Bulletin I27179 22 - Sep PIIPM15P12D007 Programmable Isolated IPM PI-IPM Features: • • • • Package: Power Module: NPT IGBTs 15A, 1200V 10us Short Circuit capability Square RBSOA Low Vce(on) (2.7Vtyp @ 15A, 25°C) Positive Vce(on) temperature coefficient Gen III HexFred Technology Low diode VF (2.32Vtyp @ 15A, 25°C) Soft reverse recovery 10mΩ sensing resistors on all phase outputs Thermal coefficient < 50ppm/°C Embedded driving board • • • • • • • • • • • Programmable 40 Mips DSP Current sensing feedback from two phases Full protection from ground and line to line faults UVLO, OVLO on DCbus voltage Embedded flyback smps for floating stages (single 15Vdc @ 300mA input required) Asynchronous isolated 2.5Mbps serial port for DSP communication and/or programming Synchronous isolated 10Mbps serial port for DSP communication and/or programming IEEE standard 1149.1 (JTAG port interface) for program downloading and debugging Separated turn on / turn off outputs for IGBTs di/dt control Hall effect sensors, sin/cos and quadrature encoder interfaces 2 On board 64kbits I C EEprom PIIPM – BBI (EconoPack 2 outline compatible) Power Module schematic: DC+ OUT DC+ IN IN1 IN2 IN3 DC+ (signal) Out 1 Out 2 Out 3 BRK DC- DC- (signal) Input bridge, brake and three phases inverter (BBI) with current sensing resistors on all output phases and thermistor PIIPM15P12D007 System Block Schematic: Description The PIIPM15P12D007 is a fully integrated Intelligent Power Module for high performances Servo Motor Driver applications. The device core is a state of the art DSP, the TMS320LF2406A at 40 Mips, interfaced with a full set of peripherals designed to handle all analog feedback and control signals needed to correctly manage the power section of the device. A 64kbits EEPROM is also available to store calibration data. The PIIPM has been designed and tailored to implement internally all functions needed to close the current, speed and position loops of a high performances servo motor driver. The use of the flash memory version of the DSP and the JTAG port connector allows the user to easily develop and download his own proprietary algorithm. www.irf.com TM The device comes in the EMP package, fully compatible in length, width and height with the popular EconoPack 2 outline. 1 Tx + COM COM V in V in Hall3 - Excitation Hall2 Hall1 Contactor Homing/Direction. Counter ADCin SinCos2/QE2 SinCos1/QE1 n.c. SpiCKout SpiTXout SpiRXin GND iso Rx- Rx+ Tx- SCI_Tx_en DE RS485 line driver C AN R X SciTx ; 17 S tart / stop Cap6/PWM7 ; 45 , 48 Cap5 ;56 Cap4 ; 60 IOPB6-TdirA ; 11 ADCin6 ; 67 ADCin7 ; 66 ADCin8 ; 80 TCLKinB ; 89 Cap3/TdirB ; 2 , 52 QEP2 ; 55 QEP1 ; 57 5V SpiCLK ; 24 SpiSIMO ;21 5V SpiSOMI ; 22 SciRx ; 18 5V IOPA2 ; 16 C AN TX Power Supply 3.3V, 5V 15V flyback GND iso Optoisolation Optoisolation Optoisolation E M U1 E M U0 TD i TM S TMS320LF2406A 40Mips 15V iso-3 15V iso-2 15V iso-1 5V 3.3V 15V 5V ref 3.3V ref FaultMem~ BrakeFault~ B oo t-en~ ; 36 ; 33 ; 31 ; 28 3.3V DCB mon IOPD0 ; 15 IOPE3 ; 41 ADCin4 ; 70 IOPE2 ; 43 IOPE4 ; 38 T3PWM ; 7 PWM3 PWM4 PWM5 PWM6 PWM1 ; 39 PWM2 ; 37 JTAG/CAN interface connector TD o AD Cin5 ; 69 5V iso P D P in tB ~ ; 9 5 Vin iso T ck PDPintA~ ; 6 Module connectors TR S T AD Cin2 ; 74 A D C in1 ; 77 Pin on RS485 connector PD AD Cin3 ; 72 Pin on JTAG connector FaultCLR ADCin2 ADCin1 Comp 3.3V 3.3V Latch-reset~ Lin 22kHz 11kHz 11kHz Latch-reset~ Latch Th- I2C-Data 5V 5V FaultMem~ I2C-clock Th+ Gate Drivers IR2214 Based 15V 15V 3.3V iso-3 Hin DIV FaultCLR Fault~ B rake Fa ult~ www.irf.com F a ult~ WD 85 DC - DC + EEPROM 3.3V C1 G1 E1 G4 E4 C4 Current Sense & Level Shifter Current Sense & Level Shifter Watchdog FaultCLR BrakeFault~ FaultCLR Fault~ FaultCLR Fault~ Gate Drivers IR2214 Based Gate Drivers IR2214 Based 400kHz RS~ 93 Gate Drivers IR2214 Based 15V 3.3V 5V Lin Reg 400kHz 5V Lin Reg Lin Lin Hin 15V 15V 3.3V iso-1 Lin Hin 15V 15V 3.3V iso-2 15V iso-3 15V iso-2 R3 + R3 - R2 + R2 - CB GB EB C3 G3 E3 G6 E6 C6 C2 G2 E2 G5 E5 C5 PIIPM15P12D007 I27179 22 - Sep Embedded driving board block schematic 2 PIIPM15P12D007 I27179 22 - Sep Signal pins on RS485 connector Symbol Lead Description State Connector pin number Tx+ RS485 Trasmitter Non inverting Driver Output Output 1 TxRx- RS485 Trasmitter Inverting Driver Output Output 2 RS485 Receiver Inverting Driver Input Input 3 Rx+ RS485 Receiver Non inverting Driver Input Input 4 SpiCKout Output 5 Input 6 Input 7 SpiTXout SpiRXin SPI clock output (GND iso referenced) External 5V supply voltage for opto-couplers and line driver supply Extenal 5V supply ground reference for opto-couplers and line driver supply SPI transmitter output (GND iso referenced) SPI receiver input (GND iso referenced) Output Input 8 10 SinCos1 / QE1 SinCos encoder input 1 / Quadrature encoder input 1 Input 11 SinCos2 / QE2 SinCos encoder input 2 / Quadrature encoder input 2 Input 12 Contactor Hall1 General purpose I/O I/O 13 Hall effect sensor input 1 Input 14 Hall2 Hall effect sensor input 2 Input 15 Hall3 / Excitation Hall effect sensor input 3 / Resolver excitation I/O 16 Input 17-18 Input 19-20 Vin iso GND iso External 15V supply voltage. Internally referred to DC bus minus pin (DC -) External 15V supply ground reference. This pin is directly connected to DC - Vin COM Signal pins on IEEE1149.1 JTAG connector CAUTION: DO NOT APPLY DC BUS VOLTAGE WHEN JTAG INTERFACE IS CONNECTED, SEVERE DAMAGE MAY OCCUR ON POWER MODULE AND ON YOUR EQUIPMENT! Symbol Lead Description State Connector pin number PD Presence detect. Indicates that the emulation cable is connected and that the PIIPM logic is powered up. PD is tied to the DSP 3.3V supply through a 1k resistor. Output 3 Homing / Direction Homing signal / Counter direction Input 4 Start/Stop Start/Stop signal Input 5 CAN Tx CAN transmitter signal Output 6 CAN Rx EMU1/OFF~ CAN receiver signal Input 7 Emulation pin 1 I/O 8 Counter Counter signal Output 9 EMU0 Emulation pin 0 I/O 10 TRST~ JTAG test reset Input 13 www.irf.com 3 PIIPM15P12D007 I27179 22 - Sep TMS JTAG test mode select Input 14 TDO JTAG test data output Output 15 TDI JTAG test data input Input 16 Output 17 Input 18 Input 19 TCKRET TCK Boot-En~ JTAG test clock return. Test clock input to the emulator. Internally short circuited to TCK. JTAG test clock. TCK is a 10MHz clock source from the emulation pod. This signal can be used to drive the system test clock. Boot ROM enable. This pin is sampled during DSP reset, pulling it low enables DSP boot ROM through SCI serial line at 40Mhz operation (Flash versions only). 47k internal pull up. ADCin General purpose analog input Input 20 COM External 15V supply ground reference. This pin is directly connected to DC - input 1-11 Vin External 15V supply voltage. Internally referred to DC bus minus pin (DC-) Input 2-12 Following pins are intended for signal communication between driving board and power module only, though here described for completeness, they are on purpose not available to the user. Symbol DC + Lead Description DC Bus plus input signal DC - DC Bus minus input signal (internally connected to COM) Th + Thermal sensor positive input Th - Thermal sensor negative input (internally connected to COM) G1/2/3 Gate connections for high side IGBTs E1/2/3 Emitter connections for high side IGBTs (Kelvin points) R1/2/3 + Output current sensing resistor positive input (IGBTs emitters 1/2/3 side, Kelvin points) R1/2/3 - Output current sensing resistor negative input (Motor side, Kelvin points) G4/5/6 Gate connections for low side IGBTs E4/5/6 Emitter connections for low side IGBTs (Kelvin points) Gb Gate connections for brake IGBT Eb Emitter connection for brake IGBT (Kelvin point) Brk Collector connection for brake IGBT (Kelvin point) www.irf.com Pin number Lateral connectors on embedded driving board 4 PIIPM15P12D007 I27179 22 - Sep Power Module Frame Pins Mapping JTAG conn. Pin1 IN1 OUT1 IN2 OUT2 RS485 conn. OUT3 IN3 www.irf.com 5 PIIPM15P12D007 I27179 22 - Sep Absolute Maximum Ratings (TC=25ºC) Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to VDC-, all currents are defined positive into any lead. Thermal Resistance and Power Dissipation ratings are measured at still air conditions. Symbol Inverter and Brake Bridge Embedded Driving Board Max. DC Bus Voltage 0 1000 VCES Collector Emitter Voltage 0 1200 IC @ 100C IGBTs continuous collector current (TC = 100 ºC, fig. 1) 15 IC @ 25C IGBTs continuous collector current (TC = 25 ºC,fig 1) 30 ICM Pulsed Collector Current (Fig. 3, Fig. CT.5) 60 IF @ 100C Diode Continuous Forward Current (TC = 100 ºC) 15 IF @ 25C Diode Continuous Forward Current (TC = 25 ºC) 30 IFM Diode Maximum Forward Current 60 VGE Gate to Emitter Voltage PD @ 25°C Power Dissipation (One transistor) 140 PD @ 100°C Power Dissipation (One transistor, TC = 100 ºC) 55 VRRM repetitive peak reverse voltage (Tj = 150 ºC) VRSM non repetitive peak reverse voltage Io Diode Continuous Forward Current (TC = 100 ºC, 120º Rect conduction angle) IFSM One-cycle forward. Non-repetitive on state surge current (t=10ms, Initial Tj = 150ºC) I2t Current I2t for fusing (t=10ms, Initial Tj = 150ºC) I2√t Current I2√t for fusing (t=0.1 to 10ms, no voltage reapplied, Initial Tj = 150ºC) Vin Non isolated supply voltage (DC- referenced) -20 20 Vin-iso Isolated supply voltage (GND iso referenced) -5 5.5 -20 +20 1400 Tj = 150 ºC Irrm(max)=5mA 1500 100% VRRM reapplied 225 No voltage reapplied 270 100% VRRM reapplied 253 No voltage reapplied 365 3650 RS485 Receiver input voltage (GND iso referenced) -7 12 TA--EDB Operating Ambient Temperature Range -25 +70 TSTG-EDB Board Storage Temperature Range -40 +125 Input-Output Continuous Withstand Voltage (RH ≤ 50%, -40°C ≤ TA ≤ 85°C ) AC DC 800 1000 Input-Output Momentary Withstand Voltage (RH ≤ 50%, t = 1 min, TA = 25°C) Units V A V W V 45 Rx MT www.irf.com Min. VDC VISO-CONT R485 VISO-TEMP RS485 Power Module Parameter Definition RMS A A 2s A2√s V ºC V 2500 Mounting Torque 3.5 TJ Operating Junction Temperature -40 +150 TSTG Storage Temperature Range -40 +125 Vc-iso Isolation Voltage to Base Copper Plate -2500 +2500 Nm ºC V 6 PIIPM15P12D007 I27179 22 - Sep Electrical Characteristics: Inverter and Brake For proper operation the device should be used within the recommended conditions. TJ = 25°C (unless otherwise specified) Symbol Parameter Definition V(BR)CES Collector To Emitter Breakdown Voltage ∆V(BR)CES / ∆T Temperature Coeff. of Breakdown Voltage VCE(on) Min. Gate Threshold Voltage ∆VGE(th) / ∆Tj Temp. Coeff. of Threshold Voltage gfe Forward Trasconductance Max. 1200 4.68 V/ºC 2.70 3.00 3.74 4.24 3.14 3.61 4.89 5.30 -9.80 8 Units V +1.2 Collector To Emitter Saturation Voltage VGE(th) Typ. 9 10 V V Zero Gate Voltage Collector Current 376 1110 Diode Forward Voltage Drop IGES Gate To Emitter Leakage Current R1/2/3 Sensing Resistors 9.9 2.32 2.52 2.47 2.64 10 VGE = 0V, IC = 1mA (25 - 125 ºC) IC = 15A, VGE = 15V 5, 6 IC = 30A, VGE = 15V 7, 9 VCE = VGE, IC = 250µA mV/ºC VCE = VGE, IC = 1mA (25 - 125 ºC) S VCE = 50V, IC = 15A, PW = 80µs 10, 11 12 VGE = 0V, VCE = 1200V µA VGE = 0V, VCE = 1200V, TJ = 125 ºC VGE = 0V, VCE = 1200V, TJ = 150 ºC 2000 VFM Fig. VGE = 0V, IC = 250µA IC = 15A, VGE = 15V, TJ = 125 ºC 125 ICES Test Conditions V ±100 nA 10.1 mΩ IC = 15A IC = 15A, TJ = 125 ºC 8 VGE =± 20V Electrical Characteristics: Bridge For proper operation the device should be used within the recommended conditions. TJ = 25°C (unless otherwise specified) Symbol Parameter Definition VFM Forward Voltage Drop VF(TO) Threshold voltage Irm Reverse Leakage Current www.irf.com Min. Typ. Max. 1.24 1.76 1.08 1.27 0.78 5 Units V Test Conditions tp = 400µs, Ipk = 30A tp = 400µs, Ipk = 15A V TJ = 125 ºC mA TJ = 125 ºC Fig. 24 VR = 1200V 7 PIIPM15P12D007 I27179 22 - Sep Switching Characteristics: Inverter and Brake For proper operation the device should be used within the recommended conditions. TJ = 25°C (unless otherwise specified) Symbol Parameter Definition Min Typ Max Qg Total Gate Charge (turn on) 84 127 Qge Gate – Emitter Charge (turn on) 10 15 Qgc Gate – Collector Charge (turn on) 43 64 Eon Turn on Switching Loss 838 1207 Eoff Turn off Switching Loss 632 900 Etot Total Switching Loss 1470 Eon Turn on Switching Loss Eoff Units Test Conditions IC = 15A nC VCC = 600V Fig. 23 CT1 VGE = 15V IC = 15A, VCC = 600V, TJ = 25 ºC CT4 VGE = 15V, RG =10Ω, L = 500µH WF1 2107 Tail and Diode Rev. Recovery included WF2 1154 1512 IC = 15A, VCC = 600V, TJ = 125 ºC Turn off Switching Loss 933 1030 Etot Total Switching Loss 2087 2542 13, 15 CT4 WF1 WF2 td (on) Turn on delay time 98 104 Tr Rise time 14 25 td (off) Turn off delay time 132 142 Tf Fall time 226 247 Cies Input Capacitance 1323 Coes Output Capacitance 255 Cres Reverse Transfer Capacitance 37 RBSOA Reverse Bias Safe Operating Area SCSOA Short Circuit Safe Operating Area EREC Diode reverse recovery energy 711 1263 Trr Diode reverse recovery time 113 Irr Peak reverse recovery current 36 RthJ-C_T µJ µJ VGE = 15V, RG =10Ω, L = 500µH Tail and Diode Rev. Recovery included IC = 15A, VCC = 600V, TJ = 125 ºC ns VGE = 15V, RG =10Ω, L = 500µH 14,16 CT4 WF1 WF2 VCC = 30V pF VGE = 0V 22 f = 1MHz TJ = 150 ºC, I C =60A, VGE = 15V to 0V VCC = 1000V, Vp = 1200V, RG = 5Ω 4 CT2 TJ = 150 ºC, VGE = 15V to 0V CT3 VCC = 1000V, Vp= 1200V, RG = 5Ω WF4 µJ TJ = 125 ºC 300 ns IF= 15A, VCC = 600V, 41 A VGE = 15V, RG =10Ω, L = 500µH 17,18 19,20 21 CT4 WF3 Each IGBT to copper plate thermal resistance 0.9 ºC/W RthJ-C_D Each Diode to copper plate thermal resistance 1.54 ºC/W See also fig. 25, 26 25,26 RthC-H Module copper plate to heat sink thermal resistance. Silicon grease applied = 0.1mm 0.03 ºC/W 29 IC = 2A, VDC = 530V, fsw = 8kHz, TC = 55 ºC PD1 42 IC = 3A, VDC = 530V, fsw = 8kHz, TC = 55 ºC Pdiss Total Dissipated Power FULL SQUARE 10 µs 81 40 www.irf.com W IC = 3A, VDC = 530V, fsw = 16kHz TC = 55 ºC, IC = 7A, VDC = 530V, fsw = 4kHz, TC = 55ºC PD2 PD3 8 PIIPM15P12D007 I27179 22 - Sep Electrical Characteristics: Embedded Driving Board (EDB) communication ports For proper operation the device should be used within the recommended conditions. Vin = 15V, Vin-iso = 5V, TA = 0 to 55°C, TC = 75°C (unless otherwise specified) Symbol Parameter Definition Vin EDB Input supply Voltage Isupp EDB Input Supply Current Vin iso EDB isolated supply voltage Iq. iso EDB isolated quiescent supply current Isupp. iso Min. Typ. Max. Units 12 15 18 V 150 250 mA 5 5.5 V 9 15 mA 10 15 22 mA 50 55 62 mA 4.5 EDB isolated supply current VDO-TX Differential Driver Output Voltage VCO-TX Driver Common mode output voltage VDI-RX Receiver Input Differential Threshold Voltage RIN-RX Receiver Input Resistance fMAX RS485 maximum data rate 2 Test Conditions VDC = 600V, fPWM = 16kHz Rx+ = +5V, Rx- = 0V SPIRxIn open SPIRxIn low Rx+ = 0V, Rx- = +5V Tx+ and Tx- open SPIRxIn low Rx+ = 0V, Rx- = +5V Tx+ and Tx- on 120Ω Type Conn. Non isolated Suppy Isolated supply V Rload = 120 Ω Logic High Input Voltage SpiRxIn SpiTxOut SpiCkOut - 0.2 3 V 0.2 V Ω 120 2.5 3.8 - 7V ≤ VCM ≤ +12V RS485 port RS485 Mbps V Logic Low Input Voltage 1.0 V Logic Low Input Current -5 mA 0,8 V Iout = -510µA 1,2 V Iout = -1,2mA V Iout = 3mA SPI port Logic Low Output Voltage Logic High Output Voltage TMS,TDI,TDO TCK,TRSTEMU0 EMU1/OFF~ PD JTAG interface pins (CAUTION: DO NOT APPLY DC BUS VOLTAGE WHEN JTAG INTERFACE IS CONNECTED, SEVER DAMAGE MAY OCCUR ON POWER MODULE AND ON YOUR EQUIPMENT!) VPD Presence detect voltage VBoot En~ IBoot-En~ 2.4 Please see TMS320LF2406A datasheet from Texas Instruments and VPD specifications 3.2 JTAG IPD = -100µA JTAG Active low JTAG 3.4 V Boot ROM enable input voltage 0.5 V Boot ROM enable input current - 100 µA 0.8 V Iout = - 780µA V Iout = 860µA Logic Low Output Voltage 3.3 Directly connected from DSP to connector pins. EMU0 and EMU1 with 4.7k internal pull up. CAN Tx Logic High Output Voltage 2.4 Logic Low Input Voltage 0.8 V JTAG CAN port CAN Rx Logic High Input Voltage 2.4 V ~ indicates active low signals www.irf.com 9 PIIPM15P12D007 I27179 22 - Sep AC Electrical Characteristics: Embedded Driving Board (EDB) DSP pins mapping For proper operation the device should be used within the recommended conditions. Vin = 15V, Vin-iso = 5V, TA = 0 to 55°C, TC = 75°C (unless otherwise specified) Symbol Parameter Definition Min. Typ. Max. Units VDCgain DC bus voltage feedback partition coefficient 2.39 2.44 2.49 mV/V VDCpole DC bus voltage feedback second order filter - 22 - kHz VDC-OVth DC bus voltage over-voltage threshold 870 920 970 V VTH25C Thermal sensor voltage feedback at 25 ºC (Fig. TF1) 2.65 2.75 2.85 V VTH100C Thermal sensor voltage feedback at 100 ºC (Fig. TF1) 1.04 1.09 1.14 V Vin-gain Input voltage feedback partition coefficient 125 128 131 mV/V Vin-pole Input voltage feedback filter pole 1600 1700 1800 Hz Iph-GAIN Current feedback gain 78 80 82 mV/A Iph-pole Current feedback filter pole 9.8 10.9 12 kHz Test Conditions DSP name; pin N ADCIN03 ; 72 PDPINTA~ ; 6 ADCIN04 ; 70 ADCIN05 ; 69 ADCIN01: 77 all two phases Iph-LAT Current feedback signal delay Iph-Zero Zero current input voltage level Vce_sc Vce Short Circuit Threshold detection ISC-DEL Short Circuit detection delay time WD External watchdog timeout (see also RS~ signal), please see WD internal signal for more details ADCin Generic purpose analog Input 1.62 SinCos1/QE1 3 High level threshold SinCos2/QE2 0 High level threshold V 6 all phases 0 ADCIN08 ; 80 kHz 4.13 V kHz 2,4 V 1 V 3.3 V 4.13 kHz 2,4 Low level threshold IOPC1 ; 85 V 3.3 0 PDPINTA~ ; 6 µs 3.3 4.13 Analog input for sincos resolver filter pole QEP2: internal digital signal of QE2 V ADCIN02: 74 Sec Low level threshold Analog input 2 for sincos resolver 1.68 0.9 Analog input for sincos resolver filter pole QEP1: internal digital signal of QE1 µs 7.4 Generic purpose analog input filter pole Analog input 1 for sincos resolver 1.65 5 V 1 ADCIN06 ; 67 See also QEP1 internal signal QEP1 ; 57 ADCIN07;66 See also QEP2 internal signal V COM DSP Ground 3, 5, 13, 14, 19, 26, 27, 29, 32, 34, 46, 53,55, 58, 63, 65, 68, 71, 73, 75, 76, 78,79, 81, 84, 90, 97 3.3V DSP 3.3V supply 4, 10, 20, 30, 35, 47, 54, 59, 64, 91, 98 Floating Not connected to anything 12, 23, 88, 25, 42, 44, 51 QEP2 ; 55 ~ indicates active low signals www.irf.com 10 PIIPM15P12D007 I27179 22 - Sep Other DSP pins mapping to the connector Symbol Signal Definition DSP name ; pin N Comments Hall1 Hall effect sensor input 1 CAP4/QEP3/IOPE7 ; 60 Digital Input. See elec. characteristic of I/O pins Hall2 Hall effect sensor input 2 CAP5/QEP4/IOPF0 ; 56 Digital Input. See elec. characteristic of I/O pins Hall3 / Excitation Hall effect sensor input 3 / Resolver excitation Contactor General purpose I/O IOPB6 ; 11 CAN Tx CAN transmit data CANTX ; 50 Not isolated CAN Rx CAN receive data CANRX ; 49 Not isolated Homing/Direction Homing signal/ Counter direction Start/Stop Start/Stop signal Boot En~ Boot ROM enable signal Counter Counter signal PWM7/IOPE1, CAP6/IOPF1 ; 45, 48 Digital I/O, Output is type G3. See electrical characteristics of I/O pins Digital I/O, Output is type G3. See electrical characteristics of I/O pins TDIRB/IOPF4, CAP3/IOPA5 ;2, 52 Avoid electrical conflicts beetwen these two pins IOPF6 ; 92 Digital Input. See elec. Characteristic of I/O pins BOOT_EN~ ; 86 TCLKINB ; 89 Connector RS485 JTAG See also EDB electrical characteristics Digital Input. See elec. Characteristics of I/O pins These signals are internal only Symbol Signal Definition DSP name ; pin N Comments PWM1 Out 1 high side IGBT gate drive signal PWM1; 39 DSP Event Manager A output PWM2 Out 1 low side IGBT gate drive signal PWM2 ; 37 DSP Event Manager A output PWM3 Out 2 high side IGBT gate drive signal PWM3 ; 36 DSP Event Manager A output PWM4 Out 2 low side IGBT gate drive signal PWM4 ; 33 DSP Event Manager A output PWM5 Out 3 high side IGBT gate drive signal PWM5 ; 31 DSP Event Manager A output PWM6 Out 3 low side IGBT gate drive signal PWM6 ; 28 DSP Event Manager A output Brake Brake IGBT gate drive signal T3PWM ; 7 DSP Event Manager B output SpiTXout SpiTx output SPISIMO ; 21 SpiRXout SpiRx input SPISOMI ; 22 SpiCKout SpiClk output SPICLK ; 24 Ref3.3V 3.3V reference voltage 5V supp. Flash programming voltage pin Tx SCI transmit data SCITXD ; 17 Drives Tx+ and Tx- through the opto-isolator and the line driver Rx SCI receive data SCIRXD ; 18 Driven by Rx+ and Rx- through the opto-isolator and the line driver SCI_Tx_en SCI transmitter enable IOPA2 ; 16 Latch-reset~ System general fault output reset signal IOPD0 ; 15 FaultCLR Gate driver fault output reset signal IOPE3 ; 41 www.irf.com VREFHI, VCCA ; 82, 83 VCCP ; 40 These signal are optically isolated. See also EDB electrical characteristics 3.3V reference and supply voltage for ADC converter Supplied by the embedded flyback regulator Enable the SCI line driver through an opto-isolator LFAULT Reset signal, to be activated via software after a fault or system boot, active low Gate driver reset, to be activated via software after a short-circuit or system boot 11 PIIPM15P12D007 I27179 22 - Sep RS~ ; 93 Forces a DSP reset if WD signal holds too long (see also EDB electrical char.) XTAL1 ; 87 A 10Mhz oscillator at 100ppm frequency stability feeds this pin. RS~ DSP reset input signal (see also WD signal) Xtal1 PLL oscillator input pin PLLF1 PLL filter input 1 PFFL ; 9 PLL filter for 40Mhz DSP clock frequency PLLF2 PLL filter input 2 PLLF2 ; 8 PLL filter for 40Mhz DSP clock frequency FaultMem~ System general fault input PDPINTA~ ; 6 Activated by short circuits on output phases or brake IGBTand by DC bus over-voltage comparator. Latched signal, see also Latch-reset BrakeFault~ Brake Protection Interrupt signal PDPINTB~ ; 95 Activated by short circuits on brake QEP1 Square wave of SinCos1/QE1 QEP1 ; 57 Internal Schmitt trigger, see also AC electrical characteristic QEP2 Square wave of SinCos2/QE2 QEP2 ; 55 Internal Schmitt trigger, see also AC electrical characteristic WD = high impedance, external watchdog is disabled WD Output signal for external watchdog IOPC1 ; 85 WD = high or WD = low, external watchdog is enabled and WD has to be periodically triggered by positive or negative transition. When the supervising system fails to retrigger the ext. watchdog within the time shown on AC electrical Characteristics, RS~ signal becomes active. ~ indicates active low signals 64kbits I2C EEprom (please see Microchip 24LC4 for more specifications) Symbol Signal Definition DSP name ; pin N I2C - Clock I2C - Clock IOPE2 ; 43 Connected to the I2C EEPROM I2C I2C IOPE4 ; 38 Connected to the I2C EEPROM - Data - Clock Comments Electrical characteristic of digital inputs and outputs. Symbol Parameter Definition Input: VIH Logic high,generic input voltage Input: VIL Logic low, generic input voltage Output Type G1(*) VOH Min. VOH VOH VOL Units Test Conditions V 0.8 2.4 0.8 2.4 VOL Output Type G3(*) Max. 2.4 VOL Output Type G2(*) Typ. 0.8 2.4 0.8 V V Iout = 700µA V Iout = - 700µΑ V Iout = 850 µΑ V Iout = - 850 µΑ V Iout = 950 µA V Iout = -950 µΑ (*) Please refer to TMS320LF2406A datasheet from Texas Instruments for more specifications. www.irf.com 12 PIIPM15P12D007 I27179 22 - Sep Fig. 1 – Maximum DC collector Current vs. case temperature TC = (ºC) Fig. 3 – Forward SOA TC = 25ºC; Tj ≤ 150ºC VCE = (V) www.irf.com Fig. 2 – Power Dissipation vs. Case Temperature TC = (ºC) Fig. 4 – Reverse Bias SOA Tj = 150ºC, VGE = 15V VCE = (V) 13 PIIPM15P12D007 I27179 22 - Sep Fig. 5 – Typical IGBT Output Characteristics Tj = - 40ºC; tp = 300µs VCE = (V) Fig. 7 – Typical IGBT Output Characteristics Tj = 125ºC; tp = 300µs VCE = (V) www.irf.com Fig. 6 – Typical IGBT Output Characteristics Tj = 25ºC; tp = 300µs VCE = (V) Fig. 8 – Typical Diode Forward Characteristics tp = 300µs VF = (V) 14 PIIPM15P12D007 I27179 22 - Sep Fig. 9 – Typical VCE vs. VGE Tj = - 40ºC VGE = (V) Fig. 11 – Typical VCE vs. VGE Tj = 125ºC VGE = (V) www.irf.com Fig. 10 – Typical VCE vs. VGE Tj = 25ºC VGE = (V) Fig. 12 – Typical Transfer Characteristics VCE = 20V; tp = 20µs VGE = (V) 15 PIIPM15P12D007 I27179 22 - Sep Fig. 13 – Typical Energy Loss vs. IC Tj = 125ºC; L = 500µH; VCE = 600V; Rg = 10Ω; VGE = 15V IC = (A) Fig. 15 – Typical Energy Loss vs. Rg Tj = 125ºC; L = 500µH; VCE = 600V; ICE = 15A; VGE = 15V Rg = (Ω) www.irf.com Fig. 14 – Typical Switching Time vs. IC Tj = 125ºC; L = 500µH; VCE = 600V; Rg = 10Ω; VGE = 15V IC = (A) Fig. 16 – Typical Switching Time vs. Rg Tj = 125ºC; L = 500µH; VCE = 600V; ICE = 15A; VGE = 15V Rg = (Ω) 16 PIIPM15P12D007 I27179 22 - Sep Fig. 17 – Typical Diode IRR vs. IF Tj = 125ºC IF = (A) Fig. 19 – Typical Diode IRR vs. dIF/dt VDC = 600V; VGE = 15V; IF = 15A; Tj = 125ºC dIF/dt (A/µs) www.irf.com Fig. 18 – Typical Diode IRR vs. Rg IF = 15A; Tj = 125ºC Rg = (Ω) Fig. 20 – Typical Diode QRR VDC = 600V; VGE = 15V; Tj = 125ºC dIF/dt (A/µs) 17 PIIPM15P12D007 I27179 22 - Sep Fig. 21 – Typical Diode EREC vs. IF Tj = 125ºC IF = (A) Fig. 23 – Typical Gate Charge vs. VGE IC = 15A; L = 600µH; VCC = 600V QG = (nC) www.irf.com Fig. 22 – Typical Capacitance vs. VCE VGE = 0V; f = 1MHz VCE = (V) Fig. 24 – On state Voltage Drop characteristic VFM vs IF tp = 400µs VFM = (V) 18 PIIPM15P12D007 I27179 22 - Sep Fig. 25 – Normalized Transient Thermal Impedance, Junction-to-copper plate (IGBTs) t1, Rectangular Pulse Duration (sec) Fig. 26 – Normalized Transient Impedance, Junction-to-copper plate (FRED diodes) t1, Rectangular Pulse Duration (sec) www.irf.com 19 PIIPM15P12D007 www.irf.com I27179 22 - Sep 20 PIIPM15P12D007 www.irf.com I27179 22 - Sep 21 PIIPM15P12D007 I27179 22 - Sep Fig. PD1 – Total Dissipated Power vs. fSW IoutRMS = 2A, VDC = 530V, TC = 55ºC Fig. PD2 – Total Dissipated Power vs. fSW IoutRMS = 3A, VDC = 530V, TC = 55ºC 120 120 90 90 60 60 30 30 0 0 0 4 8 12 16 20 fSW = (kHz) Fig. PD3 – Total Dissipated Power vs. fSW IoutRMS = 7A, VDC = 530V, TC = 55ºC fSW = (kHz) www.irf.com 0 4 8 12 16 20 fSW = (kHz) Fig. TF1 – Thermal Sensor Voltage Feedback vs. Base-plate Temperature TC (ºC) 22 PIIPM15P12D007 I27179 22 - Sep PIIPM family part number identification www.irf.com 23 PIIPM15P12D007 I27179 22 - Sep Top board suggested footprint (top view) RS485 and JTAG Connectors Top view These connectors do not have any orientation tag; please check their Pin 1 position on Power Module Frame Pins Mapping before inserting mate part. Molex 53916-0204 mates with 54167-0208 or 52991-0208 www.irf.com 24 PIIPM15P12D007 I27179 22 - Sep PIIPM15P12D007 case outline and dimensions Data and specifications subject to change without notice This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR’s Web Site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 3252 7105 TAC Fax: (310) 252 7309 Visit us at www.irf.com for sales contact information 22 - Sep Data and specifications subject to change without notice. Sales Offices, Agents and Distributors in Major Cities Throughout the World. © 2003 International Rectifier - Printed in Italy 09 - 22 - Rev. 3.1 www.irf.com 25