FAIRCHILD FQH140N10

TM
FQH140N10
100V N-Channel MOSFET
General Description
Features
These N-Channel enhancement mode power field effect
transistors are produced using Fairchild’s proprietary,
planar stripe, DMOS technology.
This advanced technology has been especially tailored to
minimize on-state resistance, provide superior switching
performance, and withstand high energy pulse in the
avalanche and commutation mode. These devices are well
suited for low voltage applications such as audio amplifier,
high efficiency switching DC/DC converters, and DC motor
control.
•
•
•
•
•
•
•
140A, 100V, RDS(on) = 0.01Ω @VGS = 10 V
Low gate charge ( typical 220 nC)
Low Crss ( typical 470 pF)
Fast switching
100% avalanche tested
Improved dv/dt capability
175°C maximum junction temperature rating
D
!
"
! "
"
"
G!
ID
S
FQH Series
Absolute Maximum Ratings
Symbol
VDSS
!
TO-247
G D
S
TC = 25°C unless otherwise noted
Parameter
Drain-Source Voltage
- Continuous (TC = 25°C)
Drain Current
FQA140N10
100
Units
V
140
A
- Continuous (TC = 100°C)
IDM
Drain Current
- Pulsed
99
A
(Note 1)
560
A
± 25
V
1500
mJ
VGSS
Gate-Source Voltage
EAS
Single Pulsed Avalanche Energy
(Note 2)
IAR
Avalanche Current
(Note 1)
140
A
EAR
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Power Dissipation (TC = 25°C)
(Note 1)
37.5
6.5
375
2.5
-55 to +175
mJ
V/ns
W
W/°C
°C
300
°C
dv/dt
PD
TJ, TSTG
TL
(Note 3)
- Derate above 25°C
Operating and Storage Temperature Range
Maximum lead temperature for soldering purposes,
1/8" from case for 5 seconds
Thermal Characteristics
Symbol
RθJC
Parameter
Thermal Resistance, Junction-to-Case
Typ
--
RθCS
Thermal Resistance, Case-to-Sink
RθJA
Thermal Resistance, Junction-to-Ambient
©2003 Fairchild Semiconductor Corporation
Max
0.4
Units
°C/W
0.24
--
°C/W
--
40
°C/W
Rev. A, August 2003
FQH140N10
QFET
Symbol
TC = 25°C unless otherwise noted
Parameter
Test Conditions
Min
Typ
Max
Units
100
--
--
V
--
0.08
--
V/°C
VDS = 80 V, VGS = 0 V
--
--
1
µA
VDS = 64 V, TC = 150°C
--
--
10
µA
Gate-Body Leakage Current, Forward
VGS = 25 V, VDS = 0 V
--
--
100
nA
Gate-Body Leakage Current, Reverse
VGS = -25 V, VDS = 0 V
--
--
-100
nA
2.0
--
4.0
V
--
0.008
0.01
Ω
--
80
--
S
--
6100
7900
pF
--
2000
2600
pF
--
420
550
pF
Off Characteristics
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = 250 µA
∆BVDSS
/
∆TJ
Breakdown Voltage Temperature
Coefficient
ID = 250 µA, Referenced to 25°C
IDSS
IGSSF
IGSSR
Zero Gate Voltage Drain Current
On Characteristics
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250 µA
RDS(on)
Static Drain-Source
On-Resistance
VGS = 10 V, ID = 70 A
gFS
Forward Transconductance
VDS = 30 V, ID = 70 A
(Note 4)
Dynamic Characteristics
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
VDS = 25 V, VGS = 0 V,
f = 1.0 MHz
Switching Characteristics
td(on)
Turn-On Delay Time
tr
Turn-On Rise Time
td(off)
Turn-Off Delay Time
tf
Turn-Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
VDD = 40 V, ID = 140 A,
RG = 25 Ω
(Note 4, 5)
VDS = 64 V, ID = 140 A,
VGS = 10 V
(Note 4, 5)
--
75
160
ns
--
940
1890
ns
--
350
710
ns
--
360
730
ns
--
220
285
nC
--
39
--
nC
--
114
--
nC
Drain-Source Diode Characteristics and Maximum Ratings
IS
Maximum Continuous Drain-Source Diode Forward Current
--
--
140
A
ISM
--
--
560
A
VSD
Maximum Pulsed Drain-Source Diode Forward Current
VGS = 0 V, IS = 140 A
Drain-Source Diode Forward Voltage
--
--
1.5
V
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
VGS = 0 V, IS = 140 A,
dIF / dt = 100 A/µs
(Note 4)
--
140
--
ns
--
730
--
nC
Notes:
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. L = 0.115mH, IAS = 140A, VDD = 25V, RG = 25 Ω, Starting TJ = 25°C
3. ISD ≤ 140A, di/dt ≤ 300A/µs, VDD ≤ BVDSS, Starting TJ = 25°C
4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%
5. Essentially independent of operating temperature
6. Continuous Drain Current Calculated by Maximum Junction Temperature : Limited by Package
©2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Electrical Characteristics
FQH140N10
Typical Characteristics
VGS
15.0 V
10.0 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom : 4.5 V
2
10
2
10
ID , Drain Current [A]
ID, Drain Current [A]
Top :
175℃
1
10
25℃
0
-55℃
10
※ Notes :
1. VDS = 40V
2. 250μ s Pulse Test
※ Notes :
1. 250μ s Pulse Test
2. TC = 25℃
1
10
-1
-1
0
10
10
1
10
2
10
4
6
8
10
VGS , Gate-Source Voltage [V]
VDS, Drain-Source Voltage [V]
Figure 1. On-Region Characteristics
Figure 2. Transfer Characteristics
30
IDR , Reverse Drain Current [A]
RDS(ON) [mΩ ],
Drain-Source On-Resistance
25
VGS = 10V
20
VGS = 20V
15
10
5
2
10
1
10
0
10
175℃
※ Notes :
1. VGS = 0V
2. 250μ s Pulse Test
25℃
※ Note : TJ = 25℃
-1
0
0
100
200
300
400
500
600
700
800
900
10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
VSD , Source-Drain Voltage [V]
Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage
Figure 4. Body Diode Forward Voltage
Variation vs. Source Current
and Temperature
12
20000
Ciss = Cgs + Cgd (Cds = shorted)
Coss = Cds + Cgd
Crss = Cgd
Coss
16000
Ciss
14000
12000
※ Notes :
1. VGS = 0 V
2. f = 1 MHz
10000
Crss
8000
6000
4000
2000
10
VGS, Gate-Source Voltage [V]
18000
Capacitance [pF]
0.2
ID , Drain Current [A]
VDS = 50V
VDS = 80V
8
6
4
2
※ Note : ID = 140 A
0
-1
10
0
0
10
1
10
VDS, Drain-Source Voltage [V]
Figure 5. Capacitance Characteristics
©2003 Fairchild Semiconductor Corporation
0
40
80
120
160
200
240
QG, Total Gate Charge [nC]
Figure 6. Gate Charge Characteristics
Rev. A, August 2003
(Continued)
1.2
2.5
2.0
1.1
RDS(ON) , (Normalized)
Drain-Source On-Resistance
BV DSS , (Normalized)
Drain-Source Breakdown Voltage
FQH140N10
Typical Characteristics
1.0
※ Notes :
1. VGS = 0 V
2. ID = 250 μ A
0.9
0.8
-100
-50
0
50
100
150
1.5
1.0
0.5
※ Notes :
1. VGS = 10 V
2. ID = 70 A
0.0
-100
200
-50
0
50
100
150
200
o
o
TJ, Junction Temperature [ C]
TJ, Junction Temperature [ C]
Figure 7. Breakdown Voltage Variation
vs. Temperature
Figure 8. On-Resistance Variation
vs. Temperature
150
Operation in This Area
is Limited by R DS(on)
3
10
120
ID, Drain Current [A]
ID, Drain Current [A]
10 µs
100 µs
2
10
1 ms
10 ms
DC
1
10
※ Notes :
0
10
90
Limited by Package
60
30
o
1. TC = 25 C
o
2. TJ = 175 C
3. Single Pulse
-1
10
0
1
10
0
25
2
10
10
50
( t) , T h e r m a l R e s p o n s e
Figure 9. Maximum Safe Operating Area
100
125
150
175
Figure 10. Maximum Drain Current
vs. Case Temperature
D = 0 .5
10
※ N o te s :
1 . Z θ J C ( t) = 0 .4 ℃ /W M a x .
2 . D u ty F a c to r , D = t 1 /t 2
3 . T J M - T C = P D M * Z θ J C ( t)
-1
0 .2
0 .1
0 .0 5
PDM
0 .0 2
10
-2
t1
0 .0 1
Z
θ JC
75
TC, Case Temperature [℃]
VDS, Drain-Source Voltage [V]
t2
s i n g l e p u ls e
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t 1 , S q u a r e W a v e P u ls e D u r a t io n [ s e c ]
Figure 11. Transient Thermal Response Curve
©2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Gate Charge Test Circuit & Waveform
VGS
Same Type
as DUT
50KΩ
Qg
200nF
12V
10V
300nF
VDS
VGS
Qgs
Qgd
DUT
3mA
Charge
Resistive Switching Test Circuit & Waveforms
VDS
RL
VDS
90%
VDD
VGS
RG
VGS
DUT
10V
10%
td(on)
tr
td(off)
t on
tf
t off
Unclamped Inductive Switching Test Circuit & Waveforms
BVDSS
1
EAS = ---- L IAS2 -------------------2
BVDSS - VDD
L
VDS
BVDSS
IAS
ID
RG
VDD
DUT
10V
tp
©2003 Fairchild Semiconductor Corporation
ID (t)
VDS (t)
VDD
tp
Time
Rev. A, August 2003
FQH140N10
Peak Diode Recovery dv/dt Test Circuit & Waveforms
DUT
+
VDS
_
I SD
L
Driver
RG
VGS
VGS
( Driver )
Same Type
as DUT
VDD
• dv/dt controlled by RG
• ISD controlled by pulse period
Gate Pulse Width
D = -------------------------Gate Pulse Period
10V
IFM , Body Diode Forward Current
I SD
( DUT )
di/dt
IRM
Body Diode Reverse Current
VDS
( DUT )
Body Diode Recovery dv/dt
VSD
VDD
Body Diode
Forward Voltage Drop
©2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Package Dimensions
TO-247AD (FKS PKG CODE 001)
Dimensions in Millimeters
©2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
FACT Quiet Series™
ActiveArray™
FAST
Bottomless™
FASTr™
CoolFET™
FRFET™
CROSSVOLT™ GlobalOptoisolator™
DOME™
GTO™
EcoSPARK™ HiSeC™
E2CMOSTM
I2C™
TM
EnSigna
ImpliedDisconnect™
FACT™
ISOPLANAR™
Across the board. Around the world.™
The Power Franchise™
Programmable Active Droop™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
SILENT SWITCHER
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic
TINYOPTO™
TruTranslation™
UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT
CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
2. A critical component is any component of a life
1. Life support devices or systems are devices or
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I5