IRF IRGP30B120KD-E

PD- 93818
IRGP30B120KD-E
Motor Control Co-Pack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
VCES = 1200V
• Low VCE(on) Non Punch Through (NPT)
Technology
• Low Diode VF (1.76V Typical @ 25A & 25°C)
• 10 µs Short Circuit Capability
• Square RBSOA
• Ultrasoft Diode Recovery Characteristics
• Positive VCE(on) Temperature Coefficient
• Extended Lead TO-247AD Package
VCE(on) typ. = 2.28V
G
VGE = 15V, IC = 25A, 25°C
E
N-channel
Benefits
• Benchmark Efficiency for Motor Control
Applications
• Rugged Transient Performance
• Low EMI
• Significantly Less Snubber Required
• Excellent Current Sharing in Parallel Operation
• Longer leads for Easier Mounting
TO-247AD
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current (Fig.1)
Continuous Collector Current (Fig.1)
Pulsed Collector Current (Fig.3, Fig. CT.5)
Clamped Inductive Load Current(Fig.4, Fig. CT.2)
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation (Fig.2)
Maximum Power Dissipation (Fig.2)
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw.
Max.
Units
1200
60
30
120
120
30
120
± 20
300
120
-55 to + 150
V
A
V
W
°C
300, (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
ZθJC
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Transient Thermal Impedance Junction-to-Case
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.24
–––
6 (0.21)
0.42
0.83
–––
40
–––
Units
°C/W
g (oz)
(Fig.24)
1
12/14/99
IRGP30B120KD-E
Electrical C haracteristics @ TJ = 25°C (unless otherw ise specified)
P a ra m e te r
V (B R )C E S
C o lle cto r-to -E m itte r B re a kd o wn V o lta g e
M in.
1200
∆V (B R )C E S / ∆T j T em p e ra tu re C o e ff. o f B re a kd o wn V o lta g e
C o lle cto r-to -E m itte r S atura tio n
V C E (on )
V o lta g e
V G E (th )
G a te T h resho ld V o lta g e
∆V G E (th ) / ∆T j
T em p e ra tu re C o e ff. o f T h resh o ld V o lta g e
g fe
F orwa rd T ran sc o nd u c ta nc e
IC E S
Z ero G ate V oltag e C o lle ctor C u rre nt
V FM
IG E S
4 .0
1 4 .8
T yp .
+ 1 .2
2 .2 8
2 .4 6
3 .4 3
2 .7 4
2 .9 8
5 .0
- 1 .2
1 6 .9
325
1 .7 6
1 .8 6
1 .8 7
2 .0 1
D io d e F o rw a rd V o lta g e D ro p
G a te -to -E m itte r L ea k a ge C u rre n t
M ax . U nits
V
V /°C
2 .4 8
2 .6 6
4 .0 0
V
3 .1 0
3 .3 5
6 .0
V
C o nd itio ns
F ig .
V G E = 0 V ,I c = 2 5 0 µ A
V G E = 0 V , I c = 1 m A ( 2 5 -1 2 5 o C )
IC = 2 5 A , V G E = 1 5 V
5, 6
IC = 3 0 A , V G E = 1 5 V
7, 9
IC = 6 0 A , V G E = 1 5 V
10
I C = 2 5 A , V G E = 1 5 V , T J = 1 2 5 °C
11
I C = 3 0 A , V G E = 1 5 V , T J = 1 2 5 °C
V C E = V G E , IC = 2 5 0 µ A
9,1 0,1 1,12
o
o
m V / C V C E = V G E , I C = 1 m A ( 2 5 -1 2 5 C )
1 9 .0
250
675
2000
2 .0 6
2 .1 7
2 .1 8
2 .4 0
±1 0 0
S
V C E = 5 0 V , IC = 2 5 A , P W = 8 0 µ s
V G E = 0 V ,V C E = 1 2 0 0 V
µA
V G E = 0 v , V C E = 1 2 0 0 V , T J = 1 2 5 °C
V G E = 0 v , V C E = 1 2 0 0 V , T J = 1 5 0 °C
IC = 2 5 A
V
IC = 3 0 A
8
I C = 2 5 A , T J = 1 2 5 °C
I C = 3 0 A , T J = 1 2 5 °C
nA
V G E = ±2 0 V
Sw itching C haracteristics @ T J = 25°C (unless otherw ise specified)
P a ra m e te r
T urn -O ff S witc h ing L o ss
T yp .
169
19
82
1066
1493
M ax . U nits
254
29
nC
123
1250
1800
µJ
E tot
T otal S w itc h ing L o ss
2559
3050
E on
T urn -o n S witc h in g Lo ss
E off
T urn -o ff S w itc h ing L o ss
1660
2118
1856
2580
Qg
T otal G a te ch a rg e (turn -o n )
Q ge
G a te - E m itte r C h arg e (tu rn -on )
Q gc
G a te - C o lle c to r C h a rg e (tu rn -o n )
E on
T urn -O n S witc h in g Lo ss
E off
M in.
C o nd itio ns
F ig .
IC = 2 5 A
23
V CC = 6 0 0 V
CT 1
V GE = 15 V
IC = 2 5 A , V C C = 6 0 0 V
CT 4
V G E = 1 5 V , R g = 5 Ω, L=200µH
WF1
o
T J = 2 5 C , E n e rg y lo sse s in clu d e ta il
a n d dio d e rev e rse re co v e ry
Ic = 2 5 A , V C C = 6 0 0 V
µJ
WF2
13 , 15
V G E = 1 5 V , R g = 5 Ω, L=200µH
CT 4
o
E tot
T otal S w itc h ing L o ss
3778
4436
td (o n )
T urn - o n d e la y tim e
tr
R ise tim e
td (o ff)
T urn - o ff d e la y tim e
tf
F all tim e
65
35
230
75
C ies
In p u t C a p a cita n c e
C oes
O u tp ut C a p ac ita n ce
C res
R e v erse T ra n sfe r C a pa c ita n ce
50
25
210
60
2200
210
85
T J = 1 2 5 C , E n e rg y lo sse s in clu d e ta il
a n d dio d e rev e rse re co v e ry
Ic = 2 5 A , V C C = 6 0 0 V
ns
14 , 16
V G E = 1 5 V , R g = 5 Ω, L=200µH
CT 4
T J = 1 2 5 oC ,
WF1
WF2
V GE = 0V
pF
V CC = 3 0 V
22
f = 1 .0 M H z
o
RBSOA
R e v erse b ia s sa fe o p e ra tin g a re a
WF1 & 2
T J = 1 5 0 C , Ic = 1 2 0 A
V CC = 1 0 0 0 V , V P = 1 2 0 0 V
F U LL SQ U AR E
4
CT 2
R g = 5 Ω, V G E = + 1 5 V to 0 V
o
SCSO A
S h ort C ircu it S a fe O p era tin g A re a
E rec
R e v erse re c o v e ry e n e rg y o f th e d io de
trr
D io d e R ev e rse re co v e ry tim e
Irr
P e ak R e v e rse R e c ov e ry C u rre n t
Le
In te rn a l E m itte r In du c ta n ce
10
----
----
µs
1820
300
34
13
2400
µJ
ns
A
nH
TJ = 150 C
V C C = 9 0 0 V ,V P = 1 2 0 0 V
CT 3
WF4
R g = 5 Ω, V G E = + 1 5 V to 0 V
2
38
T J = 1 2 5 oC
V C C = 6 0 0 V , Ic = 2 5 A
17 ,18 ,19
20 , 21
V G E = 1 5 V , R g = 5 Ω, L=200µH
CT 4, WF3
M e a sure d 5 m m from th e p a ck a g e .
www.irf.com
IRGP30B120KD-E
Fig.1 - Maximum DC Collector
Current vs. Case Temperature
Fig.2 - Power Dissipation vs. Case
Temperature
70
320
60
280
240
50
(W)
tot
30
160
P
I
C
(A)
200
40
120
20
80
10
40
0
0
0
40
80
120
160
0
40
80
120
160
T C (°C)
T C (°C)
Fig.3 - Forward SOA
T C =25°C; Tj < 150°C
Fig.4 - Reverse Bias SOA
Tj = 150°C, V GE = 15V
1000
1000
PULSED
2µs
100
10µ s
100
(A)
10
I
1ms
I
C
C
(A)
100µs
10
1
10ms
DC
0.1
1
1
www.irf.com
10
100
V CE (V)
1000
10000
1
10
100
V CE (V)
1000
10000
3
IRGP30B120KD-E
Fig.6 - Typical IGBT Output
Characteristics
Tj=25°C; tp=300µs
Fig.5 - Typical IGBT Output
Characteristics
Tj= -40°C; tp=300µs
60
60
V GE = 18V
V GE = 15V
V GE = 12V
55
45
V GE = 15V
V GE = 12V
V GE = 10V
40
40
V GE = 8V
35
35
50
(A)
30
C
30
C
(A)
50
V GE = 10V
V GE = 8V
45
25
I
I
V GE = 18V
55
25
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
V CE (V)
5
0
6
Fig.7 - Typical IGBT Output
Characteristics
Tj=125°C; tp=300µs
60
V GE
V GE
V GE
V GE
V GE
50
45
50
6
40
(A)
30
35
30
F
25
I
I
5
45
35
25
20
20
15
15
10
10
5
5
0
0
0
4
3
4
V CE (V)
- 40°C
25°C
125°C
55
C
(A)
40
= 18V
= 15V
= 12V
= 10V
= 8V
2
Fig.8 - Typical Diode Forward
Characteristic
tp=300µs
60
55
1
1
2
3
4
V CE (V)
5
6
0
1
2
V F (V)
3
4
www.irf.com
IRGP30B120KD-E
Fig.10 - Typical V CE vs V GE
Tj= 25°C
20
20
18
18
16
16
14
14
12
12
10
V CE ( V )
V
CE
(V)
Fig.9 - Typical V CE vs V GE
Tj= -40°C
I CE =10A
I CE =25A
I CE =50A
8
10
I CE =10A
I CE =25A
I CE =50A
8
6
6
4
4
2
2
0
0
6
8
10
12
14
16
18
20
6
V GE (V)
12 14
V GE (V)
16
18
20
18
225
16
200
14
175
12
150
Tj=25°C
Tj=125°C
(A)
250
125
C
I CE =10A
I CE =25A
I CE =50A
I
V CE ( V )
20
8
10
Fig.12 - Typ. Transfer Characteristics
V CE =20V; tp=20µs
Fig.11 - Typical V CE vs V GE
Tj= 125°C
10
8
100
6
75
4
50
2
25
0
0
Tj=125°C
Tj=25°C
6
www.irf.com
8
10
12 14
V GE (V)
16
18
20
0
4
8
12
V GE (V)
16
20
5
IRGP30B120KD-E
Fig.13 - Typical Energy Loss vs Ic
Tj=125°C; L=200µH; V CE =600V;
Rg=22 Ω ; V GE =15V
Fig.14 - Typical Switching Time vs Ic
Tj=125°C; L=200µH; V CE =600V;
Rg=22 Ω ;V GE =15V
8000
1000
Eon
7000
tdoff
Eoff
5000
t (nS)
Energy (µJ)
6000
4000
tf
tr
100
3000
tdon
2000
1000
0
10
0
10
20
30
40
50
0
60
10
30
50
60
Fig.16 - Typical Switching Time vs Rg
Tj=125°C; L=200µH; V CE =600V;
I CE =25A; V GE =15V
1000
Eon
3300
40
I C (A)
I C (A)
Fig.15 - Typical Energy Loss vs Rg
Tj=125°C; L=200µH; V CE =600V;
I CE =25A; V GE =15V
3500
20
tdoff
3100
2700
Eoff
2500
t (nS)
Energy (uJ)
2900
tdon
100
2300
tr
tf
2100
1900
1700
1500
10
0
5 10 15 20 25 30 35 40 45 50 55
Rg (ohms)
6
0
5
10 15 20 25 30 35 40 45 50 55
Rg (ohms)
www.irf.com
IRGP30B120KD-E
Fig.18 - Typical Diode I RR vs Rg
Tj=125°C; I F =25A
Fig.17 - Typical Diode I RR vs I F
Tj=125°C
45
45
40
40
35
35
Rg=5 Ω
25
30
IRR ( A )
IRR ( A )
30
Rg=10 Ω
20
Rg=22 Ω
20
15
15
Rg=51 Ω
10
25
10
5
5
0
0
0
10
20
30
I F (A)
40
50
Fig.19 - Typical Diode I RR vs dI F /dt
V CC =600V; V GE =15V
I F =25A; Tj=125°C
45
0
60
5
10 15 20 25 30 35 40 45 50 55
Rg (ohms)
Fig.20 - Typical Diode Q RR
V CC =600V; V GE =15V; Tj=125°C
7000
40
6500
Rg=5 Ω
35
22 Ω
51 Ω
6000
30
10 Ω
40A
30A
QRR ( n C )
(A)
5500
25
5000
RR
Rg=10 Ω
25A
4500
I
20
Rg=22 Ω
15
10
3500
5
3000
0
2500
www.irf.com
500
1000
dI F / dt (A/µs)
20A
4000
Rg=51 Ω
0
5Ω
50A
1500
0
500
1000
1500
dI F / dt (A/µs)
7
IRGP30B120KD-E
Fig.21 - Typ. Diode E rec vs. I F
Tj=125°C
2400
5Ω
2200
10 Ω
22 Ω
Energy (uJ)
2000
51 Ω
1800
1600
1400
1200
1000
800
0
10
20
30
I F (A)
40
50
60
Fig.23 - Typ. Gate Charge vs. V GE
I C =25A; L=600µH
Fig.22 - Typical Capacitance vs V CE
V GE =0V; f=1MHz
16
10000
600V
14
C ies
800V
1000
10
V GE ( V )
CapacItance (pF)
12
C oes
8
6
100
4
C
res
2
0
10
0
20
40
60
V CE (V)
8
80
100
0
40
80
120
160
200
Q G , Total Gate Charge (nC)
www.irf.com
IRGP30B120KD-E
Fig.24 - Normalized Transient Thermal Impedance, Junction-to-Case
θ
10
1
D =0.5
0.2
0.1
0.1
0.05
P DM
0.02
t1
0.01
0.01
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + T C
SINGLE
PULSE
0.001
0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
10.00000
t 1 , Rectangular Pulse Duration (sec)
www.irf.com
9
IRGP30B120KD-E
Fig. CT.1 - Gate Charge Circuit (turn-off)
Fig. CT.2 - RBSOA Circuit
L
L
VCC
DUT
80 V
DUT
1000V
0
Rg
1K
Fig. CT.4 - Switching Loss Circuit
Fig. CT.3 - S.C. SOA Circuit
d iod e cla m p /
DUT
D riv er
D
C
L
900V
- 5V
DUT /
D R IV E R
DUT
VCC
Rg
Fig. CT.5 - Resistive Load Circuit
R =
DUT
VCC
IC M
VCC
Rg
10
www.irf.com
IRGP30B120KD-E
Fig. WF.1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4
Fig. WF.2 - Typ. Turn-on Loss Waveform
@ Tj=125°C using Fig. CT.4
800
40
900
45
700
35
800
40
600
30
700
35
TEST CURRENT
90% ICE
25
400
20
600
30
300
15
V CE ( V )
tf
I CE ( A )
V CE ( V )
500
25
90% test current
400
20
tr
300
200
15
10% test current
10
5% VCE
ICE ( A )
500
200
10
5% VCE
100
5
5% ICE
0
0
100
5
0
0
Eon Loss
Eoff Loss
-100
-0.5
-5
0.0
0.5
1.0
1.5
2.0
2.5
-100
-5
4.0
4.1
4.2
t I me (µs)
4.3
4.4
4.5
t I me (µs)
Fig. WF.3 - Typ. Diode Recovery Waveform
@ Tj=125°C using Fig. CT.4
Fig. WF.4 - Typ. S.C. Waveform
@ TC=150°C using Fig. CT.3
30
1200
250
20
1000
200
-400
10
800
150
-600
0
600
100
-10
400
50
-20
200
0
-30
0
0
-200
QRR
10%
Peak
IRR
-800
ICE ( A )
V CE ( V )
I C E( A )
V CE( V )
tRR
Peak
IRR
-1000
-1200
-0.5
0.0
0.5
t I me (µS)
www.irf.com
1.0
-50
-10
0
10
20
30
t i me (µs)
11
IRGP30B120KD-E
TO-247AD Case Outline and Dimensions
∆ Ρ Γ . Νο:
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
Data and specifications subject to change without notice.
12/99
12
www.irf.com