IRF IP2002

PD - 94568A
iP2002
Synchronous Buck
Multiphase Optimized BGA Power Block
Integrated Power Semiconductors, Drivers & Passives
Features:
•
•
•
•
•
•
•
Output current 30A continuous with no derating up to
TPCB = 90°C and TCASE = 90°C
Operating frequency up to 1MHz
Dual sided heatsink capable
Very small 11mm x 11mm x 2.6mm profile
iP2001 footprint compatible
Internal features minimize layout sensitivity *
Optimized for very low power losses
iP2002 Power Block
Description
The iP2002 is a fully optimized solution for high current synchronous buck multiphase applications.
Board space and design time are greatly reduced because most of the components required for each
phase of a typical discrete-based multiphase circuit are integrated into a single 11mm x 11mm x 2.6mm
BGA power block. The only additional components required for a complete multiphase converter are a PWM
IC, the external inductors, and the input and output capacitors.
iPOWIR technology offers designers an innovative board space saving solution for applications
requiring high power densities. iPOWIR technology eases design for applications where component
integration offers benefits in performance and functionality. iPOWIR technology solutions are also optimized
internally for layout, heat transfer and component selection.
iP2002 Internal Block Diagram
VIN
PRDY
ENABLE
PWM
VDD
MOSFET
Driver with
dead time
control
SGND
VSW
PGND
* All of the difficult PCB layout and bypassing issues have been addressed with the internal design of the iPOWIR Block. There are no concerns about double
pulsing, unwanted shutdown, or other malfunctions which often occur in switching power supplies. The iPOWIR Block will function normally without any
additional input power supply bypass capacitors. However, for reliable long term operation it is recommended that at least four 10uF ceramic input
decoupling capacitors are provided to the VIN pin of each power block. No additional bypassing is required on the VDD pin.
www.irf.com
03/20/03
1
iP2002
All specifications @ 25°C (unless otherwise specified)
Absolute Maximum Ratings :
Parameter
Min
Typ
Max
Units
Conditions
VIN to PGND
VDD to SGND
PWM to SGND
Enable to SGND
Output RMS Current
-
-
16
6.0
V
V
-0.3
-0.3
-
-
VDD+0.3
VDD+0.3
30
V
V
A
Block Temperature
-40
-
125
°C
Symbol
Min
Typ
Max
Units
Supply Voltage
VDD
4.6
5.0
5.5
V
Input Voltage Range
VIN
3.0
-
13.2
V
see Figs. 2 & 3
Output Voltage Range
VOUT
0.9
-
3.3
V
see Figs. 2, 4 & 8
Output Current Range
IOUT
-
-
30
A
see Fig. 2
Operating Frequency
fsw
150
-
1000
kHz
Operating Duty Cycle
D
-
-
85
%
not to exceed 6.0V
not to exceed 6.0V
Recommended Operating Conditions :
Parameter
Conditions
see Figs. 2 & 5
Electrical Specifications @ VDD = 5V (unless otherwise specified) :
Parameter
Block Power Loss c
Turn On Delay d
Turn Off Delay d
VIN Quiescent Current
VDD Quiescent Current
Under-Voltage Lockout
Start Threshold
Hysteresis
Enable
Input Voltage High
Input Voltage Low
Power Ready
Logic Level High
Logic Level Low
PWM Input
Logic Level High
Logic Level Low
Symbol
P BLK
td(on)
td(off)
IQ-VIN
IQ-VDD
UVLO
VSTART
VHys-UVLO
Enable
VIH
VIL
PRDY
VOH
VOL
PWM
VOH
VOL
Min
-
Typ
7.2
63
26
-
Max
8.9
1.0
10
Units
W
4.2
-
4.4
.05
4.5
-
V
2.0
-
-
0.8
V
4.5
-
4.6
0.1
0.2
V
2.0
-
-
0.8
V
ns
mA
µA
Conditions
VIN = 12V, VOUT = 1.3V,
IOUT = 30A, fSW = 1MHz
Enable = 0V, VIN = 12V
Enable = 0V, VDD = 5V
VDD = 4.6V, ILoad = 10mA
VDD < UVLO Threshold, ILoad = 1mA
c Measurement were made using four 10uF (TDK C3225X7R1C106M or equiv.) capacitors across the input (see
Fig. 8).
d Not associated with the rise and fall times. Does not affect Power Loss (see Fig. 9).
2
www.irf.com
iP2002
Pin Description Table
Pin Name
VDD
SGND
Ball Designator
A1 – A3, B1 – B3
A5 – A12, B5 – B12,
C5 - C10
C11, C12, D11, D12, E11,
E12, F6, F7, F12, G6, G7,
G12, H6, H7, H12, J6, J7, J12,
K5 – K7, K12, L5, L6, L12,
M5 – M7, M12
D5 – D10, E5 – E10,
F8 – F11, G8 – G11,
H8 – H11, J8 – J11,
K8 – K11, L8 – L11,
M8 – M11
C1 – C3, D1 –D3, E1 –E3
ENABLE
F1
VIN
PGND
VSW
PRDY
PWM
NC
www.irf.com
K1
Pin Function
Supply voltage for the internal circuitry.
Input voltage for the DC-DC converter.
Power Ground - connection to the ground of
bulk and filter capacitors.
Switching Node - connection to the output
inductor.
Signal Ground.
When set to logic level high, internal
circuitry of the device is enabled. When set
to logic level low, the PRDY pin is forced
low, the Control and Sychronous switches are
turned off, and the supply current is less than
10µA.
Power Ready - This pin indicates the status of
ENABLE or VDD. This output will be driven
low when ENABLE is logic low or when VDD
is less than 4.4V (typ.). When ENABLE is
logic high and VDD is greater than 4.4V
(typ.), this output is driven high. This output
has a 10mA source and 1mA sink capability.
TTL-level input signal to MOSFET drivers.
H1
B4, C4, D4, E4, F2 – F4, G2 –
This pin is not for electrical connection. It
G4, H2 – H4, J1, J2 – J4, K3, should be attached only to dead copper.
L1, L2, M1 – M4
3
iP2002
11
VIN = 12V
VOUT = 1.3V
fSW = 1MHz
TBLK = 125°C
L = 0.30uH
10
9
8
Power Loss (W)
7
Maximum
Typical
6
5
4
3
2
1
0
0
5
10
15
20
25
30
Output Current (A)
Fig. 1: Power Loss vs. Current
Case Temperature (ºC)
0
10
20
30
40
50
60
70
80
90
100
110
120
32
30
28
26
Safe
Operating
Area
24
Output Current (A)
22
20
18
16
14
TX
12
10
VIN = 12V
VOUT = 1.3V
fSW = 1MHz
L = 0.30uH
8
6
4
2
0
0
10
20
30
40
50
60
70
80
90
100
110
120
PCB Temperature (ºC)
Fig. 2: Safe Operating Area (SOA) vs. TPCB & TCASE
4
www.irf.com
iP2002
Typical Performance Curves
1.30
1.40
10.5
13.5
1.25
10.5
9.5
8.5
7.5
1.20
6.5
5.5
1.15
4.5
1.10
3.5
2.5
1.05
1.5
0.5
1.00
-0.5
1.20
1.15
8.5
6.5
4.5
1.10
2.5
1.05
0.5
1.00
-1.5
0.95
-1.5
0.95
VIN = 12V
IOUT = 30A
fSW = 1MHz
L = 0.30uH
TBLK = 125°C
1.25
11.5
Power Loss (Normalized)
1.30
SOA Temp Adjustment (ºC)
Power Loss (Normalized)
1.35
12.5
SOA Temp Adjustment (ºC)
VOUT = 1.3V
IOUT = 30A
fSW = 1MHz
L = 0.30uH
TBLK = 125°C
-2.5
0.90
-3.5
3
4
5
6
7
8
9
10
11
12
0.90
13
-3.5
0.8
1.2
1.6
Input Voltage (V)
3.2
3.6
1.10
-0.5
-4.5
0.85
-6.5
0.80
-8.5
0.75
Power Loss (Normalized)
-2.5
3.5
VIN = 12V
VOUT = 1.3V
IOUT = 30A
fSW = 1MHz
TBLK = 125°C
1.08
1.06
3.0
2.5
2.0
1.04
1.5
1.02
1.0
0.5
1.00
-0.1
SOA Temp Adjustment (ºC)
VIN = 12V
VOUT = 1.3V
IOUT = 30A
L = 0.30uH
TBLK = 125°C
SOA Temp Adjustment (ºC)
Power Loss (Normalized)
2.8
Fig. 4: Normalized Power Loss vs. VOUT
1.00
0.90
2.4
Output Voltage (V)
Fig. 3: Normalized Power Loss vs. VIN
0.95
2.0
0.98
-0.6
0.70
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
-10.5
1000
0.96
-1.1
0.1
0.2
0.3
0.4
Switching Frequency (kHz)
0.5
0.6
0.7
0.8
0.9
1.0
Output Inductance (uH)
Fig. 5: Normalized Power Loss vs. Frequency
Fig. 6: Normalized Power Loss vs. Inductance
70
Average IDD (mA)
60
50
40
30
20
Does not include
PRDY current
TBLK = 25°C
10
0
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
Switching Frequency (kHz)
Fig. 7: IDD vs. Frequency
www.irf.com
5
iP2002
Applying the Safe Operating Area (SOA) Curve
The SOA graph incorporates power loss and thermal resistance information in a way that allows one to solve for maximum
current capability in a simplified graphical manner. It incorporates the ability to solve thermal problems where heat is drawn
Case Temperature (ºC)
out through the printed circuit board and the top of the case.
0
10
20
30
40
50
60
70
80
90
100
110
120
32
Procedure
30
28
3
26
2) Draw a vertical line from the TX axis intercept to the SOA
curve.
Safe
Operating
Area
24
22
Output Current (A)
1) Draw a line from Case Temp axis at TCASE to the PCB
Temp axis at TPCB.
20
18
16
14
TX
12
10
VIN = 12V
VOUT = 1.3V
fSW = 1MHz
L = 0.30uH
8
3) Draw a horizontal line from the intersection of the vertical
line with the SOA curve to the Y axis. The point at which
the horizontal line meets the y-axis is the SOA current.
1
2
6
4
2
0
0
10
20
30
40
50
60
70
80
90
100
110
120
PCB Temperature (ºC)
Adjusting the Power Loss and SOA curves for different operating conditions
To make adjustments to the power loss curves in Fig. 1, multiply the normalized value obtained from the curves in Figs. 3,
4, 5 or 6 by the value indicated on the power loss curve in Fig. 1. If multiple adjustments are required, multiply all of the
normalized values together, then multiply that product by the value indicated on the power loss curve in Fig. 1. The resulting
product is the final power loss based on all factors. See example no. 1.
To make adjustments to the SOA curve in Fig. 2, determine your maximum PCB Temp & Case Temp at the maximum operating
current of each iP2002. Then, add the correction temperature from the normalized curves in Figs. 3, 4, 5 or 6 to the TX axis
intercept (see procedure no. 2 above) in Fig. 2. When multiple adjustments are required, add all of the temperatures
together, then add the sum to the TX axis intercept in Fig. 2. See example no. 2.
Operating Conditions for the following examples:
Output Current = 30A
Output Voltage = 3.3V
Input Voltage = 10V
Sw Freq= 900kHz
Inductor = 0.2uH
Example 1) Adjusting for Maximum Power Loss:
(Fig. 1)
(Fig. 3)
(Fig. 4)
(Fig. 5)
(Fig. 6)
Maximum power loss = 11W
Normalized power loss for input voltage ≈ 0.98
Normalized power loss for output voltage ≈ 1.24
Normalized power loss for frequency ≈ 0.95
Normalized power loss for inductor value ≈ 1.02
Adjusted Power Loss = 11W x 0.98 x 1.24 x 0.95 x 1.02 ≈ 12.95W
6
www.irf.com
iP2002
Example 2) Adjusting for SOA Temperature:
(Fig. 3)
(Fig. 4)
(Fig. 5)
(Fig. 6)
Normalized
Normalized
Normalized
Normalized
SOA Temperature for input voltage ≈ -0.6°C
SOA Temperature for output voltage ≈ 8.4°C
SOA Temperature for frequency ≈ -1.8°C
SOA Temperature for inductor value ≈ 1.1°C
TX axis intercept temp adjustment = - 0.6°C + 8.4°C - 1.8°C + 1.1°C ≈ 7.1°C
Assuming TCASE = 100°C & TPCB = 90°C:
The following example shows how the SOA current is adjusted for a TX increase of 7.1°C.
Case Temperature (ºC)
0
10
20
30
40
50
60
70
80
90
100
110
120
32
30
Unadjusted SOA Current
28
26
24
Adjusted SOA Current
Output Current (A)
22
20
18
16
14
Safe
Operating
Area
12
10
VIN = 12V
VOUT = 1.3V
fSW = 1MHz
L = 0.30uH
8
6
4
2
TX
0
0
10
20
30
40
50
60
70
80
90
100
110
120
PCB Temperature (ºC)
90%
PIN = VIN Average x IIN Average
PDD = VDD Average x IDD Average
POUT = VOUT Average x IOUT Average
PLOSS = (PIN + PDD) - POUT
PRDY
Average
VDD
Current
Average
VDD
Voltage
A
V
PWM
A
V
iP2001
iP2002
PWM
10%
Average Output
Current
VSW
90%
A
PGND
Averaging
Circuit
V
Fig 8. Power Loss Test Circuit
www.irf.com
Average
Input
Voltage
VDD
SGND
DC
VIN
ENABLE
DC
Average
Input
Current
Average
Output
Voltage
(V OUT)
Average
Output
Voltage
VSW
10%
td(on)
td(off)
Fig 9. Timing Diagram
7
C37
0.22uF
2
3
4.42k
2
8
open
R36
8.2pF
C25
3.92K
ISL6558CB
U1
GND
FS/EN
PGOOD
VSEN
+5V
10uF
Vdd
ISEN4
PWM4
PWM3
ISEN3
PWM2
ISEN2
PWM1
C29
Vin
VCC
ISEN1
6800pF
C1
1uF
U6
12V / 5V CONVERTER
CMPD3003A
1
20K
R4
7
2
PGOOD
TP5
open
C47
6
1800pF
C26
R1
C27
Vin
0.22uF
C38 D2
PRDY4
3
0.22uF
1
CMPD3003A
D1
R3
4.42k
R2
3.92k
R32
3.92k
R31
C36
PRDY2
PRDY3
0.22uF
C35
PRDY1
0
200
R6
4
5
FB
R35
3
COMP
8
DROOP
VOUTS
15
16
9
10
12
11
13
14
1
open
+5V
0
+5V
0
R12
R13
R29
open
0
R11
0
R18
R16
10K
10k
R17
10k
R23
10K
R27
10k
R25
10k
open
10uF
open
R24
open
R26
open
R28
PRDY4
+5V
PRDY3
+5V
PRDY2
+5V
PRDY1
R22
R10
10k
R21
+5V
C2
R30
+5V
10k
R19
ENABLE4
+5V
ENABLE3
+5V
ENABLE2
+5V
ENABLE1
+5V
PRDY4
ENABLE4
PWM4
SGND4
VDD4
IP2002-4
PRDY3
ENABLE3
PWM3
SGND3
VDD3
IP2002-3
PRDY2
ENABLE2
PWM2
SGND2
VDD2
IP2002-2
PRDY1
ENABLE1
PWM1
SGND1
VDD1
IP2002-1
PGND4
VSW4
VIN4
PGND3
VSW3
VIN3
PGND2
VSW2
VIN2
PGND1
VSW1
VIN1
VSW4
VSW3
VSW2
VSW1
10uF
C12
10uF
C9
10uF
C6
10uF
C3
10uF
C13
10uF
C10
10uF
C7
10uF
C4
10uF
C14
10uF
C11
10uF
C8
10uF
C5
Vin
2.49k
R7
2.49k
R5
2.49k
R9
10uF
C32
2.49k
R8
10uF
C31
10uF
C30
10uF
C33
Vin
Vin
Vin
VSW4
TP9
VSW3
TP8
VSW2
TP7
L1
L2
0.3uH
L4
0.3uH
L3
0.3uH
100uF
Size
Title
C22
100uF
100uF
C20
100uF
C18
100uF
C16
PGNDS
TP17
330uF
C41
C21
100uF
C19
100uF
C17
100uF
C15
330uF
330uF
0.3uH
VSW1
TP6
C40
C39
VINS
TP13
0.1uF
C34
10uF
C46
PGNDS
VOUTS
PGND
TP16
PGND
TP15
PGND
TP14
VOUT
TP12
VOUT
TP11
VOUT
TP10
PGNDS
TP22
VOUTS
TP21
Number
Revision
IP2002_4 phase demo board
open
C45
open
C44
open
C43
open
C42
VOUT
PGND
TP19
VIN
TP18
iP2002
4-Phase Reference Design Schematic
www.irf.com
iP2002
Quantity
1
17
8
2
1
1
1
1
1
4
3
5
3
5
9
2
1
1
4
1
7
2
1
1
4
1
1
4
1
Designator
C1
C10 C11 C12 C13 C14 C3
C30 C31 C32 C33 C4 C46
C5 C6 C7 C8 C9
C15 C16 C17 C18 C19 C20
C21 C22
C2 C29
C25
C26
C27
C28
C34
C35 C36 C37 C38
C39 C40 C41
C42 C43 C44 C45 C47
R1 R2 R31
R10 R11 R12 R13 R35
R16 R17 R18 R19 R21 R23
R25 R27 R34
R3 R32
R33
R4
R5 R7 R8 R9
R6
R22 R24 R26 R28 R29
R30 R36
D1 D2
D5
D6
L1 L2 L3 L4
L5
U1
U2 U3 U4 U5
U6
Value 1
6800pF
Value 2
50V
Type 2
X7R
Tolerance
10%
Package
0805
Mfr.
PHICOMP
Mfr. Part No.
08052R682K9BB0
10.0uF
16V
X5R
10%
1206
Murata
GRM31CR61C106KC31B
100uF
6.3V
X5R
20%
1210
TDK
C3225X5R0J107M
10.0uF
8.20pF
1800pF
1.00uF
0.010uF
0.100uF
0.22uF
330uF
Open
3.92K
0
6.3V
50V
50V
16V
50V
50V
6.3V
16V
1/8W
1/8W
X5R
NPO
X7R
X7R
X7R
X7R
X5R
WA series
thin film
thick film
10%
3%
10%
10%
10%
10%
10%
20%
0.10%
<50m
1206
0805
0805
0805
0805
0805
0603
SMD
0805
0805
TDK
PHICOMP
PHICOMP
MuRata
TDK
ROHM
TDK
Panasonic
BC Component
ROHM
C3216X5R0J106K
0805CG829C9BB0
08052R182K9BB0
GRM40X7R105K016
C2012X7R1H103KT
MCH215C104KP
C1608X5R0J224K
EEF-WA1C331P
2312-241-73922
MCR10EZHJ000
10.0K
1/8W
thick film
1%
0805
KOA
RK73H2A1002F
4.42K
30.1K
20.0K
2.49K
200
1/8W
1/8W
1/8W
1/8W
1/8W
thin film
thick film
thick film
thick film
thick film
0.10%
1%
1%
1%
1%
0805
0805
0805
0805
0805
BC Component
KOA
KOA
KOA
KOA
2312-241-74422
RK73H2A3012F
RK73H2A2002F
RK73H2A2491F
RK73H2A2000F
Open
-
-
-
-
-
-
30V
40V
30V
0.3uH
15uH
4.5 - 5.5V
30A
4.7 - 25V
200mA
schottky
sot23
Central
2.1A
schottky
D-64
IRF
100mA
schottky
sot23
Central
36A
ferrite
20%
SMT
Panasonic
0.70A
ferrite
20%
SMT
Coilcraft
0.8 - 5V PWM controller
0 - 70°C
16 Ld SOIC
Intersil
Power Block
11mm x 11mm International Rect
1.8 - 5V PWM controller -40 to +85°C
S6
Linear Technology
CMPD3003A
10MQ040N
CMPSH-3
ETQP2H0R3BFA
1008PS-153M
ISL6558CB
iP2002
LT1616
4-Phase Reference Design Bill of Materials
Refer to the following application notes for detailed guidelines and suggestions when
implementing iPOWIR Technology products:
AN-1028: Recommended Design, Integration and Rework Guidelines for International Rectifier’s
iPOWIR Technology BGA Packages
This paper discusses the assembly considerations that need to be taken when mounting iPOWIR BGA’s
on printed circuit boards. This includes soldering, pick and place, reflow, inspection, cleaning and
reworking recommendations.
AN-1029: Optimizing a PCB Layout for an iPOWIR Technology Design
This paper describes how to optimize the PCB layout design for both thermal and electrical performance.
This includes placement, routing, and via interconnect suggestions.
AN-1030: Applying iPOWIR Products in Your Thermal Environment
This paper explains how to use the Power Loss and SOA curves in the data sheet to validate if the
operating conditions and thermal environment are within the Safe Operating Area of the iPOWIR product.
AN-1047: Graphical solution for two branch heatsinking Safe Operating Area
Detailed explanation of the dual axis SOA graph and how it is derived.
www.irf.com
9
iP2002
VDD
NC
VIN
NC
SGND
PGND
NC
NC
ENABLE
NC NC
PWM
NC NC
NC
NC NC
PRDY
NC
NC
VSW
PGND
NC
Dimensions shown in inches (millimeters)
Recommended PCB Footprint (Top View)
10
www.irf.com
iP2002
0.15 [.006] C
2X
11.00
[.433]
6
B
A
5
C
0.45 [.0177]
0.35 [.0138]
NOTES:
0.12 [.005] C
BALL A1
CORNER ID
1.
2.
3.
4.
5
11.00
[.433]
6
7
0.15 [.006] C
TOP VIEW
2X
133X Ø
4X
0.80
[.032]
BOTTOM VIEW
22X
6
0.55 [.0216]
0.45 [.0178]
0.15 [.006]
0.08 [.003]
0.40
[.016]
DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
CONTROLLING DIMENSION: MILLIMETER
SOLDER BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
PRIMARY DATUM C (SEATING PLANE) IS DEFINED BY THE
SPHERICAL CROWNS OF THE SOLDER BALLS.
BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE
PACKAGE BODY.
SOLDER BALL DIAMETER IS MEASURED AT THE MAXIMUM SOLDER
BALL DIAMETER, IN A PLANE PARALLEL TO DATUM C.
7
C A B
C
2.31 [.0909]
2.11 [.0831]
(4X 1.1 [.043])
2.76 [.1087]
2.46 [.0969]
SIDE VIEW
Mechanical Drawing
www.irf.com
11
iP2002
0123
XXXX
iP2002
Part Marking
0123
601000
iP2002
0123
601000
iP2002
16mm
24mm
FEED DIRECTION
NOTES:
1. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Tape & Reel Information
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.8/01
12
www.irf.com