Dual 3 MHz, 800 mA Buck Regulators with Two 300 mA LDOs ADP5037 Data Sheet load is above a predefined threshold, the buck regulators operate in PWM mode. When the load current falls below a predefined threshold, the regulator operates in power save mode (PSM), improving the light-load efficiency. FEATURES Main input voltage range: 2.3 V to 5.5 V Two 800 mA buck regulators and two 300 mA LDOs 24-lead, 4 mm × 4 mm LFCSP package Regulator accuracy: ±1.8% Factory programmable or external adjustable VOUTx 3 MHz buck operation with forced PWM and auto PWM/PSM modes BUCK1/BUCK2: output voltage range from 0.8 V to 3.8 V LDO1/LDO2: output voltage range from 0.8 V to 5.2 V LDO1/LDO2: input supply voltage from 1.7 V to 5.5 V LDO1/LDO2: high PSRR and low output noise Table 1. Family Models APPLICATIONS Power for processors, ASICS, FPGAs, and RF chipsets Portable instrumentation and medical devices Space constrained devices Model ADP5023 Channels 2 Buck, 1 LDO ADP5024 2 Buck, 1 LDO ADP5034 2 Buck, 2 LDOs ADP5037 2 Buck, 2 LDOs ADP5033 2 Buck, 2 LDOs with 2 EN pins Maximum Current 800 mA, 300 mA 1.2 A, 300 mA 1.2 A, 300 mA 800 mA, 300 mA 800 mA, 300 mA Package LFCSP (CP-24-10) LFCSP (CP-24-10) LFCSP (CP-24-10), TSSOP (RE-28-1) LFCSP (CP-24-10) WLCSP (CB-16-8) The two bucks operate out of phase to reduce the input capacitor requirement. The low quiescent current, low dropout voltage, and wide input voltage range of the ADP5037 LDOs extend the battery life of portable devices. The ADP5037 LDOs maintain power supply rejection greater than 60 dB for frequencies as high as 10 kHz while operating with a low headroom voltage. GENERAL DESCRIPTION The ADP5037 combines two high performance buck regulators and two low dropout (LDO) regulators in a small, 24-lead 4 mm × 4 mm LFCSP to meet demanding performance and board space requirements. Regulators in the ADP5037 are activated though dedicated enable pins. The default output voltages can be externally set in the adjustable version or factory programmable to a wide range of preset values in the fixed voltage version. The high switching frequency of the buck regulators enables tiny multilayer external components and minimizes the board space. When the MODE pin is set high, the buck regulators operate in forced PWM mode. When the MODE pin is set low and the TYPICAL APPLICATION CIRCUIT AVIN CAVIN 0.1µF 2.3V TO 5.5V HOUSEKEEPING VOUT1 VIN1 SW1 C1 4.7µF ON OFF BUCK1 EN1 FB1 PGND1 EN1 L1 1µH C5 10µF R2 MODE PWM MODE MODE SW2 C2 4.7µF BUCK2 EN3 EN2 EN3 VIN3 1.7V TO 5.5V FB2 PGND2 R4 C6 10µF FB3 R5 VOUT3 AT 300mA C7 1µF VOUT4 EN4 LDO2 (DIGITAL) FB4 R7 R8 ADP5037 AGND VOUT4 AT 300mA C8 1µF 09887-001 VIN4 VOUT2 AT 800mA R3 R6 EN4 OFF C4 1µF L2 1µH VOUT3 LDO1 (ANALOG) C3 1µF ON PSM/PWM VOUT2 VIN2 EN2 VOUT1 AT 800mA R1 Figure 1. Rev. D Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADP5037 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Theory of Operation ...................................................................... 15 Applications ....................................................................................... 1 Power Management Unit........................................................... 15 General Description ......................................................................... 1 BUCK1 and BUCK2 .................................................................. 17 Typical Application Circuit ............................................................. 1 LDO1 and LDO2 ........................................................................ 18 Revision History ............................................................................... 2 Applications Information .............................................................. 19 Specifications..................................................................................... 3 Buck External Component Selection....................................... 19 General Specifications ................................................................. 3 LDO External Component Selection....................................... 21 BUCK1 and BUCK2 Specifications ........................................... 4 Power Dissipation and Thermal Considerations ....................... 22 LDO1 and LDO2 Specifications ................................................. 4 Buck Regulator Power Dissipation .......................................... 22 Input and Output Capacitor, Recommended Specifications .. 5 Junction Temperature ................................................................ 23 Absolute Maximum Ratings ............................................................ 6 PCB Layout Guidelines .................................................................. 24 Thermal Resistance ...................................................................... 6 Typical Application Schematics .................................................... 25 ESD Caution .................................................................................. 6 Bill of Materials ............................................................................... 26 Pin Configuration and Function Descriptions ............................. 7 Outline Dimensions ....................................................................... 27 Typical Performance Characteristics ............................................. 8 Ordering Guide .......................................................................... 27 REVISION HISTORY 5/13—Rev. C to Rev. D Added Table 1; Renumbered Sequentially .................................... 1 Changes to Figure 1 .......................................................................... 1 Changes to NC Pin Description ..................................................... 7 Changes to Figure 48 ...................................................................... 18 Changes to Figure 50 ...................................................................... 20 Changes to Figure 52 and Figure 53............................................. 25 1/13—Rev. B to Rev. C Changes to Figure 9 .......................................................................... 9 Changes to Ordering Guide .......................................................... 27 8/12—Rev. A to Rev. B Changes to Regulator Accuracy, Features Section ....................... 1 Changes to Output Voltage Accuracy, Table 2 and Voltage Feedback, Table 2 .............................................................................. 4 Changes to Output Voltage Accuracy, Table 3 and Voltage Feedback, Table 3 .............................................................................. 4 Changes to Figure 6, Figure 7, and Figure 8.................................. 8 Changes to Figure 9 to Figure 14 .................................................... 9 Changes to Figure 30 and Figure 31............................................. 12 Changes to Figure 34 and Figure 38 Caption ............................. 13 Changes to Undervoltage Lockout Section ................................. 16 Moved Power Dissipation and Thermal Considerations Section .............................................................................................. 22 Changes to Buck Regulator Power Dissipation Section ............ 22 Changes to PCB Layout Guidelines Section ............................... 24 Changes to Ordering Guide .......................................................... 27 1/12—Rev. 0 to Rev. A Changes to Features Section and Figure 1 .....................................1 Changes to Table 2 and Table 3........................................................4 Changes to Table 4.............................................................................5 Changes to Table 5.............................................................................6 Changes to Table 7.............................................................................7 Changes to Figure 34...................................................................... 13 Changes to Buck Regulator Power Dissipation Section ............ 15 Changes to Undervoltage Lockout Section ................................. 18 Changes to LDO1 and LDO2 Section ......................................... 20 Changes to Table 9.......................................................................... 22 Changes to Figure 52 and Figure 53 ............................................ 25 Changes to Ordering Guide .......................................................... 27 8/11—Revision 0: Initial Version Rev. D | Page 2 of 28 Data Sheet ADP5037 SPECIFICATIONS GENERAL SPECIFICATIONS VAVIN = VIN1 = VIN2 = 2.3 V to 5.5 V; VIN3 = VIN4 = 1.7 V to 5.5 V; TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted. Table 2. Parameter INPUT VOLTAGE RANGE THERMAL SHUTDOWN Threshold Hysteresis START-UP TIME 1 BUCK1, LDO1, LDO2 BUCK2 EN1, EN2, EN3, EN4, MODE INPUTS Input Logic High Input Logic Low Input Leakage Current INPUT CURRENT All Channels Enabled All Channels Disabled VIN1 UNDERVOLTAGE LOCKOUT High UVLO Input Voltage Rising High UVLO Input Voltage Falling Low UVLO Input Voltage Rising Low UVLO Input Voltage Falling 1 Symbol VAVIN, VIN1, VIN2 Test Conditions/Comments TSSD TSSD-HYS TJ rising Min 2.3 tSTART1 tSTART2 VIH VIL VI-LEAKAGE ISTBY-NOSW ISHUTDOWN Typ Max 5.5 150 20 °C °C 250 300 µs µs 1.1 No load, no buck switching TJ = −40°C to +85°C UVLOVIN1RISE UVLOVIN1FALL UVLOVIN1RISE UVLOVIN1FALL 0.05 0.4 1 V V µA 108 0.3 175 1 µA µA 3.9 V V V V 3.1 2.275 1.95 Unit V Start-up time is defined as the time from EN1 = EN2 = EN3 = EN4 from 0 V to VAVIN to VOUT1, VOUT2, VOUT3, and VOUT4 reaching 90% of their nominal level. Start-up times are shorter for individual channels if another channel is already enabled. See the Typical Performance Characteristics section for more information. Rev. D | Page 3 of 28 ADP5037 Data Sheet BUCK1 AND BUCK2 SPECIFICATIONS VAVIN = VIN1 = VIN2 = 2.3 V to 5.5 V; TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted. 1 Table 3. Parameter OUTPUT CHARACTERISTICS Output Voltage Accuracy Line Regulation Load Regulation VOLTAGE FEEDBACK OPERATING SUPPLY CURRENT BUCK1 Only Test Conditions/Comments Min ΔVOUT1/VOUT1, ΔVOUT2/VOUT2 (∆VOUT1/VOUT1)/∆VIN1, (∆VOUT2/VOUT2)/∆VIN2 (∆VOUT1/VOUT1)/∆IOUT1, (∆VOUT2/VOUT2)/∆IOUT2 VFB1, VFB2 PWM mode; ILOAD1 = ILOAD2 = 0 mA −1.8 IIN BUCK2 Only IIN BUCK1 and BUCK2 IIN PSM CURRENT THRESHOLD SW CHARACTERISTICS SW On Resistance Current Limit ACTIVE PULL-DOWN OSCILLATOR FREQUENCY 1 Symbol IPSM RNFET RPFET RNFET RPFET ILIMIT1, ILIMIT2 RPDWN-B fSW Typ Max Unit +1.8 % PWM mode −0.05 %/V ILOAD = 0 mA to 800 mA, PWM mode −0.1 %/A Models with adjustable outputs MODE = ground ILOAD1 = 0 mA, device not switching, all other channels disabled ILOAD2 = 0 mA, device not switching, all other channels disabled ILOAD1 = ILOAD2 = 0 mA, device not switching, LDO channels disabled PSM to PWM operation VIN1 = VIN2 = 3.6 V VIN1 = VIN2 = 3.6 V VIN1 = VIN2 = 5.5 V VIN1 = VIN2 = 5.5 V pFET switch peak current limit Channel disabled 0.491 1200 2.5 0.5 0.509 V 44 μA 55 μA 67 μA 100 mA 155 205 137 162 1550 75 3.0 240 310 204 243 1900 3.5 mΩ mΩ mΩ mΩ mA Ω MHz All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). LDO1 AND LDO2 SPECIFICATIONS VIN3 = (VOUT3 + 0.5 V) or 1.7 V (whichever is greater) to 5.5 V, VIN4 = (VOUT4 + 0.5 V) or 1.7 V (whichever is greater) to 5.5 V; CIN = COUT = 1 µF; TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted. 1 Table 4. Parameter INPUT VOLTAGE RANGE OPERATING SUPPLY CURRENT Bias Current per LDO 2 Total System Input Current Symbol VIN3, VIN4 Test Conditions/Comments IVIN3BIAS/IVIN4BIAS IOUT3 = IOUT4 = 0 µA IOUT3 = IOUT4 = 10 mA IOUT3 = IOUT4 = 300 mA Includes all current into AVIN, VIN1, VIN2, VIN3, and VIN4 IOUT3 = IOUT4 = 0 µA, all other channels disabled IOUT3 = IOUT4 = 0 µA, buck channels disabled IIN LDO1 or LDO2 Only LDO1 and LDO2 Only OUTPUT CHARACTERISTICS Output Voltage Accuracy Line Regulation Load Regulation 3 ΔVOUT3/VOUT3, ΔVOUT4/VOUT4 (∆VOUT3/VOUT3)/∆VIN3, (∆VOUT4/VOUT4)/∆VIN4 (∆VOUT3/VOUT3)/∆IOUT3, (∆VOUT4/VOUT4)/∆IOUT4 Min 1.7 Typ Max 5.5 Unit V 10 60 165 30 100 245 µA µA µA 53 74 µA µA 100 µA < IOUT3 < 300 mA, 100 µA < IOUT4 < 300 mA −1.8 +1.8 % IOUT3 = IOUT4 = 1 mA −0.03 +0.03 %/V 0.003 %/mA IOUT3 = IOUT4 = 1 mA to 300 mA Rev. D | Page 4 of 28 0.001 Data Sheet Parameter VOLTAGE FEEDBACK DROPOUT VOLTAGE 4 CURRENT-LIMIT THRESHOLD 5 ACTIVE PULL-DOWN OUTPUT NOISE Regulator LDO1 Regulator LDO2 POWER SUPPLY REJECTION RATIO Regulator LDO1 ADP5037 Symbol Test Conditions/Comments Min 0.491 Channel disabled Typ 0.5 50 75 100 180 600 600 10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 2.8 V 10 Hz to 100 kHz, VIN4 = 5 V, VOUT4 = 1.2 V 100 60 µV rms µV rms 10 kHz, VIN3 = 3.3 V, VOUT3 = 2.8 V, IOUT3 = 1 mA 100 kHz, VIN3 = 3.3 V, VOUT3 = 2.8 V, IOUT3 = 1 mA 1 MHz, VIN3 = 3.3 V, VOUT3 = 2.8 V, IOUT3 = 1 mA 10 kHz, VIN4 = 1.8 V, VOUT4 = 1.2 V, IOUT4 = 1 mA 100 kHz, VIN4 = 1.8 V, VOUT4 = 1.2 V, IOUT4 = 1 mA 1 MHz, VIN4 = 1.8 V, VOUT4 = 1.2 V, IOUT4 = 1 mA 60 62 63 54 57 64 dB dB dB dB dB dB VFB3, VFB4 VDROPOUT ILIMIT3, ILIMIT4 RPDWN-L NOISELDO1 NOISELDO2 PSRR Regulator LDO2 VOUT3 = VOUT4 = 5.2 V, IOUT3 = IOUT4 = 300 mA VOUT3 = VOUT4 = 3.3 V, IOUT3 = IOUT4 = 300 mA VOUT3 = VOUT4 = 2.5 V, IOUT3 = IOUT4 = 300 mA VOUT3 = VOUT4 = 1.8 V, IOUT3 = IOUT4 = 300 mA 335 Max 0.509 140 Unit V mV mV mV mV mA Ω All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). This is the input current into VIN3/VIN4, which is not delivered to the output load. 3 Based on an endpoint calculation using 1 mA and 300 mA loads. 4 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only to output voltages above 1.7 V. 5 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V. 1 2 INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS TA = −40°C to +125°C, unless otherwise specified. Table 5. Parameter NOMINAL INPUT AND OUTPUT CAPACITOR RATINGS BUCK1, BUCK2 Input Capacitor Ratings BUCK1, BUCK2 Output Capacitor Ratings LDO 1 Input and Output Capacitor Ratings CAPACITOR ESR 1 Symbol Min CMIN1, CMIN2 CMIN1, CMIN2 CMIN3, CMIN4 RESR 4.7 10 1.0 0.001 Typ Max Unit 40 40 µF µF µF Ω 1 The minimum input and output capacitance should be greater than 0.70 µF over the full range of operating conditions. The full range of operating conditions in the application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R- and X5R-type capacitors are recommended; Y5V and Z5U capacitors are not recommended for use because of their poor temperature and dc bias characteristics. Rev. D | Page 5 of 28 ADP5037 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 6. Parameter AVIN to AGND VIN1, VIN2 to AVIN PGND1, PGND2 to AGND VIN3, VIN4, VOUT1, VOUT2, FB1, FB2, FB3, FB4, EN1, EN2, EN3, EN4, MODE to AGND VOUT3 to AGND VOUT4 to AGND SW1 to PGND1 SW2 to PGND2 Storage Temperature Range Operating Junction Temperature Range Soldering Conditions Rating −0.3 V to +6 V −0.3 V to +0.3 V −0.3 V to +0.3 V −0.3 V to (AVIN + 0.3 V) −0.3 V to (VIN3 + 0.3 V) −0.3 V to (VIN4 + 0.3 V) −0.3 V to (VIN1 + 0.3 V) −0.3 V to (VIN2 + 0.3 V) −65°C to +150°C −40°C to +125°C JEDEC J-STD-020 θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 7. Thermal Resistance Package Type 24-Lead, 0.5 mm pitch LFCSP ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For detailed information on power dissipation, see the Power Dissipation and Thermal Considerations section. Rev. D | Page 6 of 28 θJA 35 θJC 3 Unit °C/W Data Sheet ADP5037 24 23 22 21 20 19 VOUT4 VIN4 EN3 VIN3 VOUT3 FB3 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 PIN 1 INDICATOR ADP5037 TOP VIEW (Not to Scale) 18 17 16 15 14 13 AGND AVIN VIN1 SW1 PGND1 MODE NOTES 1. NC = NOT INTERNALLY CONNECTED. 2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE SOLDERED TO THE GROUND PLANE. 09887-003 EN2 FB2 VOUT2 VOUT1 FB1 EN1 7 8 9 10 11 12 FB4 EN4 VIN2 SW2 PGND2 NC Figure 2. Pin Configuration—View from the Top of the Die Table 8. Pin Function Descriptions Pin No. 1 Mnemonic FB4 2 3 4 5 6 7 8 EN4 VIN2 SW2 PGND2 NC EN2 FB2 9 10 11 VOUT2 VOUT1 FB1 12 13 14 15 16 17 18 19 EN1 MODE PGND1 SW1 VIN1 AVIN AGND FB3 20 21 22 23 24 VOUT3 VIN3 EN3 VIN4 VOUT4 EPAD (EP) Description LDO2 Feedback Input. For device models with adjustable output voltage, connect this pin to the middle of the LDO2 resistor divider. For device models with fixed output voltage, connect this pin to the top of the capacitor on VOUT4. LDO2 Enable Pin. High level turns on this regulator, and low level turns it off. BUCK2 Input Supply (2.3 V to 5.5 V). Connect VIN2 to VIN1 and AVIN. BUCK2 Switching Node. Dedicated Power Ground for BUCK2. No Connect. Leave this pin unconnected or connect to ground. BUCK2 Enable Pin. High level turns on this regulator, and low level turns it off. BUCK2 Feedback Input. For device models with adjustable output voltage, connect this pin to the middle of the BUCK2 resistor divider. For device models with fixed output voltage, leave this pin unconnected. BUCK2 Output Voltage Sensing Input. Connect VOUT2 to the top of the capacitor on VOUT2. BUCK1 Output Voltage Sensing Input. Connect VOUT1 to the top of the capacitor on VOUT1. BUCK1 Feedback Input. For device models with adjustable output voltage, connect this pin to the middle of the BUCK1 resistor divider. For device models with fixed output voltage, leave this pin unconnected. BUCK1 Enable Pin. High level turns on this regulator, and low level turns it off. BUCK1/BUCK2 Operating Mode. MODE = high: forced PWM operation. MODE = low: auto PWM/PSM operation. Dedicated Power Ground for BUCK1. BUCK1 Switching Node. BUCK1 Input Supply (2.3 V to 5.5 V). Connect VIN1 to VIN2 and AVIN. Analog Input Supply (2.3 V to 5.5 V). Connect AVIN to VIN1 and VIN2. Analog Ground. LDO1 Feedback Input. For device models with adjustable output voltage, connect this pin to the middle of the LDO1 resistor divider. For device models with fixed output voltage, connect this pin to the top of the capacitor on VOUT3. LDO1 Output Voltage. LDO1 Input Supply (1.7 V to 5.5 V). LDO1 Enable Pin. High level turns on this regulator, and low level turns it off. LDO2 Input Supply (1.7 V to 5.5 V). LDO2 Output Voltage. Exposed Pad. It is recommended that the exposed pad be soldered to the ground plane. Rev. D | Page 7 of 28 ADP5037 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS VIN1= VIN2 = VIN3= VIN4 = 3.6 V, TA = 25°C, unless otherwise noted. 3.310 140 –40°C 3.300 100 VOUT (V) 3.295 80 +25°C 3.290 60 3.285 40 3.280 20 3.275 0 2.3 2.8 3.3 3.8 4.3 4.8 5.3 3.270 INPUT VOLTAGE (V) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 IOUT (A) Figure 3. System Quiescent Current vs. Input Voltage, VOUT1 = 3.3 V, VOUT2 = 1.8 V, VOUT3 = 1.2 V, VOUT4 = 3.3 V, All Channels Unloaded 09887-100 +85°C 09887-039 QUIESCENT CURRENT (µA) 3.305 120 Figure 6. BUCK1 Load Regulation Across Temperature, VIN = 4.2 V, VOUT1 = 3.3 V, Auto Mode 1.812 T 1.810 SW –40°C 4 1.808 2 VOUT (V) IOUT VOUT +25°C 1.806 1.804 1 1.802 +85°C 1.800 3 A CH3 1.798 09887-049 CH2 50.0mA Ω BW M 40.0µs CH4 5.00V BW T 11.20% CH1 2.00V BW CH3 5.00V BW 2.2V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 IOUT (A) 09887-101 EN Figure 7. BUCK2 Load Regulation Across Temperature, VIN = 3.6 V, VOUT2 = 1.8 V, Auto Mode Figure 4. BUCK1 Startup, VOUT1 = 1.8 V, IOUT1 = 5 mA 0.808 T 0.807 SW 4 0.806 IOUT –40°C VOUT (V) 2 VOUT 1 +25°C 0.805 +85°C 0.804 EN 0.803 BW BW CH2 50.0mA Ω BW M 40.0µs BW CH4 5.00V T 11.20% 0.802 A CH3 2.2V 09887-048 CH1 2.00V CH3 5.00V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 IOUT (A) Figure 8. BUCK1 Load Regulation Across Input Voltage, VIN = 3.6 V, VOUT1 = 0.8 V, PWM Mode Figure 5. BUCK2 Startup, VOUT2 = 3.3 V, IOUT2 = 10 mA Rev. D | Page 8 of 28 09887-102 3 Data Sheet ADP5037 100 100 90 90 80 80 VIN = 2.3V VIN = 3.9V VIN = 4.2V VIN = 5.5V 50 40 VIN = 4.2V 60 50 40 VIN = 5.5V 30 30 20 20 10 10 0 1 10 100 1000 ILOAD (mA) 0 1 10 100 1000 ILOAD (mA) Figure 9. BUCK1 Efficiency vs. Load Current, Across Input Voltage, VOUT1 = 3.3 V, Auto Mode 09887-106 EFFICIENCY (%) 60 70 09887-103 EFFICIENCY (%) 70 VIN = 3.6V Figure 12. BUCK2 Efficiency vs. Load Current, Across Input Voltage, VOUT2 = 1.8 V, PWM Mode 100 100 VIN = 2.3V 90 90 80 80 VIN = 3.6V 70 70 50 VIN = 4.2V 40 VIN = 5.5V 30 40 30 20 10 10 0 10 VIN = 5.5V 50 20 1 VIN = 4.2V 60 100 1000 ILOAD (mA) 0 1 10 100 1000 ILOAD (mA) Figure 10. BUCK1 Efficiency vs. Load Current, Across Input Voltage, VOUT1 = 3.3 V, PWM Mode 09887-107 60 EFFICIENCY (%) VIN = 3.6V 09887-104 EFFICIENCY (%) VIN = 2.3V Figure 13. BUCK1 Efficiency vs. Load Current, Across Input Voltage, VOUT1 = 0.8 V, Auto Mode 100 100 VIN = 2.3V 90 90 80 80 VIN = 4.2V VIN = 3.6V 70 60 50 40 50 20 20 10 10 10 100 1000 ILOAD (mA) 09887-105 30 1 Figure 11. BUCK2 Efficiency vs. Load Current, Across Input Voltage, VOUT2 = 1.8 V, Auto Mode VIN = 4.2V 40 30 0 VIN = 3.6V 60 VIN = 5.5V 0 1 10 100 1000 ILOAD (mA) Figure 14. BUCK1 Efficiency vs. Load Current, Across Input Voltage, VOUT1 = 0.8 V, PWM Mode Rev. D | Page 9 of 28 09887-108 EFFICIENCY (%) 70 EFFICIENCY (%) VIN = 2.3V VIN = 5.5V ADP5037 Data Sheet 3.3 100 +25°C –40°C 90 3.2 +25°C +85°C 80 3.1 –40°C FREQUENCY (MHz) EFFICIENCY (%) 70 60 50 40 30 3.0 +85°C 2.9 2.8 2.7 20 2.6 10 1 IOUT (A) 2.5 0 0.2 0.4 0.6 0.8 1.0 09887-031 0.1 0.01 09887-028 0 0.001 1.2 IOUT (A) Figure 15. BUCK1 Efficiency vs. Load Current, Across Temperature, VIN = 3.9 V, VOUT1 = 3.3 V, Auto Mode Figure 18. BUCK2 Switching Frequency vs. Output Current, Across Temperature, VOUT2 = 1.8 V, PWM Mode 100 90 +25°C T +85°C VOUT 80 1 EFFICIENCY (%) 70 –40°C ISW 60 50 2 40 SW 30 20 10 0.1 1 IOUT (A) Figure 16. BUCK2 Efficiency vs. Load Current, Across Temperature, VOUT2 = 1.8 V, Auto Mode CH2 500mA Ω CH4 2.00V CH1 50.0mV M 4.00µs A CH2 240mA T 28.40% 09887-051 4 0.01 09887-030 0 0.001 Figure 19. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, Auto Mode 100 T +25°C 90 VOUT 80 1 EFFICIENCY (%) 70 +85°C –40°C 60 ISW 50 2 40 30 SW 20 10 0.1 1 IOUT (A) Figure 17. BUCK1 Efficiency vs. Load Current, Across Temperature VOUT1 = 0.8 V, Auto Mode CH1 50.0mV BW CH2 500mA Ω CH4 2.00V BW M 4.00µs T 28.40% A CH2 220mA 09887-050 0.01 09887-029 4 0 0.001 Figure 20. Typical Waveforms, VOUT2 = 1.8 V, IOUT2 = 30 mA, Auto Mode Rev. D | Page 10 of 28 Data Sheet ADP5037 T T VOUT 1 VIN ISW VOUT 2 1 SW SW 4 3 B W CH2 500mA Ω CH4 2.00V BW M 400ns A CH2 220mA T 28.40% CH1 50.0mV BW M 1.00ms CH3 1.00V BW CH4 2.00V BW T 30.40% 09887-053 CH1 50mV Figure 21. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, PWM Mode A CH3 4.80V 09887-041 4 Figure 24. BUCK2 Response to Line Transient, VIN2 = 4.5 V to 5.0 V, VOUT2 = 1.8 V, PWM Mode T T SW VOUT 1 4 ISW VOUT 2 1 SW IOUT B W CH2 500mA Ω CH4 2.00V BW M 400ns A CH2 220mA T 28.40% 09887-052 CH1 50mV CH1 50.0mV Figure 22. Typical Waveforms, VOUT2 = 1.8 V, IOUT2 = 30 mA, PWM Mode B W CH2 50.0mA Ω BW M 20.0µs A CH2 CH4 5.00V BW T 60.000µs 356mA 09887-044 2 4 Figure 25. BUCK1 Response to Load Transient, IOUT1 from 1 mA to 50 mA, VOUT1 = 3.3 V, Auto Mode T T SW 4 VIN VOUT VOUT 1 1 SW IOUT 3 A CH3 4.80V CH1 50.0mV B W CH2 50.0mA Ω W M 20.0µs A CH2 CH4 5.00V BW B T 22.20% Figure 23. BUCK1 Response to Line Transient, Input Voltage from 4.5 V to 5.0 V, VOUT1 = 3.3 V, PWM Mode 379mA 09887-043 M 1.00ms CH1 50.0mV BW CH4 2.00V BW CH3 1.00V BW T 30.40% 09887-040 2 Figure 26. BUCK2 Response to Load Transient, IOUT2 from 1 mA to 50 mA, VOUT2 = 1.8 V, Auto Mode Rev. D | Page 11 of 28 ADP5037 Data Sheet T SW EN 4 2 VOUT 1 VOUT 3 IOUT IIN 2 B W CH2 200mA Ω W M 20.0µs CH4 5.00V BW A CH2 408mA T 20.40% CH1 100mA CH3 1.00V CH2 5.0V M40.0µs 2.5GS/s T 159.4µs A CH2 09887-109 B CH1 50.0mV 09887-045 1 4.20V Figure 30. LDO Startup, VOUT3 = 1.8 V Figure 27. BUCK1 Response to Load Transient, IOUT1 from 20 mA to 180 mA, VOUT1 = 3.3 V, Auto Mode 3.304 T 3.303 SW 3.302 4 3.301 VOUT (V) VOUT 1 VIN = 5.5V 3.300 VIN = 4.2V 3.299 3.298 VIN = 3.8V 3.297 IOUT 3.296 3.295 2 W CH2 200mA Ω BW M 20.0µs A CH2 CH4 5.00V BW T 19.20% 88.0mA 0 09887-046 B 0.1 0.2 09887-110 3.294 CH1 100mV 0.3 IOUT (A) Figure 31. LDO Load Regulation Across Input Voltage, VOUT3 = 3.3 V Figure 28. BUCK2 Response to Load Transient, IOUT2 from 20 mA to 180 mA, VOUT2 = 1.8 V, Auto Mode 400 T 350 VOUT2 300 2 +125°C RDSON (mΩ) SW1 3 VOUT1 250 +25°C 200 150 –40°C 1 100 SW2 50 B W B W CH2 5.00V BW CH4 5.00V BW M 400ns T 50.00% A CH4 1.90V 0 2.3 09887-060 CH1 5.00V CH3 5.00V 2.8 3.3 3.8 4.3 4.8 5.3 INPUT VOLTAGE (V) Figure 29. VOUT and SW Waveforms for BUCK1 and BUCK2 in PWM Mode Showing Out-of-Phase Operation Rev. D | Page 12 of 28 Figure 32. NMOS RDSON vs. Input Voltage Across Temperature 09887-037 4 Data Sheet ADP5037 250 50 45 200 40 +125°C GROUND CURRENT (µA) RDSON (mΩ) +25°C 150 –40°C 100 35 30 25 20 15 50 10 3.8 3.3 4.3 4.8 0 09887-038 2.8 5.3 INPUT VOLTAGE (V) 0 0.10 0.05 0.15 0.20 09887-036 5 0 2.3 0.25 LOAD CURRENT (A) Figure 33. PMOS RDSON vs. Input Voltage Across Temperature Figure 36. LDO Ground Current vs. Output Load, VIN3 = 3.3 V, VOUT3 = 2.8 V 1.802 T 1.801 –40°C 1.800 IOUT VOUT (V) 1.799 2 1.798 1.797 +25°C 1.796 1 VOUT 1.795 1.794 +85°C 0 0.1 0.2 0.3 IOUT (A) Figure 34. LDO Load Regulation Across Temperature, VIN3 = 3.6 V, VOUT3 = 1.8 V 3.0 2.5 VOUT (V) 2.0 IOUT = 10mA CH1 100mV BW 09887-111 1.792 CH2 100mA Ω BW M 40.0µs A CH2 52.0mA T 19.20% 09887-047 1.793 Figure 37. LDO Response to Load Transient, IOUT3 from 1 mA to 80 mA, VOUT3 = 2.8 V IOUT = 100µA T IOUT = 1mA IOUT = 100mA IOUT = 150mA IOUT = 300mA VIN 1.5 VOUT 2 1 1.0 0.5 VIN (V) Figure 35. LDO Line Regulation Across Output Load, VOUT3 = 2.8 V CH1 20.0mV CH3 1.00V M 100µs T 28.40% A CH3 4.80V 09887-042 0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 09887-034 3 Figure 38. LDO Response to Line Transient, Input Voltage from 4.5 V to 5 V, VOUT3 = 2.8 V Rev. D | Page 13 of 28 ADP5037 Data Sheet 0 60 VIN = 5V 55 –20 VIN = 3.3V –40 PSRR (dB) 45 40 –60 –80 35 –100 30 0.01 0.1 1 10 –120 10 09887-055 25 0.001 100 ILOAD (mA) 100 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 42. LDO PSRR Across Output Load, VIN3 = 3.3 V, VOUT3 = 3.0 V Figure 39. LDO Output Noise vs. Load Current, Across Input Voltage, VOUT3 = 2.8 V 0 65 VIN = 5V 60 –20 VIN = 3.3V 55 100µA 1mA 10mA 50mA 100mA 150mA –40 50 PSRR (dB) RMS NOISE (µV) 100µA 1mA 10mA 50mA 100mA 150mA 09887-058 RMS NOISE (µV) 50 45 –60 40 –80 35 –100 0.01 0.1 1 10 –120 10 09887-056 100 ILOAD (mA) 100µA 1mA 10mA 50mA 100mA 150mA –10 –20 –30 PSRR (dB) –40 –50 –60 10M –60 –80 –80 –90 –90 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 100µA 1mA 10mA 50mA 100mA 150mA –50 –70 –100 10 1M –40 –70 09887-057 PSRR (dB) –30 10k 100k FREQUENCY (Hz) 0 0 –20 1k Figure 43. LDO PSRR Across Output Load, VIN3 = 5.0 V, VOUT3 = 2.8 V Figure 40. LDO Output Noise vs. Load Current, Across Input Voltage, VOUT3 = 3.0 V –10 100 –100 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 44. LDO PSRR Across Output Load, VIN3 = 5.0 V, VOUT3 = 3.0 V Figure 41. LDO PSRR Across Output Load, VIN3 = 3.3 V, VOUT3 = 2.8 V Rev. D | Page 14 of 28 09887-061 25 0.001 09887-059 30 Data Sheet ADP5037 THEORY OF OPERATION VOUT1 FB1 FB2 VOUT2 GM ERROR AMP AVIN ENBK1 75Ω 75Ω ENBK2 GM ERROR AMP PWM COMP PWM COMP VIN1 SOFT START SOFT START PSM COMP PSM COMP VIN2 ILIMIT ILIMIT LOW CURRENT PWM/ PSM CONTROL BUCK2 PWM/ PSM CONTROL BUCK1 LOW CURRENT SW2 SW1 OSCILLATOR DRIVER AND ANTISHOOT THROUGH DRIVER AND OP ANTISHOOT MODE THROUGH SYSTEM UNDERVOLTAGE LOCKOUT SEL THERMAL SHUTDOWN PGND1 Y B PGND2 MODE2 ENLDO2 A 600Ω MODE EN2 EN3 EN4 ENBK1 ENABLE AND MODE CONTROL ENBK2 LDO UNDERVOLTAGE LOCKOUT ENLDO1 ENLDO2 LDO UNDERVOLTAGE LOCKOUT R1 AVIN R3 LDO CONTROL AVIN R2 ADP5037 VIN3 AGND 600Ω FB3 VOUT3 VIN4 LDO CONTROL ENLDO1 R4 FB4 VOUT4 09887-005 EN1 Figure 45. Functional Block Diagram POWER MANAGEMENT UNIT The ADP5037 is a micropower management units (micro PMU) combining two step-down (buck) dc-to-dc convertors and two low dropout linear regulators (LDOs). The high switching frequency and tiny 24-lead LFCSP package allow for a small power management solution. To combine these high performance regulators into the micro PMU, there is a system controller allowing them to operate together. The buck regulators can operate in forced PWM mode if the MODE pin is at a logic high level. In forced PWM mode, the buck switching frequency is always constant and does not change with the load current. If the MODE pin is at logic low level, the switching regulators operate in auto PWM/PSM mode. In this mode, the regulators operate at fixed PWM frequency when the load current is above the PSM current threshold. When the load current falls below the PSM current threshold, the regulator in question enters PSM, where the switching occurs in bursts. The burst repetition rate is a function of the current load and the output capacitor value. This operating mode reduces the switching and quiescent current losses. The auto PWM/PSM mode transition is controlled independently for each buck regulator. The two bucks operate synchronized to each other. The ADP5037 has individual enable pins (EN1 to EN4) controlling the activation of each regulator. The regulators are activated by a logic level high applied to the respective EN pin. EN1 controls BUCK1, EN2 controls BUCK2, EN3 controls LDO1, and EN4 controls LDO2. Regulator output voltages are set through external resistor dividers or can be optionally factory programmed to default values (see the Ordering Guide section). When a regulator is turned on, the output voltage ramp rate is controlled though a soft start circuit to avoid a large inrush current due to the charging of the output capacitors. Rev. D | Page 15 of 28 ADP5037 Data Sheet Thermal Protection In the event that the junction temperature rises above 150°C, the thermal shutdown circuit turns off all the regulators. Extreme junction temperatures can be the result of high current operation, poor circuit board design, or high ambient temperature. A 20°C hysteresis is included so that when thermal shutdown occurs, the regulators do not return to operation until the on-chip temperature drops below 130°C. When coming out of thermal shutdown, all regulators restart with soft start control. Undervoltage Lockout To protect against battery discharge, undervoltage lockout (UVLO) circuitry is integrated into the system. If the input voltage on AVIN drops below a typical 2.15 V UVLO threshold, all channels shut down. In the buck channels, both the power switch and the synchronous rectifier turn off. When the voltage on AVIN rises above the UVLO threshold, the part is enabled once more. Alternatively, the user can select device models with a UVLO set at a higher level, suitable for 5 V supply applications. For these models, the device reaches the turn-off threshold when the input supply drops to 3.65 V typical. In case of a thermal or UVLO event, the active pull-downs (if factory enabled) are enabled to discharge the output capacitors quickly. The pull-down resistors remain engaged until the thermal fault event is no longer present, or the input supply voltage falls below the VPOR voltage level. The typical value of VPOR is approximately 1 V. Enable/Shutdown The ADP5037 has an individual control pin for each regulator. A logic level high applied to the ENx pin activates a regulator, whereas a logic level low turns off a regulator. Figure 46 shows the regulator activation timings for the ADP5037 when all enable pins are connected to AVIN. Also shown is the active pull-down activation. VUVLO AVIN VPOR VOUT1 VOUT3 VOUT4 VOUT2 30µs (MIN) 30µs (MIN) 50µs (MIN) 50µs (MIN) BUCK1, LDO1, LDO2 PULL-DOWNS 09887-006 BUCK2 PULL-DOWN Figure 46. Regulator Sequencing on the ADP5037 (EN1 = EN2 = EN3 = EN4 = VAVIN) Rev. D | Page 16 of 28 Data Sheet ADP5037 BUCK1 AND BUCK2 The buck uses a fixed frequency and high speed current mode architecture. The buck operates with an input voltage of 2.3 V to 5.5 V. The buck output voltage is set through external resistor dividers, shown in Figure 47 for BUCK1. The output voltage can optionally be factory programmed to default values as indicated in the Ordering Guide section. In this event, R1 and R2 are not needed, and FB1 can be left unconnected. In all cases, VOUT1 must be connected to the output capacitor. FB1 is 0.5 V. VOUT1 VIN1 SW1 L1 1µH VOUT1 BUCK PGND1 R1 C5 10µF R1 VOUT1 = VFB1 +1 R2 The ADP5037 has a dedicated MODE pin controlling the PSM and PWM operation. A high logic level applied to the MODE pin forces both bucks to operate in PWM mode. A logic level low sets the bucks to operate in auto PSM/PWM. PSM Current Threshold The PSM current threshold is set to100 mA. The bucks employ a scheme that enables this current to remain accurately controlled, independent of input and output voltage levels. This scheme also ensures that there is very little hysteresis between the PSM current threshold for entry to and exit from the PSM. The PSM current threshold is optimized for excellent efficiency over all load currents. Oscillator/Phasing of Inductor Switching R2 The ADP5037 ensures that both bucks operate at the same switching frequency when both bucks are in PWM mode. 09887-008 FB1 This process is repeated while the load current is below the PSM current threshold. Figure 47. BUCK1 External Output Voltage Setting Control Scheme The bucks operate with a fixed frequency, current mode PWM control architecture at medium to high loads for high efficiency but shift to a power save mode (PSM) control scheme at light loads to lower the regulation power losses. When operating in fixed frequency PWM mode, the duty cycle of the integrated switches is adjusted and regulates the output voltage. When operating in PSM at light loads, the output voltage is controlled in a hysteretic manner, with higher output voltage ripple. During part of this time, the converter is able to stop switching and enters an idle mode, which improves conversion efficiency. PWM Mode In PWM mode, the bucks operate at a fixed frequency of 3 MHz set by an internal oscillator. At the start of each oscillator cycle, the pFET switch is turned on, sending a positive voltage across the inductor. Current in the inductor increases until the current sense signal crosses the peak inductor current threshold that turns off the pFET switch and turns on the nFET synchronous rectifier. This sends a negative voltage across the inductor, causing the inductor current to decrease. The synchronous rectifier stays on for the rest of the cycle. The buck regulates the output voltage by adjusting the peak inductor current threshold. Power Save Mode (PSM) The bucks smoothly transition to PSM operation when the load current decreases below the PSM current threshold. When either of the bucks enters PSM, an offset is induced in the PWM regulation level, which makes the output voltage rise. When the output voltage reaches a level approximately 1.5% above the PWM regulation level, PWM operation is turned off. At this point, both power switches are off, and the buck enters an idle mode. The output capacitor discharges until the output voltage falls to the PWM regulation voltage, at which point the device drives the inductor to make the output voltage rise again to the upper threshold. Additionally, the ADP5037 ensures that when both bucks are in PWM mode, they operate out of phase, whereby the BUCK2 pFET starts conducting exactly half a clock period after the BUCK1 pFET starts conducting. Short-Circuit Protection The bucks include frequency foldback to prevent output current runaway on a hard short. When the voltage at the feedback pin falls below half the target output voltage, indicating the possibility of a hard short at the output, the switching frequency is reduced to half the internal oscillator frequency. The reduction in the switching frequency allows more time for the inductor to discharge, preventing a runaway of output current. Soft Start The bucks have an internal soft start function that ramps the output voltage in a controlled manner upon startup, thereby limiting the inrush current. This prevents possible input voltage drops when a battery or a high impedance power source is connected to the input of the converter. Current Limit Each buck has protection circuitry to limit the amount of positive current flowing through the pFET switch and the amount of negative current flowing through the synchronous rectifier. The positive current limit on the power switch limits the amount of current that can flow from the input to the output. The negative current limit prevents the inductor current from reversing direction and flowing out of the load. Rev. D | Page 17 of 28 ADP5037 Data Sheet With a drop in input voltage, or with an increase in load current, the buck may reach a limit where, even with the pFET switch on 100% of the time, the output voltage drops below the desired output voltage. At this limit, the buck transitions to a mode where the pFET switch stays on 100% of the time. When the input conditions change again and the required duty cycle falls, the buck immediately restarts PWM regulation without allowing overshoot on the output voltage. Active Pull-Downs Each LDO operates with an input voltage of 1.7 V to 5.5 V. The wide operating range makes these LDOs suitable for cascading configurations where the LDO supply voltage is provided from one of the buck regulators. Each LDO output voltage is set through external resistor dividers as shown in Figure 48 for LDO1. The output voltage can optionally be factory programmed to default values as indicated in the Ordering Guide section. In this event, Ra and Rb are not needed, and FB3 must be connected to the top of the capacitor on VOUT3. FB3 is 0.5 V. All regulators have optional, factory programmable, active pulldown resistors discharging the respective output capacitors when the regulators are disabled. The pull-down resistors are connected between VOUTx and AGND. Active pull-downs are disabled when the regulators are turned on. The typical value of the pull-down resistor is 600 Ω for the LDOs and 75 Ω for the bucks. Figure 46 shows the activation timings for the active pull-downs during regulator activation and deactivation. VOUT3 VIN3 LDO1 FB3 VOUT3 Ra C7 1µF Rb VOUT3 = VFB3 LDO1 AND LDO2 Ra +1 Rb 09887-009 100% Duty Operation Figure 48. LDO1 External Output Voltage Setting The ADP5037 contains two LDOs with low quiescent current and low dropout voltage, and provides up to 300 mA of output current. Drawing a low 10 μA quiescent current (typical) at no load makes the LDO ideal for battery-operated portable equipment. The LDOs also provide high power supply rejection ratio (PSRR), low output noise, and excellent line and load transient response with only a small 1 µF ceramic input and output capacitor. LDO1 is optimized to supply analog circuits because it offers better noise performance compared to LDO2. LDO1 should be used in applications where noise performance is critical. Rev. D | Page 18 of 28 Data Sheet ADP5037 APPLICATIONS INFORMATION BUCK EXTERNAL COMPONENT SELECTION Trade-offs between performance parameters such as efficiency and transient response can be made by varying the choice of external components in the applications circuit, as shown in Figure 1. Feedback Resistors For the adjustable model, referring to Figure 47, the total combined resistance for R1 and R2 is not to exceed 400 kΩ. Inductor The high switching frequency of the ADP5037 bucks allows for the selection of small chip inductors. For best performance, use inductor values between 0.7 μH and 3 μH. Suggested inductors are shown in Table 9. The peak-to-peak inductor current ripple is calculated using the following equation: I RIPPLE = VOUT × (VIN − VOUT ) VIN × f SW × L The worst-case capacitance accounting for capacitor variation over temperature, component tolerance, and voltage is calculated using the following equation: CEFF = COUT × (1 − TEMPCO) × (1 − TOL) where: CEFF is the effective capacitance at the operating voltage. TEMPCO is the worst-case capacitor temperature coefficient. TOL is the worst-case component tolerance. In this example, the worst-case temperature coefficient (TEMPCO) over −40°C to +85°C is assumed to be 15% for an X5R dielectric. The tolerance of the capacitor (TOL) is assumed to be 10%, and COUT is 9.2 μF at 1.8 V, as shown in Figure 49. where: fSW is the switching frequency. L is the inductor value. The minimum dc current rating of the inductor must be greater than the inductor peak current. The inductor peak current is calculated using the following equation: I PEAK = I LOAD( MAX ) + Ceramic capacitors are manufactured with a variety of dielectrics, each with a different behavior over temperature and applied voltage. Capacitors must have a dielectric adequate to ensure the minimum capacitance over the necessary temperature range and dc bias conditions. X5R or X7R dielectrics with a voltage rating of 6.3 V or 10 V are recommended for best performance. Y5V and Z5U dielectrics are not recommended for use with any dc-to-dc converter because of their poor temperature and dc bias characteristics. I RIPPLE 2 Substituting these values in the equation yields CEFF = 9.2 μF × (1 − 0.15) × (1 − 0.1) = 7.0 μF To guarantee the performance of the bucks, it is imperative that the effects of dc bias, temperature, and tolerances on the behavior of the capacitors be evaluated for each application. 12 Inductor conduction losses are caused by the flow of current through the inductor, which has an associated internal dc resistance (DCR). Larger sized inductors have smaller DCR, which may decrease inductor conduction losses. Inductor core losses are related to the magnetic permeability of the core material. Because the bucks are high switching frequency dc-to-dc converters, shielded ferrite core material is recommended for its low core losses and low EMI. CAPACITANCE (µF) 10 8 6 4 Output Capacitor Higher output capacitor values reduce the output voltage ripple and improve load transient response. When choosing this value, it is also important to account for the loss of capacitance due to output voltage dc bias. 0 0 1 2 3 4 5 DC BIAS VOLTAGE (V) 6 09887-010 2 Figure 49. Capacitance vs. Voltage Characteristic Table 9. Suggested 1.0 μH Inductors Vendor Murata Murata Taiyo Yuden Coilcraft Coilcraft Toko Model LQM2MPN1R0NG0B LQM18FN1R0M00B CBC3225T1R0MR XFL4020-102ME XPL2010-102ML MDT2520-CN Dimensions (mm) 2.0 × 1.6 × 0.9 3.2 × 2.5 × 1.5 3.2 × 2.5 × 2.5 4.0 × 4.0 × 2.1 1.9 × 2.0 × 1.0 2.5 × 2.0 × 1.2 Rev. D | Page 19 of 28 ISAT (mA) 1400 2300 2000 5400 3750 1350 DCR (mΩ) 85 54 71 11 89 85 ADP5037 Data Sheet To minimize supply noise, place the input capacitor as close as possible to the VINx pin of the buck. As with the output capacitor, a low ESR capacitor is recommended. The peak-to-peak output voltage ripple for the selected output capacitor and inductor values is calculated using the following equation: The effective capacitance needed for stability, which includes temperature and dc bias effects, is a minimum of 3 µF and a maximum of 10 µF. A list of suggested capacitors is shown in Table 10 and Table 11. V IN I RIPPLE ≈ 8 × f SW × C OUT (2π × f SW ) 2 × L × C OUT Capacitors with lower effective series resistance (ESR) are preferred to guarantee low output voltage ripple, as shown in the following equation: ESRCOUT ≤ Table 10. Suggested 10 μF Capacitors VRIPPLE I RIPPLE Vendor Murata TDK Panasonic The effective capacitance needed for stability, which includes temperature and dc bias effects, is a minimum of 7 µF and a maximum of 40 µF. Model GRM188R60J106 C1608JB0J106K ECJ1VB0J106M Vendor Murata Taiyo Yuden Panasonic Vendor Murata TDK Panasonic Taiyo Yuden Higher value input capacitors help to reduce the input voltage ripple and improve transient response. Maximum input capacitor current is calculated using the following equation: Type X5R X5R X5R Model GRM188R60J475ME19D JMK107BJ475 ECJ-0EB0J475M Type X5R X5R X5R X5R Model GRM155B30J105K C1005JB0J105KT ECJ0EB0J105K LMK105BJ105MV-F VOUT (VIN − VOUT ) VIN AVIN 2.3V TO 5.5V HOUSEKEEPING VOUT1 VIN1 SW1 C1 4.7µF ON OFF BUCK1 EN1 EN1 FB1 PGND1 L1 1µH MODE SW2 BUCK2 EN2 ON EN3 EN2 EN3 VIN3 1.7V TO 5.5V C3 1µF ON PWM PSM/PWM FB2 PGND2 L2 1µH R3 R4 VIN4 VOUT2 @ 800mA C6 10µF VOUT3 LDO1 (ANALOG) FB3 R5 R6 EN4 OFF C4 1µF C5 10µF R2 MODE VOUT2 C2 4.7µF OFF VOUT1 @ 800mA R1 MODE VIN2 Voltage Rating (V) 6.3 6.3 6.3 Case Size 0402 0402 0402 Voltage Rating (V) 6.3 6.3 6.3 Table 12. Suggested 1.0 μF Capacitors Input Capacitor CAVIN 0.1µF Case Size 0603 0603 0603 Table 11. Suggested 4.7 μF Capacitors The buck regulators require 10 µF output capacitors to guarantee stability and response to rapid load variations and to transition into and out of the PWM/PSM modes. A list of suggested capacitors is shown in Table 10. In certain applications where one or both buck regulator powers a processor, the operating state is known because it is controlled by software. In this condition, the processor can drive the MODE pin according to the operating state; consequently, it is possible to reduce the output capacitor from 10 µF to 4.7 µF because the regulator does not expect a large load variation when working in PSM mode (see Figure 50). I CIN ≥ I LOAD ( MAX ) Type X5R X5R X5R VOUT3 @ 300mA C7 1µF VOUT4 EN4 LDO2 (DIGITAL) FB4 R7 R8 VOUT4 @ 300mA C8 1µF ADP5037 AGND Figure 50. Processor System Power Management with PSM/PWM Control Rev. D | Page 20 of 28 09887-021 V RIPPLE = Case Size 0402 0402 0402 0402 Voltage Rating (V) 6.3 6.3 6.3 10.0 Data Sheet ADP5037 LDO EXTERNAL COMPONENT SELECTION 1.2 Feedback Resistors The ADP5037 LDOs are designed for operation with small, spacesaving ceramic capacitors, but function with most commonly used capacitors as long as care is taken with the ESR value. The ESR of the output capacitor affects stability of the LDO control loop. A minimum of 0.70 µF capacitance with an ESR of 1 Ω or less is recommended to ensure that stability of the ADP5037. Transient response to changes in load current is also affected by output capacitance. Using a larger value of output capacitance improves the transient response of the ADP5037 to large changes in load current. Input Bypass Capacitor Connecting a 1 µF capacitor from VIN3 and VIN4 to ground reduces the circuit sensitivity to printed circuit board (PCB) layout, especially when long input traces or high source impedance is encountered. If greater than 1 µF of output capacitance is required, increase the input capacitor to match it. Input and Output Capacitor Properties 0.8 0.6 0.4 0.2 0 0 1 2 3 4 DC BIAS VOLTAGE (V) 5 6 09887-012 Output Capacitor CAPACITANCE (µF) 1.0 For the adjustable model, the maximum value of Rb is not to exceed 200 kΩ (see Figure 48). Figure 51. Capacitance vs. Voltage Characteristic Use the following equation to determine the worst-case capacitance accounting for capacitor variation over temperature, component tolerance, and voltage: CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL) where: CBIAS is the effective capacitance at the operating voltage. TEMPCO is the worst-case capacitor temperature coefficient. TOL is the worst-case component tolerance. Use any good quality ceramic capacitors with the ADP5037 as long as they meet the minimum capacitance and maximum ESR requirements. Ceramic capacitors are manufactured with a variety of dielectrics, each with a different behavior over temperature and applied voltage. Capacitors must have a dielectric adequate to ensure the minimum capacitance over the necessary temperature range and dc bias conditions. X5R or X7R dielectrics with a voltage rating of 6.3 V or 10 V are recommended for best performance. Y5V and Z5U dielectrics are not recommended for use with any LDO because of their poor temperature and dc bias characteristics. In this example, the worst-case temperature coefficient (TEMPCO) over −40°C to +85°C is assumed to be 15% for an X5R dielectric. The tolerance of the capacitor (TOL) is assumed to be 10%, and CBIAS is 0.85 μF at 1.8 V as shown in Figure 51. Figure 51 depicts the capacitance vs. voltage bias characteristic of a 0402 1 µF, 10 V, X5R capacitor. The voltage stability of a capacitor is strongly influenced by the capacitor size and voltage rating. In general, a capacitor in a larger package or with higher voltage rating exhibits better stability. The temperature variation of the X5R dielectric is about ±15% over the −40°C to +85°C temperature range and is not a function of package or voltage rating. To guarantee the performance of the ADP5037, it is imperative that the effects of dc bias, temperature, and tolerances on the behavior of the capacitors be evaluated for each application. Substituting these values into the following equation, CEFF = 0.85 μF × (1 − 0.15) × (1 − 0.1) ≈ 0.65 μF Therefore, the capacitor chosen in this example meets the minimum capacitance requirement of the LDO over temperature and tolerance at the chosen output voltage. Rev. D | Page 21 of 28 ADP5037 Data Sheet POWER DISSIPATION AND THERMAL CONSIDERATIONS The ADP5037 is a highly efficient µPMU, and, in most cases, the power dissipated in the device is not a concern. However, if the device operates at high ambient temperatures and maximum loading condition, the junction temperature can reach the maximum allowable operating limit (125°C). When the temperature exceeds 150°C, the ADP5037 turns off all the regulators, allowing the device to cool down. When the die temperature falls below 130°C, the ADP5037 resumes normal operation. This section provides guidelines to calculate the power dissipated in the device and ensure that the ADP5037 operates below the maximum allowable junction temperature. The efficiency for each regulator on the ADP5037 is given by P η = OUT × 100% PIN (1) where: η is the efficiency. PIN is the input power. POUT is the output power. BUCK REGULATOR POWER DISSIPATION The power loss of the buck regulator is approximated by PLOSS = PDBUCK + PL (3) where: PDBUCK is the power dissipation on one of the ADP5037 buck regulators. PL is the inductor power losses. The inductor losses are external to the device, and they do not have any effect on the die temperature. The inductor losses are estimated (without core losses) by PL ≈ IOUT1(RMS)2 × DCRL (4) where: DCRL is the inductor series resistance. IOUT1(RMS) is the rms load current of the buck regulator. I OUT 1( RMS ) = I OUT1 × 1 + r 12 (5) where r is the normalized inductor ripple current. r = VOUT1 × (1 − D)/(IOUT1 × L × fSW) Power loss is given by PLOSS = PIN − POUT (2a) PLOSS = POUT (1− η)/η (2b) or Power dissipation can be calculated in several ways. The most intuitive and practical is to measure the power dissipated at the input and all the outputs. Perform the measurements at the worst-case conditions (voltages, currents, and temperature). The difference between input and output power is dissipated in the device and the inductor. Use Equation 4 to derive the power lost in the inductor and, from this, use Equation 3 to calculate the power dissipation in the ADP5037 buck converter. A second method to estimate the power dissipation uses the efficiency curves provided for the buck regulator, and the power lost on each LDO can be calculated using Equation 12. When the buck efficiency is known, use Equation 2b to derive the total power lost in the buck regulator and inductor, use Equation 4 to derive the power lost in the inductor, and then calculate the power dissipation in the buck converter using Equation 3. Add the power dissipated in the buck and in the two LDOs to find the total dissipated power. Note that the buck efficiency curves are typical values and may not be provided for all possible combinations of VIN, VOUT, and IOUT. To account for these variations, it is necessary to include a safety margin when calculating the power dissipated in the buck. (6) where: L is the inductance. fSW is the switching frequency. D is the duty cycle. D = VOUT1/VIN1 (7) The ADP5037 buck regulator power dissipation, PDBUCK, includes the power switch conductive losses, the switch losses, and the transition losses of each channel. There are other sources of loss, but these are generally less significant at high output load currents, where the thermal limit of the application is. Equation 8 captures the calculation that must be made to estimate the power dissipation in the buck regulator. PDBUCK = PCOND + PSW + PTRAN (8) The power switch conductive losses are due to the output current, IOUT1, flowing through the P-MOSFET and the N-MOSFET power switches that have internal resistance, RDSON-P and RDSON-N. The amount of conductive power loss is found by PCOND = [RDSON-P × D + RDSON-N × (1 − D)] × IOUT1(RMS)2 (9) where RDSON-P is approximately 0.2 Ω, and RDSON-N is approximately 0.16 Ω at 25°C junction temperature and VIN1 = VIN2 = 3.6 V. At VIN1 = VIN2 = 2.3 V, these values change to 0.31 Ω and 0.21 Ω, respectively, and at VIN1 = VIN2 = 5.5 V, the values are 0.16 Ω and 0.14 Ω, respectively. A third way to estimate the power dissipation is analytical and involves modeling the losses in the buck circuit provided by Equation 8 to Equation 11 and the losses in the LDO provided by Equation 12. Rev. D | Page 22 of 28 Data Sheet ADP5037 Switching losses are associated with the current drawn by the driver to turn on and turn off the power devices at the switching frequency. The amount of switching power loss is given by PSW = (CGATE-P + CGATE-N) × VIN12 × fSW (10) where: CGATE-P is the P-MOSFET gate capacitance. CGATE-N is the N-MOSFET gate capacitance. The transition losses occur because the P-channel power MOSFET cannot be turned on or off instantaneously, and the SW node takes some time to slew from near ground to near VOUT1 (and from VOUT1 to ground). The amount of transition loss is calculated by (11) where tRISE and tFALL are the rise time and the fall time of the switching node, SW. For the ADP5037, the rise and fall times of SW are in the order of 5 ns. If the preceding equations and parameters are used for estimating the converter efficiency, it must be noted that the equations do not describe all of the converter losses, and the parameter values given are typical numbers. The converter performance also depends on the choice of passive components and board layout; therefore, a sufficient safety margin should be included in the estimate. LDO Regulator Power Dissipation The power loss of a LDO regulator is given by PDLDO = [(VIN − VOUT) × ILOAD] + (VIN × IGND) In cases where the board temperature, TA, is known, the thermal resistance parameter, θJA, can be used to estimate the junction temperature rise. TJ is calculated from TA and PD using the formula TJ = TA + (PD × θJA) For the ADP5037, the total of (CGATE-P + CGATE-N) is approximately 150 pF. PTRAN = VIN1 × IOUT1 × (tRISE + tFALL) × fSW JUNCTION TEMPERATURE (12) where: ILOAD is the load current of the LDO regulator. VIN and VOUT are input and output voltages of the LDO, respectively. IGND is the ground current of the LDO regulator. The typical θJA value for the 24-lead, 4 mm × 4 mm LFCSP is 35°C/W (see Table 7). A very important factor to consider is that θJA is based on a 4-layer 4 in × 3 in, 2.5 oz copper, as per JEDEC standard, and real applications may use different sizes and layers. It is important to maximize the copper used to remove the heat from the device. Copper exposed to air dissipates heat better than copper used in the inner layers. The exposed pad should be connected to the ground plane with several vias. If the case temperature can be measured, the junction temperature is calculated by TJ = TC + (PD × θJC) (15) where TC is the case temperature and θJC is the junction-to-case thermal resistance provided in Table 7. When designing an application for a particular ambient temperature range, calculate the expected ADP5037 power dissipation (PD) due to the losses of all channels by using the Equation 8 to Equation 13. From this power calculation, the junction temperature, TJ, can be estimated using Equation 14. The reliable operation of the converter and the two LDO regulators can be achieved only if the estimated die junction temperature of the ADP5037 (Equation 14) is less than 125°C. Reliability and mean time between failures (MTBF) are highly affected by increasing the junction temperature. Additional information about product reliability can be found from the ADI Reliability Handbook, which can be found at www.analog.com/reliability_handbook. Power dissipation due to the ground current is small and it can be ignored. The total power dissipation in the ADP5037 simplifies to PD = PDBUCK1 + PDBUCK2 + PDLDO1 + PDLDO2 (14) (13) Rev. D | Page 23 of 28 ADP5037 Data Sheet PCB LAYOUT GUIDELINES Poor layout can affect ADP5037 performance, causing electromagnetic interference (EMI) and electromagnetic compatibility (EMC) problems, ground bounce, and voltage losses. Poor layout can also affect regulation and stability. A good layout is implemented using the following guidelines. • • • • Place the inductor, input capacitor, and output capacitor close to the IC using short tracks. These components carry high switching frequencies, and large tracks act as antennas. Route the output voltage path away from the inductor and SW node to minimize noise and magnetic interference. • Maximize the size of ground metal on the component side to help with thermal dissipation. Use a ground plane with several vias connecting to the component side ground to further reduce noise interference on sensitive circuit nodes. Connect VIN1, VIN2, and AVIN together close to the IC using short tracks. In addition, refer to the UG-271 User Guide. Rev. D | Page 24 of 28 Data Sheet ADP5037 TYPICAL APPLICATION SCHEMATICS AVIN CAVIN 0.1µF 2.3V TO 5.5V HOUSEKEEPING VOUT1 VIN1 SW1 C1 4.7µF ON OFF BUCK1 EN1 L1 1µH FB1 PGND1 EN1 MODE PWM MODE MODE SW2 C2 4.7µF BUCK2 EN2 ON EN3 EN2 EN3 VIN3 1.7V TO 5.5V PSM/PWM VOUT2 VIN2 OFF FB2 L2 1µH C6 10µF PGND2 VOUT3 LDO1 (ANALOG) VOUT3 @ 300mA FB3 C7 1µF VOUT4 LDO2 (DIGITAL) VIN4 C4 1µF VOUT4 @ 300mA FB4 C8 1µF 09887-022 EN4 OFF VOUT2 @ 800mA R3 C3 1µF ON VOUT1 @ 800mA C5 10µF ADP5037 AGND Figure 52. ADP5037 Fixed Output Voltages with Enable Pins AVIN CAVIN 0.1µF VOUT1 VIN1 SW1 C1 4.7µF ON OFF BUCK1 EN1 EN1 FB1 PGND1 L1 1µH PWM MODE SW2 C2 4.7µF BUCK2 EN2 EN3 EN2 EN3 VIN3 1.7V TO 5.5V C3 1µF ON FB2 PGND2 L2 1µH R3 R4 VIN4 VOUT2 @ 800mA C6 10µF VOUT3 LDO1 (ANALOG) FB3 R5 R6 EN4 OFF C4 1µF PSM/PWM VOUT2 VIN2 ON C5 10µF R2 MODE MODE OFF VOUT1 @ 800mA R1 VOUT3 @ 300mA C7 1µF VOUT4 EN4 LDO2 (DIGITAL) FB4 R7 R8 VOUT4 @ 300mA C8 1µF ADP5037 AGND Figure 53. ADP5037 Adjustable Output Voltages with Enable Pins Rev. D | Page 25 of 28 09887-023 2.3V TO 5.5V HOUSEKEEPING ADP5037 Data Sheet BILL OF MATERIALS Table 13. Reference CAVIN C3, C4, C7, C8 C1, C2 C5, C6 L1, L2 IC1 Value 0.1 µF, X5R, 6.3 V 1 µF, X5R, 6.3 V 4.7 µF, X5R, 6.3 V 10 µF, X5R, 6.3 V 1 µH, 0.18 Ω, 850 mA 1 µH, 0.085 Ω, 1400 mA 1 µH, 0.059 Ω, 900 mA 1 µH, 0.086 Ω, 1350 mA Four-regulator micro PMU Part Number JMK105BJ104MV-F LMK105BJ105MV-F ECJ-0EB0J475M JMK107BJ106MA-T BRC1608T1R0M LQM2MPN1R0NG0B EPL2014-102ML MDT2520-CN ADP5037 Rev. D | Page 26 of 28 Vendor Taiyo-Yuden Taiyo-Yuden Panasonic-ECG Taiyo-Yuden Taiyo-Yuden Murata Coilcraft Toko Analog Devices Package or Dimension (mm) 0402 0402 0402 0603 0603 2.0 × 1.6 × 0.9 2.0 × 2.0 × 1.4 2.5 × 2.0 × 1.2 24-lead LFCSP Data Sheet ADP5037 OUTLINE DIMENSIONS 0.30 0.25 0.20 0.50 BSC PIN 1 INDICATOR 24 19 18 1 EXPOSED PAD 0.50 0.40 0.30 TOP VIEW 0.80 0.75 0.70 13 12 2.20 2.10 SQ 2.00 6 7 0.25 MIN BOTTOM VIEW FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8. 06-11-2012-A PIN 1 INDICATOR 4.10 4.00 SQ 3.90 Figure 54. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-24-10) Dimensions shown in millimeters ORDERING GUIDE Model1 ADP5037ACPZ-R7 ADP5037ACPZ-1-R7 Temperature Range −40°C to +125°C −40°C to +125°C ADP5037ACPZ-2-R7 −40°C to +125°C ADP5037ACPZ-3-R7 ADP5037CP-EVALZ −40°C to +125°C Output Voltage2 Adjustable VOUT1 = 1.2 V, VOUT2 = 3.3 V, VOUT3 = 2.8 V, VOUT4 = 1.8 V VOUT1 = 1.0 V, VOUT2 = 1.8 V, VOUT3 = 3.3 V, VOUT4 = 2.8 V Adjustable UVLO3 Low Low Active Pull-Down4 Enabled on Buck Channels Enabled on Buck Channels Package Description 24-Lead LFCSP_WQ 24-Lead LFCSP_WQ Package Option CP-24-10 CP-24-10 Low Enabled on All Channels 24-Lead LFCSP_WQ CP-24-10 High Enabled on All Channels 24-Lead LFCSP_WQ Evaluation Board for ADP5037ACPZ-R7 CP-24-10 1 Z = RoHS Compliant Part. 2 For additional options, contact a local sales or distribution representative. Additional options available are: BUCK1 and BUCK2: 3.3 V, 3.0 V, 2.8 V, 2.5 V, 2.3 V, 2.0 V, 1.8 V, 1.6 V, 1.5 V, 1.4 V, 1.3 V, 1.2 V, 1.1 V, 1.0 V, 0.9 V, or adjustable. LDO1 and LDO2: 3.3 V, 3.0 V, 2.8 V, 2.5 V, 2.25 V, 2 V, 1.8 V, 1.7 V, 1.6 V, 1.5 V, 1.2 V, 1.1 V, 1.0 V, 0.9 V, 0.8 V, or adjustable. 3 UVLO: low or high. 4 BUCK1, BUCK2, and both LDO1 and LDO2: active pull-down resistor is programmable to be either enabled or disabled. Rev. D | Page 27 of 28 ADP5037 Data Sheet NOTES ©2011–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09887-0-5/13(D) Rev. D | Page 28 of 28