °C Tstg (*) Maximum package power dissipation limits must be observed. PIN CONNECTIONS (Top views) L4981A 2/16 Value selflimit 2 L4981B L4981A - L4981B THERMAL DATA Symbol Parameter Rth j-amb Thermal Resistance Junction-ambient DIP 20 SO 20 Unit 80 120 °C/W PIN FUNCTIONS N. Name 1 P-GND 2 IPK Description Power ground. L4981A peak current limiting. A current limitation is obtained using a single resistor connected between Pin 2 and the sense resistor. To have a better precision another resistor between Pin 2 and a reference voltage (Pin 11) must be added. L4981B peak current limiting. A precise current limitation is obtained using two external resistor only. These resistors must be connected between the sense resistor, Pin 2 and the reference voltage. 3 OVP Overvoltage protection. At this input are compared an internal precise 5.1V (typ) voltage reference with a sample of the boost output voltage obtained via a resistive voltage divider in order to limit the maximum output peak voltage. 4 IAC Input for the AC current. An input current proportional to the rectified mains voltage generates, via a multiplier, the current reference for the current amplifier. 5 CA-OUT 6 LFF Load feedforward; this voltage input pin allows to modify the multiplier output current proportionally to the load, in order to give a faster response versus load transient. The best control is obtained working between 1.5V and 5.3V. If this function is not used, connect this pin to the voltage reference (pin = 11). 7 VRMS Input for proportional RMS line voltage. the VRMS input compesates the line voltage changes. Connecting a low pass filter between the rectified line and the pin 7, a DC voltage proportional to the input line RMS voltage is obtained. The best control is reached using input voltage between 1.5V and 5.5V. If this function is not used connect this pin to the voltage reference (pin = 11). 8 MULT-OUT Multiplier output. This pin common to the multiplier output and the current amplifier N.I. input is an high impedence input like ISENSE. The MULT-OUT pin must be taken not below -0.5V. Current amplifier output. An external RC network determinates the loop gain. 9 ISENSE Current amplifier inverting input. Care must be taken to avoid this pin goes down -0.5V. 10 S-GND Signal ground. 11 VREF 12 SS 13 VA-OUT Error amplifier output, an RC network fixes the voltage loop gain characteristics. 14 VFEED Voltage error amplifier inverting input. This feedback input is connected via a voltage divider to the boost output voltage. 15 P-UVLO Programmable under voltage lock out threshold input. A voltage divider between supply voltage and GND can be connected in order to program the turn on threshold. 16 SYNC (L4981A) This synchronization input/output pin is CMOS logic compatible. Operating as SYNC in, a rectangular wave must be applied at this pin. Opearting as SYNC out, a rectangular clock pulse train is available to synchronize other devices. FREQ-MOD (L4981B) Output reference voltage (typ = 5.1V).Voltage refence at ± 2% of accuracy externally available, it’s internally current limited and can deliver an output current up to 10mA. A capacitor connected to ground defines the soft start time. An internal current generator delivering 100µA (typ) charges the external capacitor defining the soft start time constant. An internal MOS discharge, the external soft start capacitor both in overvoltage and UVLO conditions. Frequency modulation current input. An external resistor must be connected between pin 16 and the rectified line voltage in order to modulate the oscillator frequency. Connecting pin 16 to ground a fixed frequency imposed by ROSC and COSC is obtained. 17 ROSC An external resistor connected to ground fixes the constant charging current of C OSC. 18 COSC An external capacitor connected to GND fixes the switching frequency. 19 VCC 20 GDRV Supply input voltage. Output gate driver. Bipolar and DMOS transistors totem pole output stage can deliver peak current in excess 1A useful to drive MOSFET or IGBT power stages. 3/16 L4981A - L4981B ELECTRICAL CHARACTERISTICS (Unless otherwise specified VCC = 18V, COSC = 1nF, ROSC = 24KΩ, CSS = 1µF, VCA-OUT = 3.5V, VISENSE = 0V, VLFF = VREF, IAC = 100µA, VRMS = 1V, VFEED = GND, VIPK = 1V, VOVP = 1V, TJ = 25°C Symbol Prameter Test Condition Min. Typ. Max. Unit -500 -50 ±8 500 mV nA 70 5.5 100 6.5 7.5 dB V 0.4 1 V ERROR AMPLIFIER SECTION VIO IIB Input Offset Voltage Input Bias Current V13H Open Loop Gain Output High voltage V13L Output Low Voltage Output Source Current -I13 Output Sink Current I13 REFERENCE SECTION Vref –25°C < TJ < 85°C VFEED = 0V VFEED = 4.7V IVA-OUT = -0.5mA VFEED = 5.5V IVA-OUT = 0.5mA VFEED = 4.7V; VVA-OUT = 3.5V VFEED = 5.5V; VVA-OUT = 3.5V 2 4 10 20 mA mA Reference Output Voltage –25°C < TJ < 85°C 4.97 5.1 5.23 V 5.01 5.1 5.19 V ∆Vref Load Regulation Tj = 25°C Iref = 0 1mA ≤ Iref ≤ 10mA –25°C < TJ < 85°C 3 15 mV ∆Vref Line Regulation 12V ≤ VCC ≤ 19V –25°C < TJ < 85°C 3 10 mV Iref sc Short Circuit Current Vref = 0V 20 30 50 mA Tj = 25°C 12V ≤ VCC ≤ 19V –25°C < TJ < 85°C 85 100 115 KHz 80 100 120 KHz 4.7 0.45 5 0.55 11.5 5.3 0.65 V mA mA 0.9 1.15 1.4 V OSCILLATOR SECTION fosc Vsvp I18C I18D Initial Accuracy Frequency Stability Ramp Valley to Peak Charge Current Discharge Current VCOSC = 3.5V VCOSC = 3.5V Ramp Valley Voltage V18 SYNC SECTION (Only for L4981A) tW Output Pulse Width 50% Amplitude 0.3 0.8 µs I16 Sink Current with Low Output Voltage VSYNC = 0.4V VCOSC = 0V 0.4 0.8 mA -I16 Source Current with High Output Voltage VSYNC = 4.5V VCOSC = 6.7V 1 6 mA V16L V16H Low Input Voltage High Input Voltage 0.9 Pulse for Synchronization td FREQUENCY MODULATION FUNCTION (Only for L4981B) f18max f18min Maximum Oscillation Frequency Minimum Oscillator Frequency VFREQ-MOD = 0V (Pin 16) Ifreq = 0 IFREQ-MOD = 360µA (Pin 16) VVRMS = 4V (Pin 7) 3.5 V V 800 ns 85 IFREQ-MOD = 180µA (Pin 16) VVRMS = 2V (Pin 7) 100 115 KHz 74 KHz 76 KHz SOFT START SECTION 4/16 ISS Soft Start Source Current VSS = 3V V12sat Output Saturation Voltage V3 = 6V, ISS = 2mA 60 100 140 µA 0.1 0.25 V L4981A - L4981B ELECTRICAL CHARACTERISTICS (continued) Symbol Parameter Test Condition Min. Typ. Max. Unit 19.5 V 5.1 Vref +20mV V SUPPLY VOLTAGE Operating Supply Voltage VCC OVER VOLTAGE PROTECTION COMPARATOR Vthr V3Hys I3 td Rising Threshold Voltage Vref -20mV Hysteresis 180 Input Bias Current Propagation delay to output VOVP = Vthr +100mV 250 320 mV 0.05 1 µA 1 2 µs 0.4 ±30 0.9 mV µs 85 105 µA 5 µA ±2 mV 500 nA dB OVER CURRENT PROTECTION COMPARATOR Vth td Threshold Voltage Propagation delay to Output Current Source Generator Iipk IL Leakage Current CURRENT AMPLIFIER SECTION VOCP = Vthr -0.2V VIPK = -0.1V only for L4981A VIPK = -0.1V only for L4981B Voffset Input Offset Voltage VMULT OUT = VSENSE = 3.5V I9bias Input Bias Current Open Loop Gain VSENSE = 0V 1.1V ≤ VCA OUT ≤ 6V SVR Supply Voltage Rejection V5H 65 -500 70 50 100 12V ≤ VCC ≤ 19V VMULT OUT = 3.5V VSENSE = 3.5V 68 90 Output High Voltage VMULT OUT = 200mV ICA OUT = -0.5mA, VIAC = 0V 6.2 V5L Output Low Voltage VMULT OUT = -200mV ICA OUT = 0.5mA, VIAC = 0V -I5 Output Source Current Output Sink Current VMULT OUT = 200mV, VIAC = 0V, VCA-OUT = 3.5V I5 dB V 0.9 2 2 10 10 11.5 12.5 V mA mA OUTPUT SECTION V20L V20H Output Voltage Low ISINK = 250mA Output Voltage High ISOURCE = 250mA VCC = 15V 0.5 0.8 V V tr Output Voltage Rise Time COUT = 1nF 50 150 ns tf Output Voltage Fall Time Voltage Clamp COUT = 1nF ISOURCE = 0mA 30 16 100 19 ns V 0.3 8 0.5 12 mA mA VGDRV 13 TOTAL STANDBY CURRENT SECTION I19start I19on I19 Supply Current before start up Supply Current after turn on VCC = 14V VIAC = 0V, VCOSC = 0, Pin17 = Open Operating Supply Current Pin20 = 1nF Zener Voltage VCC UNDER VOLTAGE LOCKOUT SECTION (*) 12 16 mA 20 25 30 V Vth ON Turn on Threshold 14.5 15.5 16.5 V Vth OFF Turn off Threshold Programmable Turn-on Threshold 9 10.6 10 12 11 13.4 V V Pin 15 to VCC = 220K Pin15 to GND = 33K LOAD FEED FORWARD ILFF VI Bias Current V6 = 1.6V 70 140 µA V6 = 5.3V 200 300 5.3 µA V Input Voltage Range 1.6 (*) Maximum package power dissipation limits must be observed. 5/16 L4981A - L4981B ELECTRICAL CHARACTERISTICS (continued) Symbol Prameter Test Condition Min. Typ. Max. Unit VVA-OUT = 4V, VRMS = 2V, VMULTOUT = 0, VLFF = 5.1V IAC = 50µA, COSC = 0V 20 35 52 µA VVA-OUT = 4V, VRMS = 2V, VMULTOUT = 0, VLFF = 5.1V IAC = 200µA, COSC = 0V VVA-OUT = 2V, VRMS = 2V, VMULTOUT = 0, VLFF = 5.1V IAC = 100µA, COSC = 0V 100 135 170 µA 10 20 30 µA VVA-OUT = 2V, VRMS = 4V, VMULTOUT = 0, VLFF = 5.1V IAC = 100µA, COSC = 0V 2 5.5 11 µA VVA-OUT = 4V, VRMS = 4V, VMULTOUT = 0, VLFF = 5.1V IAC = 100µA, COSC = 0V VVA-OUT = 4V, VRMS = 2V, VMULTOUT = 0, VLFF = 2.5V COSC = 0V, IAC = 200µA VVA-OUT = 4V, VRMS = 4V VMULTOUT = 0, VLFF = 5.1V IAC = 200µA, COSC = 0V VVA-OUT = 2V, VRMS = 4V, VMULTOUT = 0, VLFF = 5.1V IAC = 0, COSC = 0V 10 22 34 µA 20 37 54 µA 20 39 54 µA -2 0 2 µA MULTIPLIER SECTION Multipler Output Current K Multiplier Gain IMULT−OUT = K ⋅ IAC if VLFF = VREF; 0.37 (VVA−OUT − 1.28) ⋅ (0.8 ⋅ VLFF − 1.28) IMULT−OUT = IAC (VVRMS)2 (VVA−OUT − 1.28) 2 (VVRMS) ⋅ K1 where: K1 = 1V Figure 1: MULTI-OUT vs. IAC (VRMS = 1.7V; VLFFD = 5.1V) 6/16 Figure 2: MULTI-OUT vs. IAC (VRMS = 2.2V; VLFFD = 5.1V) L4981A - L4981B Figure 3: MULTI-OUT vs. IAC (VRMS = 4.4V; VLFFD = 5.1V) Figure 4: MULTI-OUT vs. IAC (VRMS = 5.3V; VLFFD = 5.1V) Figure 5: MULTI-OUT vs. IAC (VRMS = 1.7V; VLFFD = 2.5V) Figure 6: MULTI-OUT vs. IAC (VRMS = 2.2V; VLFFD = 2.5V) Figure 7: MULTI-OUT vs. IAC (VRMS = 4.4V; VLFFD = 2.5V) Figure 8: MULTI-OUT vs. IAC (VRMS = 5.3V; VLFFD = 2.5V) 7/16 L4981A - L4981B Figure 9A: L4981A Power Factor Corrector (200W) L 0.9mH R17 806K 1% R6 620K 5% R17 806K 1% R7 360K 5% R6 620K 5% DZ 22V 0.5W + D1 5TTA5060 R15 10K R14 0.5W 56 Q2 0.5W STK2N50 D3 1N4150 R19 1.1M 5% D3 C7 2N2222 220nF 100V R8 33K 5% C8 220nF 100V R19 1.1M 5% C10 15nF 100V R1 412K 1% R9 910K 1% R1 412K 1% R9 910K 1% D4 1N4150 C11 100µF 25V R23 R20 Vo R22 10K 5% FUSE Vi 88VAC to 254VAC NTC 15 7 4 BRIDGE 4 x BY214 19 14 R12 220K 5% C1 220nF 400V C9 330nF L4981A 3 R11 D2 1N4150 STH/STW15NB50 2 560 1% 8 R21 5.1K 1% 5 9 R3 2.7K 5% RS 12 17 11 6 1 R13 20 C12 270pF 630V Q1 15 5% C3 R5 27K 5% 18 C2 100µF 450V 13 D5 BYT 11600 1nF R4 2.7K 5% R2 11K 1% R10 21K 1% C5 1µF 16V C6 1µF 16V R16 24K 1% C4 1nF R18 1.8K 4W D93IN029C 0.07 2W fSW = 80kHz; PO = 200W; VOUT = 400V; Irms max = 2.53A; VOVP = 442V; IPK max = 6.2A Figure 9B: L4981B Power Factor Corrector (200W) L 0.9mH R22 1.1M R17 806K 1% R6 620K 5% R17 806K 1% R7 360K 5% R6 620K 5% C8 220nF 100V R19 1.1M 5% R19 1.1M 5% D3 C7 2N2222 220nF 100V R8 33K 5% R15 10K R14 0.5W 56 Q2 0.5W STK2N50 D3 1N4150 DZ 22V 0.5W C11 100µF 25V + D1 5TTA5060 C10 15nF 100V R1 412K 1% R9 910K 1% R1 412K 1% R9 910K 1% D4 1N4150 R23 R20 Vo R22 10K 5% FUSE Vi 88VAC to 254VAC NTC C1 220nF 400V 15 7 4 BRIDGE 4 x BY214 19 14 R12 220K 5% 16 L4981B D2 1N4150 2 560 1% 8 5 9 R3 2.7K 5% RS 17 11 6 12 1 20 R13 STH/STW15NB50 Q1 15 5% C12 270pF 630V C3 R5 27K 5% 18 C2 100µF 450V 3 R11 R21 5.1K 1% C9 330nF 13 D5 BYT 11600 1nF R4 2.7K 5% 0.07 2W C4 1.1nF R16 24K 1% C6 1µF 16V R18 1.8K 4W R2 11K 1% C5 1µF 16V D95IN220A fSW = 80 to 92kHz; PO = 200W; VOUT = 400V; Irms max = 2.53A; VOVP = 442V; IPK max = 6.2A 8/16 R10 21K 1% L4981A - L4981B Figure 10: Reference Voltage vs. Source Reference Current Figure 11: Reference Voltage vs. Supply Voltage Figure 12: Reference Voltage vs. Junction Temperature Figure 13: Switching Frequency vs. Junction Temperature Figure 14: Gate Driver Rise and Fall Time Figure 15: Operating Supply Current vs. Supply Voltage 9/16 L4981A - L4981B Figure 16: Programmable Under Voltage Lockout Thresholds Figure 17: Modulation Frequency Normalized in an Half Cycle of the Mains Voltage 1 fsw Vl 1 0.8 0.8 0.4 0.4 0.2 0.2 R22 = R23 ⋅ 6.8 0 45 0 R23 (Kohm) 90 0 135 180 Electrical degrees Table 1: Programmable Under Voltage Lockout Thresholds. VCC ON VCC OFF R22 R23 11V 10V 82kΩ 12kΩ 12V 10.1V 220kΩ 33kΩ 13V 10.5V 430kΩ 62kΩ 14V 10.8V 909kΩ 133kΩ 14.5V 10.9V 1.36MΩ 200kΩ 15V 11V 2.7MΩ 390kΩ Figure 18: Oscillator Diagram 10/16 L4981A - L4981B Figure 19: Demo Board Circuit (VO = 400V; PO = 360W). R14 68 B2= D1+D2 +D8+D9 R4 1.2M C2 330n C3 330n F1 T15A250V R5 220k R12 56k BRIDGE B1 8A C10 150uF L1=0.5mE42*21*15 gap=1.9 58/6 turns 20*.2mm R11 56k R6 500k VCC Dz1 18V R7 500k L2 3u C8 100n R2 33k NTC 2.5 V+ BUS=400V D5STTA106 D6 DZW06-48 C11 220n VCC D4-STTH8R06 to220 (/40CW) R18 6.8 2W C14 100n R19 750k R20 750k D7-STTA406 R22 750k R23 750k R16 220k 88 to 264 Vac 7 4 1 13 19 14 C1 330nF 400V Cf .22uF 600V 3 15 L4981A/ B** 6 2 8 5 9 18 C15 220uF 450V 20 16 RAux1 ** D3 10 17 12 11 Cs 330pF R17 15 Q1+Q2# RAux2 R21 19.6k R10 5k Q4 4007 TP1 R1 460 R3 2.2k R8 17k C6 3.3n C9 1n R15 24k C12 1u C13 1u R13 2.2k R9 (RS) 50m // 3*0.15) R24 16.9k R25 1k 2W # // Q1&Q2 TO220*2 STM12NM50 / 7C/W Figure 20: Component Layout (Dimensions 88 x 150mm). 11/16 L4981A - L4981B Figure 20: P.C.B. Component Side (Dimensions 88 x 150mm). Figure 20: P.C.B. Solder Side (Dimensions 88 x 150mm). 12/16 L4981A - L4981B DEMO BOARD EVALUATION RESULTS Table 2. Nominal Power range at 110Vac. Vmains Pout Vout Pin THD PF 88Vac 366W 404Vdc 397W 5% 0.998 Eff. .92 110Vac 370W 406Vdc 395W 2.2% 0.999 .94 132Vac 372W 407Vdc 394W 3% 0.999 .945 Pin THD PF Eff. Table 3. Nominal Power range at 220Vac. Vmains Pout Vout 176Vac 378W 410Vdc 394W 4.7% 0.997 .959 220Vac 381W 412Vdc 395W 6.4% 0.993 .964 264Vac 381W 412Vdc 395W 8.1% 0.987 .964 REFERENCE: AN628 - DESIGNING A HIGH POWER FACTOR SWITCHING PREREGULATOR WITH THE L4981 CONTINUOUS MODE 13/16 L4981A - L4981B mm inch OUTLINE AND MECHANICAL DATA DIM. MIN. TYP. MAX. MIN. TYP. MAX. A 2.35 2.65 0.093 0.104 A1 0.1 0.3 0.004 0.012 B 0.33 0.51 0.013 0.020 C 0.23 0.32 0.009 0.013 D 12.6 13 0.496 0.512 E 7.4 7.6 0.291 0.299 e 1.27 0.050 H 10 10.65 0.394 0.419 h 0.25 0.75 0.010 0.030 L 0.4 1.27 0.016 0.050 SO20 K 0˚ (min.)8˚ (max.) L h x 45˚ A B e A1 K H D 20 11 E 1 0 1 SO20MEC 14/16 C L4981A - L4981B mm DIM. MIN. a1 0.254 B 1.39 TYP. inch MAX. MIN. TYP. MAX. 0.010 1.65 0.055 0.065 b 0.45 0.018 b1 0.25 0.010 D 25.4 1.000 E 8.5 0.335 e 2.54 0.100 e3 22.86 0.900 F 7.1 0.280 I 3.93 0.155 L OUTLINE AND MECHANICAL DATA 3.3 0.130 DIP20 Z 1.34 0.053 15/16 L4981A - L4981B Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com 16/16