Philips Semiconductors Objective specification TrenchMOS transistor Standard level FET GENERAL DESCRIPTION N-channel enhancement mode standard level field-effect power transistor in a plastic envelope using ’trench’ technology. The device features very low on-state resistance and has integral zener diodes giving ESD protection up to 2kV. It is intended for use in automotive and general purpose switching applications. PINNING - TO220AB PIN BUK7524-60 QUICK REFERENCE DATA SYMBOL PARAMETER VDS ID Ptot Tj RDS(ON) Drain-source voltage Drain current (DC) Total power dissipation Junction temperature Drain-source on-state resistance VGS = 10 V PIN CONFIGURATION MAX. UNIT 60 45 103 175 24 V A W ˚C mΩ SYMBOL DESCRIPTION d tab 1 gate 2 drain 3 source tab g drain s 1 23 LIMITING VALUES Limiting values in accordance with the Absolute Maximum System (IEC 134) SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VDS VDGR ±VGS ID ID IDM Ptot Tstg, Tj Drain-source voltage Drain-gate voltage Gate-source voltage Drain current (DC) Drain current (DC) Drain current (pulse peak value) Total power dissipation Storage & operating temperature RGS = 20 kΩ Tmb = 25 ˚C Tmb = 100 ˚C Tmb = 25 ˚C Tmb = 25 ˚C - - 55 60 60 16 45 31 180 103 175 V V V A A A W ˚C MIN. MAX. UNIT - 2 kV TYP. MAX. UNIT - 1.45 K/W 60 - K/W ESD LIMITING VALUE SYMBOL PARAMETER CONDITIONS VC Electrostatic discharge capacitor voltage, all pins Human body model (100 pF, 1.5 kΩ) THERMAL RESISTANCES SYMBOL PARAMETER CONDITIONS Rth j-mb Thermal resistance junction to mounting base Thermal resistance junction to ambient - Rth j-a March 1997 in free air 1 Rev 1.000 Philips Semiconductors Objective specification TrenchMOS transistor Standard level FET BUK7524-60 STATIC CHARACTERISTICS Tj= 25˚C unless otherwise specified SYMBOL PARAMETER CONDITIONS V(BR)DSS Drain-source breakdown voltage Gate threshold voltage VGS = 0 V; ID = 0.25 mA; VGS(TO) Tj = -55˚C VDS = VGS; ID = 1 mA Tj = 175˚C Tj = -55˚C IDSS Zero gate voltage drain current VDS = 60 V; VGS = 0 V; VGS = ±10 V; VDS = 0 V IGSS Gate source leakage current ±V(BR)GSS RDS(ON) Gate source breakdown voltage IG = ±1 mA; Drain-source on-state VGS = 10 V; ID = 25 A resistance Tj = 175˚C Tj = 175˚C Tj = 175˚C MIN. TYP. MAX. UNIT 60 55 2.0 1.0 16 - 3.0 0.05 0.02 19 - 4.0 4.4 10 500 1 20 24 50 V V V V µA µA µA µA V mΩ mΩ MIN. TYP. MAX. UNIT DYNAMIC CHARACTERISTICS Tmb = 25˚C unless otherwise specified SYMBOL PARAMETER CONDITIONS gfs Forward transconductance VDS = 25 V; ID = 25 A 4 11 - S Ciss Coss Crss Input capacitance Output capacitance Feedback capacitance VGS = 0 V; VDS = 25 V; f = 1 MHz - 1100 280 130 1500 340 180 pF pF pF td on tr td off tf Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time VDD = 30 V; ID = 25 A; VGS = 10 V; RG = 10 Ω Resistive load - 12 19 25 18 18 35 35 25 ns ns ns ns Ld Internal drain inductance - 3.5 - nH Ld Internal drain inductance - 4.5 - nH Ls Internal source inductance Measured from contact screw on tab to centre of die Measured from drain lead 6 mm from package to centre of die Measured from source lead 6 mm from package to source bond pad - 7.5 - nH MIN. TYP. MAX. UNIT - - 45 A IF = 25 A; VGS = 0 V IF = 40 A; VGS = 0 V - 0.95 1.0 160 1.2 - A V IF = 40 A; -dIF/dt = 100 A/µs; VGS = -10 V; VR = 30 V - 40 0.07 - ns µC REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS Tj = 25˚C unless otherwise specified SYMBOL PARAMETER IDR IDRM VSD Continuous reverse drain current Pulsed reverse drain current Diode forward voltage trr Qrr Reverse recovery time Reverse recovery charge March 1997 CONDITIONS 2 Rev 1.000 Philips Semiconductors Objective specification TrenchMOS transistor Standard level FET BUK7524-60 AVALANCHE LIMITING VALUE SYMBOL PARAMETER CONDITIONS WDSS Drain-source non-repetitive unclamped inductive turn-off energy ID = 40 A; VDD ≤ 25 V; VGS = 10 V; RGS = 50 Ω; Tmb = 25 ˚C March 1997 3 MIN. TYP. MAX. UNIT - - 80 mJ Rev 1.000 Philips Semiconductors Objective specification TrenchMOS transistor Standard level FET BUK7524-60 MECHANICAL DATA Dimensions in mm 4,5 max Net Mass: 2 g 10,3 max 1,3 3,7 2,8 5,9 min 15,8 max 3,0 max not tinned 3,0 13,5 min 1,3 max 1 2 3 (2x) 0,9 max (3x) 2,54 2,54 0,6 2,4 Fig.1. SOT78 (TO220AB); pin 2 connected to mounting base. Notes 1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide. 2. Refer to mounting instructions for SOT78 (TO220) envelopes. 3. Epoxy meets UL94 V0 at 1/8". March 1997 4 Rev 1.000 Philips Semiconductors Objective specification TrenchMOS transistor Standard level FET BUK7524-60 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. Philips Electronics N.V. 1998 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. March 1997 5 Rev 1.000