350 mA, Low VIN, Low Quiescent Current, CMOS Linear Regulator ADP130 TYPICAL APPLICATION CIRCUITS 350 mA maximum output current Input voltage supply range VBIAS = 2.3 V to 5.5 V VIN = 1.2 V to 3.6 V 2.3 V < VIN < 3.6 V, VIN can be tied to VBIAS Very low dropout voltage: 17 mV @ 100 mA load Low quiescent current: 25 μA @ no load Low shutdown current: <1 μA ±1% accuracy @ 25°C Excellent PSRR performance: 70 dB @ 10 kHz Excellent load/line transient response Optimized for small 1 μF ceramic capacitors Current limit and thermal overload protection Logic controlled enable 5-lead TSOT package VIN = 1.8V 1µF 1 + VIN VOUT 5 ADP130 2 GND 3 EN VBIAS VOUT = 1.2V 1µF 4 + VBIAS = 3.6V 1µF + 06963-001 FEATURES Figure 1. 1µF APPLICATIONS Mobile phones Digital camera and audio devices Portable and battery-powered equipment Post dc-to-dc regulation 1 + VIN VOUT 5 ADP130 2 GND 3 EN VBIAS VOUT = 1.8V 1µF 4 + VBIAS = 5V + 1µF 06963-002 VIN = 2.8V Figure 2. GENERAL DESCRIPTION The ADP130 is a low quiescent current, low dropout linear regulator. It is designed to operate in dual-supply mode with an input voltage as low as 1.2 V to increase efficiency and provide up to 350 mA of output current. The low 17 mV dropout voltage at a 100 mA load improves efficiency and allows operation over a wider input voltage range. A dual-supply power solution typically improves conversion efficiency over a single-supply solution because the higher VBIAS supply powers the part, and the lower VIN supply delivers current to the load. The power dissipated in the device is thereby reduced. The ADP130 is available in the following 31 fixed output voltage options: • • 0.80 V to 2.00 V in 50 mV steps 1.875 V, 2.25 V, 2.50 V, 2.775 V, 2.80 V, and 3.0 V The ADP130 has a typical internal soft start time of 200 μs. Shortcircuit protection and thermal overload protection circuits prevent damage in adverse conditions. The ADP130 is available in a tiny 5-lead TSOT package for the smallest footprint solution to meet a variety of portable power applications. The ADP130 is optimized for stable operation with small 1 μF ceramic output capacitors. The ADP130 delivers good transient performance with minimal board area. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved. ADP130 TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................7 Applications....................................................................................... 1 Theory of Operation ...................................................................... 12 Typical Application Circuits............................................................ 1 Applications Information .............................................................. 13 General Description ......................................................................... 1 Capacitor Selection .................................................................... 13 Revision History ............................................................................... 2 Undervoltage Lockout ............................................................... 14 Specifications..................................................................................... 3 Enable Feature ............................................................................ 14 Input and Output Capacitor, Recommended Specifications.. 4 Current Limit and Thermal Overload Protection ................. 15 Absolute Maximum Ratings............................................................ 5 Thermal Considerations............................................................ 15 Thermal Data ................................................................................ 5 Junction Temperature Calculations ......................................... 16 Thermal Resistance ...................................................................... 5 Printed Circuit Board Layout Considerations ....................... 17 ESD Caution.................................................................................. 5 Outline Dimensions ....................................................................... 18 Pin Configuration and Function Descriptions............................. 6 Ordering Guide .......................................................................... 18 REVISION HISTORY 7/08—Revision 0: Initial Version Rev. 0 | Page 2 of 20 ADP130 SPECIFICATIONS VIN = VOUT + 0.4 V, VBIAS = 5 V, IOUT = 10 mA, CIN = 1 μF, COUT = 1 μF, CBIAS = 1 μF, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT VOLTAGE RANGE BIAS VOLTAGE RANGE OPERATING SUPPLY CURRENT Symbol VIN VBIAS IVIN 1 BIAS OPERATING CURRENT IBIAS SHUTDOWN CURRENT ISD-VIN ISD-VBIAS FIXED OUTPUT VOLTAGE ACCURACY VOUT LINE REGULATION LOAD REGULATION 2 ∆VOUT/∆VIN ∆VOUT/∆IOUT DROPOUT VOLTAGE 3 VDROPOUT Conditions TJ = −40°C to +125°C TJ = −40°C to +125°C IOUT = 0 μA IOUT = 0 μA, TJ = −40°C to +125°C IOUT = 1 mA IOUT = 1 mA, TJ = −40°C to +125°C IOUT = 100 mA IOUT = 100 mA, TJ = −40°C to +125°C IOUT = 350 mA IOUT = 350 mA, TJ = −40°C to +125°C Typ Max 3.6 5.5 25 44 40 58 100 130 160 220 16 TJ = −40°C to +125°C EN = GND EN = GND, TJ = −40°C to +85°C EN = GND, TJ = +85°C to +125°C EN = GND EN = GND, TJ = −40°C to +125°C IOUT = 10 mA 1 mA < IOUT < 350 mA, VIN = (VOUT + 0.4 V) to 3.6 V 1 mA < IOUT < 350 mA, VIN = (VOUT + 0.4 V) to 3.6 V, TJ = −40°C to +125°C VIN = (VOUT + 0.4 V) to 3.6 V, TJ = –40°C to +125°C IOUT = 10 mA to 350 mA IOUT = 10 mA to 350 mA, TJ = −40°C to +125°C IOUT = 10 mA, VBIAS = 2.3 V, VOUT = 3 V IOUT = 10 mA, VBIAS = 2.3 V, VOUT = 3 V, TJ = −40°C to +125°C IOUT = 100 mA, VBIAS = 2.3 V, VOUT = 3 V IOUT = 100 mA, VBIAS = 2.3 V, VOUT = 3 V, TJ = −40°C to +125°C IOUT = 350 mA, VBIAS = 2.3 V, VOUT = 3 V IOUT = 350 mA, VBIAS = 2.3 V, VOUT = 3 V, TJ = −40°C to +125°C VOUT = 1.2 V START-UP TIME 4 CURRENT LIMIT THRESHOLD 5 THERMAL SHUTDOWN Thermal Shutdown Threshold Thermal Shutdown Hysteresis TSSD TSSD-HYS TJ rising EN INPUT EN Input Logic High EN Input Logic Low EN Input Leakage Current VIH VIL VI-LEAKAGE 2.3 V ≤ VBIAS ≤ 5.5 V 2.3 V ≤ VBIAS ≤ 5.5 V EN = BIAS or GND EN = BIAS or GND, TJ = −40°C to +125°C UNDERVOLTAGE LOCKOUT Input Voltage Rising Input Voltage Falling Hysteresis UVLO UVLORISE UVLOFALL UVLOHYS TSTART-UP ILIMIT Min 1.2 2.3 28 0.1 1.0 20 0.1 −1 −2 −3 1.0 +1 +2 +3 −0.10 +0.10 3.5 %/ V %/A %/A mV mV 28 mV mV 100 mV mV 1000 μs mA 0.001 0.005 2 17 70 400 200 550 °C °C 150 15 TJ = −40°C to +125°C TJ = −40°C to +125°C 1.2 0.4 0.1 1 2.1 1.5 180 Rev. 0 | Page 3 of 20 Unit V V μA μA μA μA μA μA μA μA μA μA μA μA μA μA μA % % % V V μA μA V V mV ADP130 Parameter OUTPUT NOISE Symbol OUTNOISE POWER SUPPLY REJECTION RATIO PSRR Conditions 10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 0.8 V 10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 1.2 V 10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 1.5 V 10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 2.5 V 10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 3.0 V Modulated bias, 10 kHz, VOUT = 3.0 V, VIN = 3.6 V, VBIAS = 5 V Modulated bias, 100 kHz, VOUT = 3.0 V, VIN = 3.6 V, VBIAS = 5 V Modulated VIN, 10 kHz, VOUT = 1.2 V, VIN = VOUT + 1 V, VBIAS = 5 V Modulated VIN, 100 kHz, VOUT = 1.2 V, VIN = VOUT + 1 V, VBIAS = 5 V Modulated VIN, 10 kHz, VOUT = 0.8 V, VIN = VOUT + 1 V, VBIAS = 5 V Modulated VIN, 100 kHz, VOUT = 0.8 V, VIN = VOUT + 1 V, VBIAS = 5 V Min Typ 29 38 43 61 77 70 Max Unit μV rms μV rms μV rms μV rms μV rms dB 53 dB 70 dB 54 dB 70 dB 55 dB 1 IVIN = IGND − IBIAS, where IGND is the current flowing from the GND pin. Based on an endpoint calculation using 1 mA and 350 mA loads. 3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output voltages above 1.3 V. 4 Start-up time is defined as the time from the rising edge of EN to VOUT being at 90% of its nominal value. 5 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 2.0 V output voltage is defined as the current that causes the output voltage to drop to 90% of 2.0 V, or 1.8 V. 2 INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS Table 2. Parameter MINIMUM INPUT AND OUTPUT CAPACITANCE 1 CAPACITOR ESR 1 Symbol CMIN Conditions TJ = −40°C to +125°C Min 0.70 RESR TJ = −40°C to +125°C .001 Typ 1 Max Unit μF 1 Ω The minimum input and output capacitance should be >0.70 μF over the full range of operating conditions. The full range of operating conditions in the application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended. Y5V and Z5U capacitors are not recommended for use with any LDO. Rev. 0 | Page 4 of 20 ADP130 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter VIN to GND VBIAS to GND EN to GND VOUT to GND Storage Temperature Range Operating Temperature Range Operating Junction Temperature Lead Temperature (Soldering, 10 sec) Rating −0.3 V to +3.6 V −0.3 V to +6 V −0.3 V to +6 V −0.3 V to VIN −65°C to +150°C −40°C to +125°C 125°C 300°C Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL DATA Absolute maximum ratings apply only individually, not in combination. The ADP130 may be damaged when junction temperature limits are exceeded. Monitoring ambient temperature does not guarantee that the junction temperature is within the specified temperature limits. In applications with high power dissipation and poor thermal resistance, the maximum ambient temperature may need to be derated. In applications with moderate power dissipation and low PCB thermal resistance, the maximum ambient temperature can exceed the maximum limit as long as the junction temperature is within specification limits. The junction temperature (TJ) of the device is dependent on the ambient temperature (TA), the power dissipation of the device (PD), and the junction-toambient thermal resistance of the package (θJA). TJ is calculated using the following formula: The junction-to-ambient thermal resistance (θJA) of the package is based on modeling and calculation using a four-layer board. The junction-to-ambient thermal resistance is highly dependent on the application and board layout. In applications where high maximum power dissipation exists, close attention to thermal board design is required. The value of θJA may vary, depending on PCB material, layout, and environmental conditions. The specified values of θJA are based on a four-layer, 4 in × 3 in circuit board. For details about board construction, refer to JEDEC JESD51-7. ΨJB is the junction-to-board thermal characterization parameter with units of °C/W. ΨJB of the package is based on modeling and calculation using a four-layer board. The JEDEC JESD51-12 document, Guidelines for Reporting and Using Package Thermal Information, states that thermal characterization parameters are not the same as thermal resistances. ΨJB measures the component power flowing through multiple thermal paths rather than a single path, as in thermal resistance (θJB). Therefore, ΨJB thermal paths include convection from the top of the package as well as radiation from the package, factors that make ΨJB more useful in real world applications. Maximum junction temperature (TJ) is calculated from the board temperature (TB) and power dissipation (PD), using the following formula: TJ = TB + (PD × ΨJB) Refer to the JEDEC JESD51-8 and JESD51-12 documents for more detailed information about ΨJB. THERMAL RESISTANCE θJA and ΨJB are specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance Package Type 5-Lead TSOT TJ = TA + (PD × θJA) ESD CAUTION Rev. 0 | Page 5 of 20 θJA 170 ΨJB 43 Unit °C/W ADP130 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS VIN 1 EN 3 VOUT 4 VBIAS ADP130 TOP VIEW (Not to Scale) 06963-003 GND 2 5 Figure 3. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 2 3 Mnemonic VIN GND EN 4 5 VBIAS VOUT Description Regulator Input Supply. Bypass VIN to GND with a capacitor of 1 μF or greater. Ground. Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic startup, connect EN to VBIAS Bias Input Supply. Connect a capacitor of 1 μF or greater between VBIAS and GND. Regulated Output Voltage. Bypass VOUT to GND with a capacitor of 1 μF or greater. Rev. 0 | Page 6 of 20 ADP130 TYPICAL PERFORMANCE CHARACTERISTICS VBIAS = 5 V, VIN = 2.2 V, VOUT = 1.8 V, IOUT = 10 mA, CIN = COUT = CBIAS = 1 μF, TA = 25°C, unless otherwise noted. 1.805 200 LOAD = 1mA LOAD = 10mA 160 IVIN CURRENT (µA) LOAD = 50mA LOAD = 100mA LOAD = 200mA 1.795 1.790 LOAD = 350mA 1.785 140 120 100 80 60 40 LOAD = 1mA LOAD = 10mA LOAD = 50mA 20 –40 –5 +25 +85 0 06963-004 1.775 +125 JUNCTION TEMPERATURE (°C) –40 Figure 4. Output Voltage vs. Junction Temperature 30 BIAS CURRENT (µA) VOUT (V) +85 +125 LOAD = 350mA LOAD = 200mA LOAD = 100mA LOAD = 50mA LOAD = 10mA LOAD = 1mA 25 1.803 1.801 1.799 1.797 20 15 10 5 10 100 1000 0 06963-005 1 ILOAD (mA) –40 160 140 1.801 1.800 1.799 1.798 120 100 80 60 40 1.797 20 2.4 2.6 2.8 3.0 3.2 VIN (V) 3.4 3.6 06963-006 1.796 1.795 2.2 +125 Figure 6. Output Voltage vs. Input Voltage 0 06963-009 1.802 +85 180 LOAD = 1mA LOAD = 10mA LOAD = 50mA LOAD = 100mA LOAD = 200mA LOAD = 350mA IVIN CURRENT (µA) 1.803 +25 JUNCTION TEMPERATURE (°C) 1.805 1.804 –5 Figure 8. Bias Current vs. Junction Temperature Figure 5. Output Voltage vs. Load Current VOUT (V) +25 Figure 7. IVIN Current vs. Junction Temperature 1.805 1.795 –5 JUNCTION TEMPERATURE (°C) 06963-007 1.780 06963-008 VOUT (V) LOAD = 100mA LOAD = 200mA LOAD = 350mA 180 1.800 1 10 100 ILOAD (mA) Figure 9. IVIN Current vs. Load Current Rev. 0 | Page 7 of 20 1000 ADP130 60 25 50 DROPOUT VOLTAGE (mV) 20 15 10 5 40 30 20 0 1 10 100 0 10 1000 100 ILOAD (mA) Figure 13. Dropout Voltage vs. Load Current, VOUT = 3 V Figure 10. Bias Current vs. Load Current 200 80 180 DROPOUT VOLTAGE (mV) LOAD = 350mA LOAD = 200mA 140 120 100 80 60 20 LOAD = 1mA LOAD = 10mA LOAD = 50mA LOAD = 100mA 0 2.2 2.4 60 VOUT = 1.8V 50 40 20 10 2.6 2.8 3.0 3.2 3.4 3.6 VIN (V) 0 10 1000 Figure 14. Dropout Voltage vs. Output Voltage and Load Current 3.05 25 3.00 20 2.95 LOAD = 10mA LOAD = 50mA LOAD = 100mA LOAD = 200mA LOAD = 350mA 2.90 VOUT (V) 15 LOAD = 1mA LOAD = 10mA LOAD = 50mA LOAD = 100mA LOAD = 200mA LOAD = 350mA 2.85 2.80 2.75 5 2.70 0 2.2 2.4 2.6 2.8 3.0 3.2 VIN (V) 3.4 3.6 2.65 2.75 06963-012 BIAS CURRENT (µA) 100 ILOAD (mA) Figure 11. Ground Current vs. Input Voltage 10 VOUT = 3.0V 30 06963-014 40 TA = 25°C 70 06963-011 GROUND CURRENT (µA) 160 1000 ILOAD (mA) 06963-013 06963-010 10 2.80 2.85 2.90 2.95 3.00 VIN (V) Figure 12. Bias Current vs. Input Voltage 3.05 3.10 3.15 3.20 06963-015 BIAS CURRENT (µA) VOUT = 3V TA = 25°C Figure 15. Output Voltage vs. Input Voltage (in Dropout), VOUT = 3 V Rev. 0 | Page 8 of 20 ADP130 600 0 VRIPPLE = 50mV VIN = 2.8V VOUT = 1.8V COUT = 1µF –10 –20 –30 400 LOAD = 10mA LOAD = 50mA LOAD = 100mA LOAD = 200mA LOAD = 350mA 300 PSRR (dB) 200 –40 –50 –60 –70 –80 LOAD = 100µA LOAD = 10mA LOAD = 100mA LOAD = 350mA –90 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 VIN (V) –100 06963-016 0 2.75 10 0 100k 1M 10M VRIPPLE = 50mV VIN = 2.2V VOUT = 1.2V COUT = 1µF –10 17 –20 LOAD = 350mA LOAD = 200mA –30 16 PSRR (dB) LOAD = 100mA LOAD = 50mA LOAD = 10mA –40 –50 –60 –70 14 –80 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 VIN (V) 06963-017 13 2.75 LOAD = 100µA LOAD = 10mA –90 LOAD = 100mA LOAD = 350mA –100 10 100 0 –20 0 VRIPPLE = 50mV VIN = 3.6V VOUT = 3.0V COUT = 1µF –40 PSRR (dB) –50 –60 LOAD = 100µA LOAD = 10mA LOAD = 100mA LOAD = 350mA LOAD = 100µA LOAD = 10mA LOAD = 100mA LOAD = 350mA –60 100 –100 1k 10k 100k 1M 10M FREQUENCY (Hz) –120 06963-018 10 10M –80 –70 –100 1M VRIPPLE = 50mV VIN = 1.8V VOUT = 0.8V COUT = 1µF –20 –40 –90 100k Figure 20. Power Supply Rejection Ratio vs. Frequency, VIN Input –30 –80 10k FREQUENCY (Hz) Figure 17. Bias Current vs. Input Voltage (in Dropout), VOUT = 3 V –10 1k 06963-020 BIAS CURRENT (µA) 10k Figure 19. Power Supply Rejection Ratio vs. Frequency, VIN Input 18 PSRR (dB) 1k FREQUENCY (Hz) Figure 16. Ground Current vs. Input Voltage (in Dropout), VOUT = 3 V 15 100 06963-019 100 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 18. Power Supply Rejection Ratio vs. Frequency, VIN Input Figure 21. Power Supply Rejection Ratio vs. Frequency, VIN Input Rev. 0 | Page 9 of 20 06963-021 GROUND CURRENT (µA) 500 ADP130 0 0 VRIPPLE = 50mV VOUT = 1.8V IOUT = 100mA COUT = 1µF –20 –20 –30 PSRR (dB) –40 PSRR (dB) VRIPPLE = 50mV VIN = 2.2V VOUT = 1.2V COUT = 1µF –10 1V HEADROOM 0.5V HEADROOM –60 –80 LOAD = 350mA LOAD = 100mA LOAD = 10mA LOAD = 100µA –40 –50 –60 –70 –80 –100 10k 100k 1M 10M FREQUENCY (Hz) –20 0 –10 –20 PSRR (dB) –40 –50 –70 –70 –80 –80 1k 10k 100k 1M 10M FREQUENCY (Hz) –90 10 –20 1k 10k 100k 1M 10M 10 VRIPPLE = 50mV VIN = 2.8V VOUT = 1.8V COUT = 1µF 3.0V –30 PSRR (dB) 100 Figure 26. Power Supply Rejection Ratio vs. Frequency, VBIAS Input LOAD = 350mA LOAD = 100mA LOAD = 10mA LOAD = 100µA –40 –50 NOISE (µV/√Hz) 0 10M FREQUENCY (Hz) Figure 23. Power Supply Rejection Ratio vs. Frequency, VBIAS Input –10 1M –50 –60 100 100k LOAD = 350mA LOAD = 100mA LOAD = 10mA LOAD = 100µA –40 –60 –90 10 10k VRIPPLE = 50mV VIN = 1.8V VOUT = 0.8V COUT = 1µF –30 LOAD = 350mA LOAD = 100mA LOAD = 10mA LOAD = 100µA 06963-023 PSRR (dB) –30 1k Figure 25. Power Supply Rejection Ratio vs. Frequency, VBIAS Input VRIPPLE = 50mV VIN = 3.6V VOUT = 3.0V COUT = 1µF –10 100 FREQUENCY (Hz) Figure 22. Power Supply Rejection Ratio vs. Headroom, VIN Input 0 10 06963-026 1k 06963-022 100 –100 06963-025 –90 –120 10 –60 –70 1.5V 1 0.8V 0.1 –80 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 0.01 10 100 1k 10k FREQUENCY (Hz) Figure 27. Noise Spectrum vs. VOUT Figure 24. Power Supply Rejection Ratio vs. Frequency, VBIAS Input Rev. 0 | Page 10 of 20 100k 06963-027 –100 06963-024 –90 ADP130 90 1.8V 2.5V 3.0V 80 VIN 70 3V TO 3.5V INPUT VOLTAGE STEP 2V/µs NOISE (µV rms) 60 50 40 2 30 20 06963-031 VOUT 5mV/DIV 0.8V 1.2V 1.5V 10 1 1 10 100 1000 ILOAD (mA) ILOAD 1mA TO 350mA LOAD STEP 2.5A/µs 200mA/DIV 2 06963-029 M40µs T 10.40% A CH1 06963-030 VOUT 2mV/DIV 1 CH2 2mV M40µs T 10.20% A CH1 CH2 5mV M20µs T 10.20% A CH1 3.27V Figure 32. VIN Line Transient Response, VBIAS = 5 V, IOUT = 350 mA VBIAS 3V TO 3.5V INPUT VOLTAGE STEP 2V/µs 500mV/DIV CH1 500mV VOUT 5mV/DIV CH1 500mV VIN = 3.6V 2 3.37V 1 92mA Figure 29. Load Transient Response 1 A CH1 VIN VOUT 50mV/DIV CH2 50mV M20µs T 10.20% 3V TO 3.5V INPUT VOLTAGE STEP 2V/µs 2 CH1 200mA CH2 5mV Figure 31. VIN Line Transient Response, VBIAS = 5 V, IOUT = 1 mA Figure 28. Output Noise vs. Load Current and Output Voltage 1 CH1 500mV 06963-032 0.1 06963-028 0 0.01 3.35V Figure 30. VBIAS Line Transient Response, VIN = 3.6 V, IOUT = 350 mA Rev. 0 | Page 11 of 20 ADP130 THEORY OF OPERATION Internally, the ADP130 consists of a reference, an error amplifier, a feedback voltage divider, and a pass device. The output current is delivered via the pass device, which is controlled by the error amplifier, forming a negative feedback system that ideally drives the feedback voltage to equal the reference voltage. If the feedback voltage is lower than the reference voltage, the negative feedback drives more current, increasing the output voltage. If the feedback voltage is higher than the reference voltage, the negative feedback drives less current, decreasing the output voltage. The VBIAS pin is the positive supply for all circuitry except the pass device. The ADP130 has an internal soft start that limits the output voltage ramp period to approximately 200 μs. All internal devices are controlled by the enable pin, EN. When EN is high, the output is on; when EN is low, the output is off. VOUT VIN R1 GND EN SHORT-CIRCUIT, UVLO, AND THERMAL PROTECT SHUTDOWN VBIAS 0.5V REF R2 06963-033 The ADP130 is a low dropout, linear regulator that uses an advanced proprietary architecture to achieve low quiescent current and high efficiency regulation. It also provides high power supply rejection ratio (PSRR) and excellent line and load transient response using a small 1 μF ceramic output capacitor. The device operates from a 2.3 V to 5.5 V bias rail and a 1.2 V to 3.6 V input rail to provide up to 350 mA of output current. Supply current in shutdown mode is typically less than 1 μA. Figure 33. Internal Block Diagram The ADP130 is available in 31 output voltage options, ranging from 0.8 V to 3.0 V. The ADP130 uses the EN pin to enable and disable the VOUT pin under normal operating conditions. When EN is high, VOUT turns on. When EN is low, VOUT turns off. For automatic startup, EN can be tied to VBIAS. Rev. 0 | Page 12 of 20 ADP130 APPLICATIONS INFORMATION CAPACITOR SELECTION Input Bypass Capacitor Output Capacitor Connecting a 1 μF capacitor from VIN to GND reduces the circuit sensitivity to printed circuit board (PCB) layout, especially when long input traces or high source impedance are encountered. If >1 μF of output capacitance is required, the input capacitor should be increased to match it. The ADP130 is designed for operation with small, space-saving ceramic capacitors, but it functions with most commonly used capacitors as long as care is taken regarding the effective series resistance (ESR) value. The ESR of the output capacitor affects the stability of the LDO control loop. A minimum of 0.70 μF capacitance with an ESR of 1 Ω or less is recommended to ensure stability of the ADP130. Transient response to changes in load current is also affected by output capacitance. Using a larger value of output capacitance improves the transient response of the ADP130 to large changes in load current. Figure 34 and Figure 35 show the transient responses for output capacitance values of 1 μF and 10 μF, respectively. ILOAD 1mA TO 350mA LOAD STEP 2.5A/µs 200mA/DIV 1 2 06963-034 VOUT 50mV/DIV –VOUT = 1.8V CIN = COUT = 1µF CH1 200mA CH2 50mV M400ns T 14% A CH1 192mA Figure 34. Output Transient Response, COUT = 1 μF Bias Capacitor Connecting a 1 μF capacitor from VBIAS to GND reduces the circuit sensitivity to PCB layout, especially when long input traces or high source impedance are encountered. Input, Bias, and Output Capacitor Properties Any good quality ceramic capacitor can be used with the ADP130, as long as it meets the minimum capacitance and maximum ESR requirements. Ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior over temperature and applied voltage. Capacitors must have a dielectric adequate to ensure the minimum capacitance over the necessary temperature range and dc bias conditions. X5R or X7R dielectrics with a voltage rating of 6.3 V or 10 V are recommended. Y5V and Z5U dielectrics are not recommended for use with any LDO, due to their poor temperature and dc bias characteristics. Figure 36 shows the capacitance vs. voltage bias characteristics of the 0402 1μF, 10 V, X5R capacitor. The voltage stability of a capacitor is strongly influenced by the capacitor size and voltage rating. In general, a capacitor in a larger package or higher voltage rating exhibits better stability. The temperature variation of the X5R dielectric is about ±15% over the −40 to +85°C temperature range and is not a function of the package or voltage rating. 1.2 ILOAD CAPACITANCE (µF) VOUT 50mV/DIV CH2 50mV 0.6 0.4 0.2 –VOUT = 1.8V CIN = COUT = 10µF CH1 200mA 0.8 M400ns T 13% A CH1 0 160mA 0 2 4 6 8 VOLTAGE (V) Figure 36. Capacitance vs. Voltage Characteristics Figure 35. Output Transient Response, COUT = 10 μF Rev. 0 | Page 13 of 20 10 06963-036 2 06963-035 1 1.0 1mA TO 350mA LOAD STEP 2.5A/µs 200mA/DIV ADP130 CEFF = COUT × (1 − TEMPCO) × (1 − TOL) As shown in Figure 37, the EN pin has built-in hysteresis. This prevents on/off oscillations that can occur due to noise on the EN pin as it passes through the threshold points. (1) where: CEFF is the effective capacitance at the operating voltage. TEMPCO is the worst-case capacitor temperature coefficient. TOL is the worst-case component tolerance. In this example, the worst-case temperature coefficient (TEMPCO) over −40°C to +85°C is assumed to be 15% for an X5R dielectric. The tolerance of the capacitor (TOL) is assumed to be 10%, and COUT = 0.94 μF at 1.8 V, as shown in Figure 36. Substituting these values in Equation 1 yields the following: CEFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 μF The EN pin active and inactive thresholds are derived from the VIN voltage. Therefore, these thresholds vary with changing input voltage. Figure 38 shows typical EN active and inactive thresholds when the VBIAS voltage varies from 2.3 V to 5.5 V. 1.10 1.05 1.00 0.95 THRESHOLD (V) Use Equation 1 to determine the worst-case capacitance, accounting for capacitor variation over temperature, component tolerance, and voltage. 0.90 EN ACTIVE 0.85 0.80 Therefore, the capacitor chosen in this example meets the minimum capacitance requirement of the LDO over temperature and tolerance at the chosen output voltage. 0.75 To guarantee the performance of the ADP130, it is imperative that the effects of dc bias, temperature, and tolerances on the behavior of the capacitors be evaluated for each application. 0.60 2.3 0.70 The ADP130 has an internal undervoltage lockout circuit that disables all inputs and the output when the input voltage is less than approximately 2.1 V. This ensures that the ADP130 inputs and the output behave in a predictable manner during power-up. ENABLE FEATURE The ADP130 uses the EN pin to enable and disable the VOUT pin under normal operating conditions. As shown in Figure 37, when a rising voltage on EN crosses the active threshold, VOUT turns on. When a falling voltage on EN crosses the inactive threshold, VOUT turns off. 3.1 3.5 3.9 4.3 4.7 5.1 5.5 06963-038 2.7 VBIAS (V) Figure 38. Typical EN Pin Thresholds vs. Input The ADP130 uses an internal soft start to limit the inrush current when the output is enabled. The start-up time for the 0.8 V option is approximately 180 μs from the time at which the EN active threshold is crossed to when the output reaches 90% of its final value. The start-up time depends somewhat on the output voltage setting and increases slightly as the output voltage increases. 5.0 VBIAS = 2.3V VIN = 3.6V ILOAD = 10mA 4.5 4.0 ENABLE 3.0V 1.8V 1.2V 0.8V 3.5 VOLTAGE (V) UNDERVOLTAGE LOCKOUT –VOUT = 1.8V CIN = COUT = 1µF EN INACTIVE 0.65 3.0 2.5 2.0 1.5 VOUT 500mV/DIV 1.0 0 100 200 300 400 500 600 700 Figure 39. Typical Start-Up Time 06963-037 1 2 CH1 500mV 0 TIME (µs) EN 500mV/DIV CH2 500mV M10ms T 30% A CH2 640mV Figure 37. Typical EN Pin Operation Rev. 0 | Page 14 of 20 800 900 1000 06963-039 0.5 ADP130 CURRENT LIMIT AND THERMAL OVERLOAD PROTECTION The ADP130 is protected against damage due to excessive power dissipation by current limit and thermal overload protection circuits. The ADP130 is designed to current limit when the output load reaches 550 mA (typical). When the output load exceeds 550 mA, the output voltage is reduced to maintain a constant current limit. Thermal overload protection limits the junction temperature to a maximum of 150°C typical. Under extreme conditions (that is, high ambient temperature and power dissipation) when the junction temperature starts to rise above 150°C, the output is turned off, reducing output current to zero. When the junction temperature drops below 135°C, the output is turned on again and output current is restored to its nominal value. Consider the case where a hard short from VOUT to GND occurs. At first, the ADP130 current limits so that only 550 mA is conducted into the short. If self-heating of the junction is great enough to cause its temperature to rise above 150°C, thermal shutdown activates, turning off the output and reducing the output current to zero. As the junction temperature cools and drops below 135°C, the output turns on and conducts 550 mA into the short, again causing the junction temperature to rise above 150°C. This thermal oscillation between 135°C and 150°C causes a current oscillation between 550 mA and 0 mA that continues as long as the short remains at the output. Current limit and thermal overload protections protect the device against accidental overload conditions. For reliable operation, device power dissipation must be externally limited so that junction temperatures do not exceed 125°C. THERMAL CONSIDERATIONS To guarantee reliable operation, the junction temperature of the ADP130 must not exceed 125°C. To ensure that the junction temperature stays below this maximum value, the user needs to be aware of the parameters that contribute to junction temperature changes. These parameters include ambient temperature, power dissipation in the power device, and thermal resistances between the junction and ambient air (θJA). The value of θJA is dependent on the package assembly compounds used and the amount of copper to which the GND pins of the package are soldered on the PCB. Table 6 shows typical θJA values of the 5-lead TSOT package for various PCB copper sizes. Table 6. Typical θJA Values for Specified PCB Copper Sizes Copper Size (mm2) 01 50 100 300 500 1 θJA (°C/W) 170 152 146 134 131 Device soldered to minimum size pin traces. The junction temperature of the ADP130 can be calculated from the following equation: TJ = TA + (PD × θJA) (2) where: TA is the ambient temperature. PD is the power dissipation in the die, given by PD = [(VIN − VOUT) × ILOAD] + (VIN × IGND) (3) where: VIN and VOUT are the input and output voltages, respectively. ILOAD is the load current. IGND is the ground current. Power dissipation due to ground current is quite small and can be ignored. Therefore, the junction temperature equation can be simplified as follows: TJ = TA + {[(VIN − VOUT) × ILOAD] × θJA} (4) As shown in Equation 4, for a given ambient temperature, inputto-output voltage differential, and continuous load current, a minimum copper size requirement exists for the PCB to ensure that the junction temperature does not rise above 125°C. Figure 40 through Figure 46 show junction temperature calculations for different ambient temperatures, load currents, VIN to VOUT differentials, and areas of PCB copper. Rev. 0 | Page 15 of 20 ADP130 JUNCTION TEMPERATURE CALCULATIONS 140 140 MAX TJ (DO NOT OPERATE ABOVE THIS POINT) 120 120 100 100 80 80 TJ (°C) 60 60 0 0.4 1mA 10mA 0.8 50mA 100mA 1.2 150mA 250mA 1.6 350mA (LOAD CURRENT) 2.0 2.4 20 06963-040 20 0 0.4 2.8 1mA 10mA 0.8 50mA 100mA 1.2 Figure 40. 500 mm2 of PCB Copper, TA = 25°C, TSOT 2.0 2.4 2.8 Figure 43. 500 mm2 of PCB Copper, TA = 50°C, TSOT 140 140 MAX TJ (DO NOT OPERATE ABOVE THIS POINT) MAX TJ (DO NOT OPERATE ABOVE THIS POINT) 120 120 100 100 80 80 TJ (°C) 60 40 60 40 0 0.4 1mA 10mA 0.8 50mA 100mA 1.2 150mA 250mA 1.6 350mA (LOAD CURRENT) 2.0 2.4 20 06963-041 20 0 0.4 2.8 1mA 10mA 0.8 50mA 100mA 1.2 VIN – VOUT (V) 1.6 350mA (LOAD CURRENT) 2.0 2.4 2.8 VIN – VOUT (V) Figure 41. 100 mm2 of PCB Copper, TA = 25°C, TSOT Figure 44. 100 mm2 of PCB Copper, TA = 50°C, TSOT 140 140 MAX TJ (DO NOT OPERATE ABOVE THIS POINT) MAX TJ (DO NOT OPERATE ABOVE THIS POINT) 120 100 100 80 80 TJ (°C) 120 60 60 40 20 1mA 10mA 0.8 50mA 100mA 1.2 150mA 250mA 1.6 350mA (LOAD CURRENT) 2.0 2.4 06963-042 40 0 0.4 150mA 250mA 06963-044 TJ (°C) 1.6 350mA (LOAD CURRENT) VIN – VOUT (V) VIN – VOUT (V) TJ (°C) 150mA 250mA 06963-043 40 40 2.8 20 0 0.4 1mA 10mA 0.8 50mA 100mA 1.2 150mA 250mA 1.6 350mA (LOAD CURRENT) 2.0 2.4 VIN – VOUT (V) VIN – VOUT (V) Figure 42. 0 mm2 of PCB Copper, TA = 25°C, TSOT Figure 45. 0 mm2 of PCB Copper, TA = 50°C, TSOT Rev. 0 | Page 16 of 20 06963-045 TJ (°C) MAX TJ (DO NOT OPERATE ABOVE THIS POINT) 2.8 ADP130 In cases where board temperature is known, use the thermal characterization parameter, ΨJB, to estimate the junction temperature rise. Maximum junction temperature (TJ) is calculated from the board temperature (TB) and power dissipation (PD), using the following formula: TJ = TB + (PD × ΨJB) (5) The typical value of ΨJB is 42.8°C/W for the 5-lead TSOT package. PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS Heat dissipation from the package can be improved by increasing the amount of copper attached to the pins of the ADP130. However, as shown in Table 6, a point of diminishing returns is eventually reached, beyond which an increase in the copper size does not yield significant heat dissipation benefits. The input capacitor should be placed as close as possible to the VIN and GND pins. The output capacitor should be placed as close as possible to the VOUT and GND pins. Using 0402 or 0603 size capacitors and resistors achieves the smallest possible footprint solution on boards where the area is limited. 140 MAX TJ (DO NOT OPERATE ABOVE THIS POINT) 120 100 GND ANALOG DEVICES ADP130-xx-EVALZ 60 C1 U1 C2 40 0 0.4 1mA 10mA 0.8 50mA 100mA 1.2 150mA 250mA 1.6 350mA (LOAD CURRENT) 2.0 2.4 J1 2.8 VIN VIN – VOUT (V) VOUT Figure 46. TSOT, TA = 85°C C3 GND EN VBIAS GND Figure 47. Example TSOT PCB Layout Rev. 0 | Page 17 of 20 06963-047 20 06963-046 TJ (°C) GND 80 ADP130 OUTLINE DIMENSIONS 2.90 BSC 5 4 2.80 BSC 1.60 BSC 1 2 3 PIN 1 0.95 BSC 1.90 BSC *0.90 0.87 0.84 *1.00 MAX 0.10 MAX 0.50 0.30 0.20 0.08 SEATING PLANE 8° 4° 0° 0.60 0.45 0.30 *COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 48. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions show in millimeters ORDERING GUIDE Model ADP130AUJZ-0.8-R7 1 ADP130AUJZ-1.2-R71 ADP130AUJZ-1.5-R71 ADP130AUJZ-1.8-R71 ADP130AUJZ-2.5-R71 ADP130-0.8-EVALZ1 ADP130-1.2-EVALZ1 ADP130-1.5-EVALZ1 ADP130-1.8-EVALZ1 ADP130-2.5-EVALZ1 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Output Voltage (V) 0.8 1.2 1.5 1.8 2.5 0.8 1.2 1.5 1.8 2.5 Z = RoHS Compliant Part. Rev. 0 | Page 18 of 20 Package Description 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT Evaluation Board Evaluation Board Evaluation Board Evaluation Board Evaluation Board Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 Branding LCH LCJ LCK LCL LCM ADP130 NOTES Rev. 0 | Page 19 of 20 ADP130 NOTES ©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06963-0-7/08(0) Rev. 0 | Page 20 of 20