PD - 94226B IRF7350 HEXFET® Power MOSFET l l l l Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape and Reel S1 G1 S2 G2 N - C H A N N EL M O S FE T 1 8 2 7 D1 3 6 D2 4 5 D2 P -C H A N N E L M O S F E T N-Ch P-Ch VDSS 100V -100V RDS(on) 0.21Ω 0.48Ω D1 T op V iew Description These dual N and P channel HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in DC motor drives and load management applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. SO-8 Absolute Maximum Ratings Parameter VDS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C EAS VGS dv/dt TJ, TSTG Drain-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Single Pulse Avalanche Energy Gate-to-Source Voltage Peak Diode Recovery dv/dt Junction and Storage Temperature Range Max. N-Channel P-Channel 100 2.1 1.7 8.4 -100 -1.5 -1.2 -6.0 2.0 0.016 35 ± 20 4.0 51 ± 20 4.3 -55 to + 150 Units A W W/°C mJ V V/ns °C Thermal Resistance Symbol RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead Junction-to-Ambient Typ. Max. Units ––– ––– 20 62.5 °C/W 1 08/09/01 IRF7350 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient R DS(ON) Min. Typ. Max. Units 100 — — V -100 — — — 0.12 — V/°C — -0.11 — N-Ch P-Ch N-Ch P-Ch VGS(th) Gate Threshold Voltage gfs Forward Transconductance IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Qg Total Gate Charge Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge t d(on) Turn-On Delay Time tr Rise Time t d(off) Turn-Off Delay Time tf Fall Time C iss Input Capacitance C oss Output Capacitance C rss Reverse Transfer Capacitance VGS = 10V, ID = 2.1A N-Ch — — 0.21 P-Ch — — 0.48 N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch 2.0 -2.0 2.4 1.1 — — — — –– — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 19 21 3.0 3.4 8.8 10 6.7 25 11 13 35 30 20 40 380 360 100 110 54 65 4.0 V -4.0 — S — 25 -25 µA 250 -250 ±100 28 31 4.5 nC 5.1 13 16 — — — — ns — — — — — — — pF — — — Static Drain-to-Source On-Resistance Conditions VGS = 0V, I D = 250µA VGS = 0V, ID = -250µA Reference to 25°C, I D = 1mA Reference to 25°C, ID = -1mA Ω VGS = -10V, ID = -1.5A VDS = VGS, ID = 250µA VDS = VGS, ID = -250µA VDS = 50V, ID = 2.1A VDS = -50V, ID = -1.5A VDS = 100V, VGS = 0V VDS = -100V, VGS = 0V VDS = 80 V, VGS = 0V, TJ = 70°C VDS = -80V, VGS = 0V, TJ = 70°C VGS = ± 20V N-Channel ID = 2.1A, VDS = 80V, VGS = 10V P-Channel ID = -1.5A, VDS = -80V, VGS = -10V N-Channel VDD = 50V, I D = 1.0A, RG = 22Ω, RD = 50Ω, VGS = 10V P-Channel VDD = -50V, ID = -1.0A, RG = 22Ω, RD = 50Ω, VGS = -10V N-Channel VGS = 0V, V DS = 25V, ƒ = 1.0MHz P-Channel VGS = 0V, VDS = -25V, ƒ = 1.0MHz Source-Drain Ratings and Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current (Body Diode) VSD Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Min. Typ. Max. Units Conditions — — 1.8 — — -1.4 A — — 8.4 — — -6.0 — — 1.3 TJ = 25°C, IS = 1.8A, VGS = 0V V — — -1.6 TJ = 25°C, IS = -1.4A, VGS = 0V — 72 110 ns N-Channel — 77 120 TJ = 25°C, IF = 1.8A, di/dt = 100A/µs — 205 310 nC P-Channel TJ = 25°C, IF = -1.4A, di/dt = -100A/µs — 240 360 Notes: Repetitive rating; pulse width limited by max. junction temperature. N channel: Starting TJ = 25°C, L = 4.0mH, RG = 25Ω, IAS = 4.2A P channel: Starting TJ = 25°C, L = 11mH, RG = 25Ω, IAS = -3.0A Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in square Cu board 2 www.irf.com IRF7350 N-CHANNEL 100 100 VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 4.0V 10 VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 4.0V TOP ID , Drain-to-Source Current (A) ID , Drain-to-Source Current (A) TOP 1 0.1 4.0V 10 1 4.0V 0.1 20µs PULSE WIDTH Tj = 25°C 20µs PULSE WIDTH Tj = 150°C 0.01 0.01 0.1 1 10 100 0.1 1 VDS , Drain-to-Source Voltage (V) 2.5 T J = 25°C 0.10 VDS = 15V 20µs PULSE WIDTH 6.0 7.5 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 9.0 (Normalized) 1.00 4.5 I D = 2.1A 2.0 T J = 150°C R DS(on) , Drain-to-Source On Resistance ID , Drain-to-Source Current (Α ) 10.00 3.0 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 0.01 10 VDS, Drain-to-Source Voltage (V) 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 TJ , Junction Temperature 80 100 120 140 ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 160 IRF7350 N-CHANNEL 10000 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd VDS = 20V 10 VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) Ciss Coss 100 Crss 7 5 2 10 0 1 10 0 100 8 12 16 20 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10.00 100 ID , Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 4 QG , Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) T J = 150°C 1.00 T J = 25°C OPERATION IN THIS AREA LIMITED BY R DS(on) 10 100µsec 1msec 1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0.10 0.0 0.5 1.0 VSD , Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS = 80V VDS = 50V Coss = Cds + Cgd 1000 ID = 2.1A 1.5 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7350 N-CHANNEL 2.5 RD VDS VGS 2.0 D.U.T. ID , Drain Current (A) RG + -VDD 1.5 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 1.0 Fig 10a. Switching Time Test Circuit 0.5 VDS 90% 0.0 25 50 75 100 125 150 ( °C) TC , Case Temperature 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 (Z thJA) D = 0.50 0.20 10 Thermal Response 0.10 0.05 P DM 0.02 1 0.01 t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.1 0.00001 0.0001 0.001 0.01 0.1 t1/ t 2 J = P DM x Z thJA 1 +T A 10 100 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7350 0.40 R DS (on) , Drain-to-Source On Resistance ( Ω) R DS(on) , Drain-to -Source On Resistance ( Ω ) N-CHANNEL 0.30 ID = 2.1A 0.20 0.10 0.00 4.5 6.0 7.5 9.0 10.5 12.0 13.5 0.18 0.17 VGS = 10V 0.16 0.15 15.0 0 VGS, Gate -to -Source Voltage (V) 6 8 10 Fig 13. Typical On-Resistance Vs. Drain Current 4.0 70 60 3.5 50 Power (W) VGS(th) Gate threshold Voltage (V) 4 ID , Drain Current (A) Fig 12. Typical On-Resistance Vs. Gate Voltage ID = 250µA 3.0 40 30 20 2.5 10 2.0 0 -75 -50 -25 0 25 50 75 100 125 T J , Temperature ( °C ) Fig 14. Typical Threshold Voltage Vs. Junction Temperature 6 2 150 1.00 10.00 100.00 1000.00 Time (sec) Fig 15. Typical Power Vs. Time www.irf.com IRF7350 N-CHANNEL 100 ID EAS , Single Pulse Avalanche Energy (mJ) 80 TOP 1.9A 3.4A BOTTOM 4.2A 1 5V 60 D .U .T RG 40 D R IV E R L VDS + V - DD IA S 20V tp A 0 .0 1 Ω 20 Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 ( °C) Starting T , JJunction Temperature V (B R )D SS Fig 16a. Maximum Avalanche Energy Vs. Drain Current tp IAS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 17. Gate Charge Test Circuit www.irf.com Charge Fig 18. Basic Gate Charge Waveform 7 IRF7350 N-CHANNEL 10 Duty Cycle = Single Pulse Avalanche Current (A) 1 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.05 0.1 0.10 0.01 0.001 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 40 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 4.2A 30 20 10 0 25 50 75 100 125 Starting T J , Junction Temperature (°C) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 150 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC ∆T/ [1.3·BV·Zth] Iav = 2∆ EAS (AR) = PD (ave)·tav www.irf.com IRF7350 P-CHANNEL 100 100 VGS -15V -10V -7.0V -6.0V -5.5V -5.0V -4.5V BOTTOM -4.0V 10 VGS -15V -10V -7.0V -6.0V -5.5V -5.0V -4.5V BOTTOM -4.0V TOP -I D , Drain-to-Source Current (A) -I D , Drain-to-Source Current (A) TOP 1 0.1 -4.0V 0.01 20µs PULSE WIDTH Tj = 25°C 10 1 -4.0V 0.1 20µs PULSE WIDTH Tj = 150°C 0.001 0.01 0.1 1 10 100 0.1 1 -V DS , Drain-to-Source Voltage (V) 100 -V DS , Drain-to-Source Voltage (V) Fig 22. Typical Output Characteristics Fig 21. Typical Output Characteristics 10.00 2.5 I D = -1.5A T J = 150°C 1.00 T J = 25°C 0.10 VDS = -25V 20µs PULSE WIDTH 0.01 4.0 6.0 8.0 -V GS, Gate-to-Source Voltage (V) Fig 23. Typical Transfer Characteristics www.irf.com 10.0 (Normalized) 2.0 R DS(on) , Drain-to-Source On Resistance -I D, Drain-to-Source Current (Α ) 10 1.5 1.0 0.5 V GS = -10V 0.0 -60 -40 -20 0 20 40 60 TJ , Junction Temperature 80 100 120 140 160 ( °C) Fig 24. Normalized On-Resistance Vs. Temperature 9 IRF7350 10000 P-CHANNEL 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd V DS = 20V 10 -V GS, Gate-to-Source Voltage (V) C, Capacitance(pF) Ciss Coss 100 Crss V DS = 80V V DS = 50V Coss = Cds + Cgd 1000 I D = -1.5A 7 5 2 10 1 10 0 100 0 5 10.00 20 25 100 -ID , Drain-to-Source Current (A) -I SD , Reverse Drain Current (A) 15 Fig 26. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 25. Typical Capacitance Vs. Drain-to-Source Voltage T J = 150°C 1.00 T J = 25°C OPERATION IN THIS AREA LIMITED BY R DS (on) 10 100µsec 1 VGS = 0V 0.1 0.10 0.2 0.4 0.6 0.8 1.0 -V SD , Source-toDrain Voltage (V) Fig 27. Typical Source-Drain Diode Forward Voltage 10 10 Q G, Total Gate Charge (nC) -V DS , Drain-to-Source Voltage (V) 1.2 1msec 10msec Tc = 25°C Tj = 150°C Single Pulse 1 10 100 1000 -V DS , Drain-toSource Voltage (V) Fig 28. Maximum Safe Operating Area www.irf.com IRF7350 P-CHANNEL 2.0 RD VDS VGS 1.6 D.U.T. RG + -I D, Drain Current (A) - VDD 1.2 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 0.8 Fig 10a. Switching Time Test Circuit 0.4 VDS 90% 0.0 25 50 75 100 125 150 ( °C) TC , Case Temperature 10% VGS Fig 29. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 (Z thJA) D = 0.50 0.20 10 Thermal Response 0.10 0.05 P DM 0.02 1 0.01 t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.1 0.00001 0.0001 0.001 0.01 0.1 t1/ t 2 J = P DM x Z thJA 1 +T A 10 100 t 1, Rectangular Pulse Duration (sec) Fig 30. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 11 P-CHANNEL 0.500 0.80 RDS (on) , Drain-to-Source On Resistance ( Ω) R DS(on) , Drain-to -Source On Resistance ( Ω ) IRF7350 0.70 0.60 ID = -1.5A 0.50 0.40 0.30 0.475 0.450 VGS = -10V 0.425 0.400 5.0 7.0 9.0 11.0 13.0 15.0 0 -V GS, Gate -to -Source Voltage (V) 3 4 5 6 Fig 32. Typical On-Resistance Vs. Drain Current 70 4.0 60 3.5 50 ID = -250µA Power (W) -V GS(th) Gate threshold Voltage (V) 2 -I D , Drain Current (A) Fig 31. Typical On-Resistance Vs. Gate Voltage 3.0 40 30 20 2.5 10 0 2.0 -75 -50 -25 0 25 50 75 100 125 T J , Temperature ( °C ) Fig 33. Typical Threshold Voltage Vs. Junction Temperature 12 1 150 1.00 10.00 100.00 1000.00 Time (sec) Fig 34. Typical Power Vs. Time www.irf.com IRF7350 P-CHANNEL 120 ID TOP -1.3A -2.4A E AS, Single Pulse Avalanche Energy (mJ) 96 BOTTOM -3.0A 1 5V 72 48 D R IV E R L VDS D .U .T RG + V - DD IA S 20V 24 tp A 0 .0 1 Ω Fig 35c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 ( °C) Starting T , Junction Temperature J V (B R )D SS Fig 35a. Maximum Avalanche Energy Vs. Drain Current tp IAS Fig 35d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 36. Gate Charge Test Circuit www.irf.com Charge Fig 37. Basic Gate Charge Waveform 13 IRF7350 P-CHANNEL 10 Duty Cycle = Single Pulse - Avalanche Current (A) 1 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.05 0.1 0.10 0.01 0.001 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 tav (sec) Fig 38. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 60 TOP Single Pulse BOTTOM 10% Duty Cycle ID = -3.0A 50 40 30 20 10 0 25 50 75 100 125 Starting T J , Junction Temperature (°C) Fig 39. Maximum Avalanche Energy Vs. Temperature 14 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 150 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC ∆T/ [1.3·BV·Zth] Iav = 2∆ EAS (AR) = PD (ave)·tav www.irf.com IRF7350 SO-8 Package Details D 5 A 8 6 7 6 5 H 0.25 [.010] 1 6X 2 3 A MAX MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 .050 BAS IC 1.27 BAS IC e1 e .025 BAS IC 0.635 BAS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A C y 0.10 [.004] 8X b 0.25 [.010] MAX e 4 e1 MILLIMET ERS MIN A E INCHES DIM B A1 8X L 8X c 7 C A B F OOT PRINT NOT ES : 1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES ]. 4. OUTLINE CONFORMS T O JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENSION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOS FET ) INTERNAT IONAL RECTIFIER LOGO www.irf.com YWW XXXX F7101 DATE CODE (YWW) Y = LAS T DIGIT OF THE YEAR WW = WEEK LOT CODE PART NUMBER 15 IRF7350 SO-8 Tape and Reel T E R M IN A L N U M B E R 1 1 2 .3 ( .48 4 ) 1 1 .7 ( .46 1 ) 8 .1 ( .31 8 ) 7 .9 ( .31 2 ) F E E D D IR E C T IO N N O TES: 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ). 3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1. 33 0.0 0 (1 2 .9 9 2 ) M AX . 1 4 .4 0 ( .5 66 ) 1 2 .4 0 ( .4 88 ) N O TE S : 1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 . Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/01 16 www.irf.com