IRF IRF7350

PD - 94226B
IRF7350
HEXFET® Power MOSFET
l
l
l
l
Ultra Low On-Resistance
Dual N and P Channel MOSFET
Surface Mount
Available in Tape and Reel
S1
G1
S2
G2
N - C H A N N EL M O S FE T
1
8
2
7
D1
3
6
D2
4
5
D2
P -C H A N N E L M O S F E T
N-Ch
P-Ch
VDSS 100V
-100V
RDS(on) 0.21Ω
0.48Ω
D1
T op V iew
Description
These dual N and P channel HEXFET® power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve extremely low
on-resistance per silicon area. This benefit, combined with the fast switching
speed and ruggedized device design that HEXFET® power MOSFETs are
well known for, provides the designer with an extremely efficient and reliable
device for use in DC motor drives and load management applications.
The SO-8 has been modified through a customized leadframe for enhanced
thermal characteristics and multiple-die capability making it ideal in a variety
of power applications. With these improvements, multiple devices can be
used in an application with dramatically reduced board space. The package
is designed for vapor phase, infra red, or wave soldering techniques.
SO-8
Absolute Maximum Ratings
Parameter
VDS
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
EAS
VGS
dv/dt
TJ, TSTG
Drain-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Single Pulse Avalanche Energy„
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ‚
Junction and Storage Temperature Range
Max.
N-Channel
P-Channel
100
2.1
1.7
8.4
-100
-1.5
-1.2
-6.0
2.0
0.016
35
± 20
4.0
51
± 20
4.3
-55 to + 150
Units
A
W
W/°C
mJ
V
V/ns
°C
Thermal Resistance
Symbol
RθJL
RθJA
www.irf.com
Parameter
Junction-to-Drain Lead
Junction-to-Ambient ƒ
Typ.
Max.
Units
–––
–––
20
62.5
°C/W
1
08/09/01
IRF7350
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
R DS(ON)
Min. Typ. Max. Units
100 —
—
V
-100 —
—
— 0.12 —
V/°C
— -0.11 —
N-Ch
P-Ch
N-Ch
P-Ch
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Qg
Total Gate Charge
Qgs
Gate-to-Source Charge
Qgd
Gate-to-Drain ("Miller") Charge
t d(on)
Turn-On Delay Time
tr
Rise Time
t d(off)
Turn-Off Delay Time
tf
Fall Time
C iss
Input Capacitance
C oss
Output Capacitance
C rss
Reverse Transfer Capacitance
VGS = 10V, ID = 2.1A ‚
N-Ch —
—
0.21
P-Ch
—
—
0.48
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-P
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
2.0
-2.0
2.4
1.1
—
—
—
—
––
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
19
21
3.0
3.4
8.8
10
6.7
25
11
13
35
30
20
40
380
360
100
110
54
65
4.0
V
-4.0
—
S
—
25
-25
µA
250
-250
±100
28
31
4.5
nC
5.1
13
16
—
—
—
—
ns
—
—
—
—
—
—
—
pF
—
—
—
Static Drain-to-Source On-Resistance
Conditions
VGS = 0V, I D = 250µA
VGS = 0V, ID = -250µA
Reference to 25°C, I D = 1mA
Reference to 25°C, ID = -1mA
Ω
VGS = -10V, ID = -1.5A
‚
VDS = VGS, ID = 250µA
VDS = VGS, ID = -250µA
VDS = 50V, ID = 2.1A
VDS = -50V, ID = -1.5A
VDS = 100V, VGS = 0V ‚
VDS = -100V, VGS = 0V ‚
VDS = 80 V, VGS = 0V, TJ = 70°C
VDS = -80V, VGS = 0V, TJ = 70°C
VGS = ± 20V
N-Channel
ID = 2.1A, VDS = 80V, VGS = 10V
P-Channel
ID = -1.5A, VDS = -80V, VGS = -10V
N-Channel
VDD = 50V, I D = 1.0A, RG = 22Ω,
RD = 50Ω, VGS = 10V
‚
P-Channel
VDD = -50V, ID = -1.0A, RG = 22Ω,
RD = 50Ω, VGS = -10V
N-Channel
VGS = 0V, V DS = 25V, ƒ = 1.0MHz
P-Channel
VGS = 0V, VDS = -25V, ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
Parameter
IS
Continuous Source Current (Body Diode)
ISM
Pulsed Source Current (Body Diode) 
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
Min. Typ. Max. Units
Conditions
—
— 1.8
—
— -1.4
A
—
— 8.4
—
— -6.0
—
— 1.3
TJ = 25°C, IS = 1.8A, VGS = 0V ‚
V
—
— -1.6
TJ = 25°C, IS = -1.4A, VGS = 0V ‚
—
72 110 ns
N-Channel
—
77 120
TJ = 25°C, IF = 1.8A, di/dt = 100A/µs
— 205 310 nC
P-Channel
TJ = 25°C, IF = -1.4A, di/dt = -100A/µs
— 240 360
‚
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
„ N channel: Starting TJ = 25°C, L = 4.0mH, RG = 25Ω, IAS = 4.2A
P channel: Starting TJ = 25°C, L = 11mH, RG = 25Ω, IAS = -3.0A
‚ Pulse width ≤ 400µs; duty cycle ≤ 2%.
ƒ Surface mounted on 1 in square Cu board
2
www.irf.com
IRF7350
N-CHANNEL
100
100
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
BOTTOM 4.0V
10
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
BOTTOM 4.0V
TOP
ID , Drain-to-Source Current (A)
ID , Drain-to-Source Current (A)
TOP
1
0.1
4.0V
10
1
4.0V
0.1
20µs PULSE WIDTH
Tj = 25°C
20µs PULSE WIDTH
Tj = 150°C
0.01
0.01
0.1
1
10
100
0.1
1
VDS , Drain-to-Source Voltage (V)
2.5
T J = 25°C
0.10
VDS = 15V
20µs PULSE WIDTH
6.0
7.5
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
9.0
(Normalized)
1.00
4.5
I D = 2.1A
2.0
T J = 150°C
R DS(on) , Drain-to-Source On Resistance
ID , Drain-to-Source Current (Α )
10.00
3.0
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
0.01
10
VDS, Drain-to-Source Voltage (V)
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
TJ , Junction Temperature
80
100
120
140
( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
160
IRF7350
N-CHANNEL
10000
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
VDS = 20V
10
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
Ciss
Coss
100
Crss
7
5
2
10
0
1
10
0
100
8
12
16
20
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10.00
100
ID , Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
4
QG , Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
T J = 150°C
1.00
T J = 25°C
OPERATION IN THIS AREA
LIMITED BY R DS(on)
10
100µsec
1msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0.10
0.0
0.5
1.0
VSD , Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS = 80V
VDS = 50V
Coss = Cds + Cgd
1000
ID = 2.1A
1.5
1
10msec
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7350
N-CHANNEL
2.5
RD
VDS
VGS
2.0
D.U.T.
ID , Drain Current (A)
RG
+
-VDD
1.5
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
1.0
Fig 10a. Switching Time Test Circuit
0.5
VDS
90%
0.0
25
50
75
100
125
150
( °C)
TC , Case Temperature
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
100
(Z thJA)
D = 0.50
0.20
10
Thermal Response
0.10
0.05
P DM
0.02
1
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D =
2. Peak T
0.1
0.00001
0.0001
0.001
0.01
0.1
t1/ t
2
J = P DM x Z thJA
1
+T A
10
100
t 1, Rectangular Pulse Duration (sec)
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7350
0.40
R DS (on) , Drain-to-Source On Resistance ( Ω)
R DS(on) , Drain-to -Source On Resistance ( Ω )
N-CHANNEL
0.30
ID = 2.1A
0.20
0.10
0.00
4.5
6.0
7.5
9.0
10.5
12.0
13.5
0.18
0.17
VGS = 10V
0.16
0.15
15.0
0
VGS, Gate -to -Source Voltage (V)
6
8
10
Fig 13. Typical On-Resistance Vs. Drain
Current
4.0
70
60
3.5
50
Power (W)
VGS(th) Gate threshold Voltage (V)
4
ID , Drain Current (A)
Fig 12. Typical On-Resistance Vs. Gate
Voltage
ID = 250µA
3.0
40
30
20
2.5
10
2.0
0
-75
-50
-25
0
25
50
75
100
125
T J , Temperature ( °C )
Fig 14. Typical Threshold Voltage Vs.
Junction Temperature
6
2
150
1.00
10.00
100.00
1000.00
Time (sec)
Fig 15. Typical Power Vs. Time
www.irf.com
IRF7350
N-CHANNEL
100
ID
EAS , Single Pulse Avalanche Energy (mJ)
80
TOP
1.9A
3.4A
BOTTOM
4.2A
1 5V
60
D .U .T
RG
40
D R IV E R
L
VDS
+
V
- DD
IA S
20V
tp
A
0 .0 1 Ω
20
Fig 16c. Unclamped Inductive Test Circuit
0
25
50
75
100
125
150
( °C)
Starting T , JJunction Temperature
V (B R )D SS
Fig 16a. Maximum Avalanche Energy
Vs. Drain Current
tp
IAS
Fig 16d. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
12V
VGS
.2µF
.3µF
D.U.T.
QGS
+
V
- DS
QGD
VG
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 17. Gate Charge Test Circuit
www.irf.com
Charge
Fig 18. Basic Gate Charge Waveform
7
IRF7350
N-CHANNEL
10
Duty Cycle = Single Pulse
Avalanche Current (A)
1
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
0.05
0.1
0.10
0.01
0.001
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
tav (sec)
Fig 19. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
40
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 4.2A
30
20
10
0
25
50
75
100
125
Starting T J , Junction Temperature (°C)
Fig 20. Maximum Avalanche Energy
Vs. Temperature
8
150
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC
∆T/ [1.3·BV·Zth]
Iav = 2∆
EAS (AR) = PD (ave)·tav
www.irf.com
IRF7350
P-CHANNEL
100
100
VGS
-15V
-10V
-7.0V
-6.0V
-5.5V
-5.0V
-4.5V
BOTTOM -4.0V
10
VGS
-15V
-10V
-7.0V
-6.0V
-5.5V
-5.0V
-4.5V
BOTTOM -4.0V
TOP
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
TOP
1
0.1
-4.0V
0.01
20µs PULSE WIDTH
Tj = 25°C
10
1
-4.0V
0.1
20µs PULSE WIDTH
Tj = 150°C
0.001
0.01
0.1
1
10
100
0.1
1
-V DS , Drain-to-Source Voltage (V)
100
-V DS , Drain-to-Source Voltage (V)
Fig 22. Typical Output Characteristics
Fig 21. Typical Output Characteristics
10.00
2.5
I D = -1.5A
T J = 150°C
1.00
T J = 25°C
0.10
VDS = -25V
20µs PULSE WIDTH
0.01
4.0
6.0
8.0
-V GS, Gate-to-Source Voltage (V)
Fig 23. Typical Transfer Characteristics
www.irf.com
10.0
(Normalized)
2.0
R DS(on) , Drain-to-Source On Resistance
-I D, Drain-to-Source Current (Α )
10
1.5
1.0
0.5
V GS = -10V
0.0
-60
-40
-20
0
20
40
60
TJ , Junction Temperature
80
100
120
140
160
( °C)
Fig 24. Normalized On-Resistance
Vs. Temperature
9
IRF7350
10000
P-CHANNEL
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
V DS = 20V
10
-V GS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
Ciss
Coss
100
Crss
V DS = 80V
V DS = 50V
Coss = Cds + Cgd
1000
I D = -1.5A
7
5
2
10
1
10
0
100
0
5
10.00
20
25
100
-ID , Drain-to-Source Current (A)
-I SD , Reverse Drain Current (A)
15
Fig 26. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 25. Typical Capacitance Vs.
Drain-to-Source Voltage
T J = 150°C
1.00
T J = 25°C
OPERATION IN THIS AREA
LIMITED BY R DS (on)
10
100µsec
1
VGS = 0V
0.1
0.10
0.2
0.4
0.6
0.8
1.0
-V SD , Source-toDrain Voltage (V)
Fig 27. Typical Source-Drain Diode
Forward Voltage
10
10
Q G, Total Gate Charge (nC)
-V DS , Drain-to-Source Voltage (V)
1.2
1msec
10msec
Tc = 25°C
Tj = 150°C
Single Pulse
1
10
100
1000
-V DS , Drain-toSource Voltage (V)
Fig 28. Maximum Safe Operating Area
www.irf.com
IRF7350
P-CHANNEL
2.0
RD
VDS
VGS
1.6
D.U.T.
RG
+
-I D, Drain Current (A)
- VDD
1.2
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
0.8
Fig 10a. Switching Time Test Circuit
0.4
VDS
90%
0.0
25
50
75
100
125
150
( °C)
TC , Case Temperature
10%
VGS
Fig 29. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
100
(Z thJA)
D = 0.50
0.20
10
Thermal Response
0.10
0.05
P DM
0.02
1
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D =
2. Peak T
0.1
0.00001
0.0001
0.001
0.01
0.1
t1/ t
2
J = P DM x Z thJA
1
+T A
10
100
t 1, Rectangular Pulse Duration (sec)
Fig 30. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
11
P-CHANNEL
0.500
0.80
RDS (on) , Drain-to-Source On Resistance ( Ω)
R DS(on) , Drain-to -Source On Resistance ( Ω )
IRF7350
0.70
0.60
ID = -1.5A
0.50
0.40
0.30
0.475
0.450
VGS = -10V
0.425
0.400
5.0
7.0
9.0
11.0
13.0
15.0
0
-V GS, Gate -to -Source Voltage (V)
3
4
5
6
Fig 32. Typical On-Resistance Vs. Drain
Current
70
4.0
60
3.5
50
ID = -250µA
Power (W)
-V GS(th) Gate threshold Voltage (V)
2
-I D , Drain Current (A)
Fig 31. Typical On-Resistance Vs. Gate
Voltage
3.0
40
30
20
2.5
10
0
2.0
-75
-50
-25
0
25
50
75
100
125
T J , Temperature ( °C )
Fig 33. Typical Threshold Voltage Vs.
Junction Temperature
12
1
150
1.00
10.00
100.00
1000.00
Time (sec)
Fig 34. Typical Power Vs. Time
www.irf.com
IRF7350
P-CHANNEL
120
ID
TOP
-1.3A
-2.4A
E AS, Single Pulse Avalanche Energy (mJ)
96
BOTTOM
-3.0A
1 5V
72
48
D R IV E R
L
VDS
D .U .T
RG
+
V
- DD
IA S
20V
24
tp
A
0 .0 1 Ω
Fig 35c. Unclamped Inductive Test Circuit
0
25
50
75
100
125
150
( °C)
Starting T , Junction
Temperature
J
V (B R )D SS
Fig 35a. Maximum Avalanche Energy
Vs. Drain Current
tp
IAS
Fig 35d. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
12V
VGS
.2µF
.3µF
D.U.T.
QGS
+
V
- DS
QGD
VG
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 36. Gate Charge Test Circuit
www.irf.com
Charge
Fig 37. Basic Gate Charge Waveform
13
IRF7350
P-CHANNEL
10
Duty Cycle = Single Pulse
- Avalanche Current (A)
1
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
0.05
0.1
0.10
0.01
0.001
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
tav (sec)
Fig 38. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
60
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = -3.0A
50
40
30
20
10
0
25
50
75
100
125
Starting T J , Junction Temperature (°C)
Fig 39. Maximum Avalanche Energy
Vs. Temperature
14
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
150
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC
∆T/ [1.3·BV·Zth]
Iav = 2∆
EAS (AR) = PD (ave)·tav
www.irf.com
IRF7350
SO-8 Package Details
D
5
A
8
6
7
6
5
H
0.25 [.010]
1
6X
2
3
A
MAX
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
.050 BAS IC
1.27 BAS IC
e1
e
.025 BAS IC
0.635 BAS IC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
A
C
y
0.10 [.004]
8X b
0.25 [.010]
MAX
e
4
e1
MILLIMET ERS
MIN
A
E
INCHES
DIM
B
A1
8X L
8X c
7
C A B
F OOT PRINT
NOT ES :
1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994.
8X 0.72 [.028]
2. CONT ROLLING DIMENS ION: MILLIMET ER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES ].
4. OUTLINE CONFORMS T O JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS.
MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS.
MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010].
6.46 [.255]
7 DIMENSION IS T HE LENGT H OF LEAD FOR SOLDERING TO
A S UBST RAT E.
3X 1.27 [.050]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET )
INTERNAT IONAL
RECTIFIER
LOGO
www.irf.com
YWW
XXXX
F7101
DATE CODE (YWW)
Y = LAS T DIGIT OF THE YEAR
WW = WEEK
LOT CODE
PART NUMBER
15
IRF7350
SO-8 Tape and Reel
T E R M IN A L N U M B E R 1
1 2 .3 ( .48 4 )
1 1 .7 ( .46 1 )
8 .1 ( .31 8 )
7 .9 ( .31 2 )
F E E D D IR E C T IO N
N O TES:
1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .
2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ).
3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1.
33 0.0 0
(1 2 .9 9 2 )
M AX .
1 4 .4 0 ( .5 66 )
1 2 .4 0 ( .4 88 )
N O TE S :
1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .
2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 .
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/01
16
www.irf.com