IRF IRLL024NQ

PD-94152
AUTOMOTIVE MOSFET
Typical Applications
●
●
●
●
●
IRLL024NQ
HEXFET® Power MOSFET
Electronic Fuel Injection
Active Suspension
Power Doors, Windows & Seats
Cruise Control
Air Bags
D
Benefits
●
●
●
●
●
●
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Repetitive Avalanche Allowed up to Tjmax
Dynamic dv/dt Rating
Automotive [Q101] Qualified
VDSS = 55V
RDS(on) = 0.065Ω
G
S
ID = 3.1A
Description
Specifically designed for Automotive applications, this HEXFET® Power MOSFET
in a SOT-223 package utilizes the lastest processing techniques to achieve
extremely low on-resistance per silicon area. Additional features of this Automotive
qualified HEXFET Power MOSFET are a 175°C junction operating temperature,
fast switching speed and improved repetitive avalanche rating. These benefits
combine to make this design an extremely efficient and reliable device for use in
Automotive applications and a wide variety of other applications.
SOT-223
The efficient SOT-223 package is designed for surface mount and the enlarged tab
provides improved thermal characteristics making it ideal in a variety of power
applications. Power dissipation of 1.0W is possible in a typical surface mount
application. Available in Tape & Reel.
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 70°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ, TSTG
Continuous Drain Current, V GS @ 4.5V
Continuous Drain Current, V GS @ 4.5V
Pulsed Drain Current Q
Power DissipationS
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche EnergyT
Avalanche CurrentQ
Repetitive Avalanche EnergyV
Peak Diode Recovery dv/dt U
Junction and Storage Temperature Range
Max.
Units
3.1
2.6
12
1.3
8.3
±16
87
See Fig.16c, 16d, 19, 20
9.9
-55 to + 175
A
W
mW/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter
RθJA
RθJA
Junction-to-Amb. (PCB Mount, steady state)*
Junction-to-Amb. (PCB Mount, steady state)**
Typ.
Max.
Units
90
50
120
60
°C/W
* When mounted on FR-4 board using minimum recommended footprint.
** When mounted on 1 inch square copper board, for comparison with other SMD devices.
www.irf.com
1
03/16/01
IRLL024NQ
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
IGSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
55
–––
–––
–––
1.0
4.5
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.057
–––
–––
–––
–––
–––
–––
–––
–––
11
1.9
4.3
12
41
48
39
508
141
62
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
0.065
VGS = 10V, ID = 3.1A R
mΩ
0.080
VGS = 5.0V, ID = 2.5A R
2.0
V
VDS = VGS, ID = 250µA
–––
S
VDS = 25V, ID = 1.9A
25
VDS = 55V, VGS = 0V
µA
250
VDS = 44V, VGS = 0V, TJ = 125°C
100
VGS = 16V
nA
-100
VGS = -16V
17
ID = 1.9A
–––
nC
VDS = 44V
–––
VGS = 10V
–––
VDD = 28V R
–––
ID = 1.9A
ns
–––
RG = 24Ω
–––
RD = 15Ω
–––
VGS = 0V
–––
pF
VDS = 25V
–––
ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) Q
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
–––
–––
3.1
–––
–––
12
–––
–––
–––
–––
40
65
1.0
60
97
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = 1.9A, VGS = 0VR
TJ = 25°C, IF = 1.9A
di/dt = 100A/µs R
D
S
Notes:
Q Repetitive rating; pulse width limited by
max. junction temperature.
R Pulse width ≤ 400µs; duty cycle ≤ 2%.
S Surface mounted on 1 in square Cu board
2
T Starting TJ = 25°C, L = 18mH
RG = 25Ω, IAS = 3.1A. (See Figure 12).
U ISD ≤ 1.9A, di/dt ≤ 197A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
VLimited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive
avalanche performance.
www.irf.com
IRFLL024NQ
100
100
VGS
15V
10V
7.0V
5.5V
4.5V
4.0V
3.5V
BOTTOM 2.7V
10
2.7V
1
20µs PULSE WIDTH
TJ = 25 °C
0.1
0.1
1
10
10
2.7V
1
2.5
R DS(on) , Drain-to-Source On Resistance
(Normalized)
ID , Drain-to-Source Current (Α )
T J = 175°C
T J = 25°C
10.00
VDS = 15V
20µs PULSE WIDTH
5.0
7.0
9.0
11.0
13.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
100
Fig 2. Typical Output Characteristics
100.00
3.0
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1.00
20µs PULSE WIDTH
TJ = 175 °C
0.1
0.1
100
VDS , Drain-to-Source Voltage (V)
1.0
VGS
15V
10V
7.0V
5.5V
4.5V
4.0V
3.5V
BOTTOM 2.7V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
15.0
I D = 3.1A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRLL024NQ
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
C, Capacitance(pF)
Coss = Cds + Cgd
1000
Ciss
Coss
100
Crss
VGS, Gate-to-Source Voltage (V)
6
10000
ID = 3.1A
5
4
2
1
10
0
1
10
0
100
3
100
12
15
100
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
9
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10
TJ = 175 ° C
TJ = 25 ° C
1
0.1
0.3
6
QG , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
V GS = 0 V
0.5
0.7
1.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS = 44V
VDS = 27V
VDS = 11V
OPERATION IN THIS AREA
LIMITED BY R DS(on)
10
100µsec
1msec
1
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1.2
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFLL024NQ
5.0
RD
VDS
VGS
I D , Drain Current (A)
4.0
D.U.T.
RG
+
-VDD
3.0
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
2.0
Fig 10a. Switching Time Test Circuit
1.0
VDS
90%
0.0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1000
100
D = 0.50
0.20
0.10
10
0.05
PDM
0.02
t1
0.01
1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
SINGLE PULSE
(THERMAL RESPONSE)
0.1
0.00001
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
0.10
R DS (on) , Drain-to-Source On Resistance ( Ω)
R DS(on) , Drain-to -Source On Resistance ( Ω )
IRLL024NQ
0.09
0.08
ID = 3.1A
0.07
0.06
0.05
3.0
5.0
7.0
9.0
11.0
13.0
0.400
0.350
0.300
0.250
0.200
VGS = 10V
0.150
0.100
0.050
15.0
0
-V GS, Gate -to -Source Voltage (V)
1.8
50
20
1.0
10
60
70
80
0
-75
-50
-25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 14. Typical Threshold Voltage Vs.
Junction Temperature
6
50
30
1.2
0.8
40
40
Power (W)
VGS(th) Gate threshold Voltage (V)
60
1.4
30
Fig 13. Typical On-Resistance Vs. Drain
Current
2.0
ID = 250µA
20
ID , Drain Current (A)
Fig 12. Typical On-Resistance Vs. Gate
Voltage
1.6
10
1.00
10.00
100.00
1000.00
Time (sec)
Fig 15. Typical Power Vs. Time
www.irf.com
IRFLL024NQ
EAS , Single Pulse Avalanche Energy (mJ)
250
TOP
200
BOTTOM
ID
1.3A
2.6A
3.1A
1 5V
150
D .U .T
RG
100
D R IV E R
L
VDS
+
V
- DD
IA S
20V
tp
50
A
0 .0 1 Ω
Fig 16c. Unclamped Inductive Test Circuit
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
V (B R )D SS
Fig 16a. Maximum Avalanche Energy
Vs. Drain Current
tp
IAS
Fig 16d. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
12V
VGS
.2µF
.3µF
D.U.T.
QGS
+
V
- DS
QGD
VG
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 17. Gate Charge Test Circuit
www.irf.com
Charge
Fig 18. Basic Gate Charge Waveform
7
IRLL024NQ
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
10
1
0.01
0.05
0.10
0.1
0.01
0.001
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
tav (sec)
Fig 19. Typical Avalanche Current Vs.Pulsewidth
90
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 3.1A
EAR , Avalanche Energy (mJ)
80
70
60
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 20. Maximum Avalanche Energy
Vs. Temperature
8
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC
∆T/ [1.3·BV·Zth]
Iav = 2∆
EAS (AR) = PD (ave)·tav
www.irf.com
IRFLL024NQ
Package Outline
SOT-223
Part Marking Information
SOT-223
E X A M P L E : T H IS IS A N IR FL 0 14
P A R T NU M B E R
IN TE RN A TIO NA L
RE CT IF IE R
LO G O
F L0 14
31 4
TOP
www.irf.com
W A FER
LO T CO D E
XXXXXX
D A TE CO D E (Y W W )
Y = LA S T D IG IT O F TH E Y E A R
W W = W E EK
B O TT O M
9
IRLL024NQ
Tape & Reel Information
SOT-223
2 .0 5 (.0 8 0 )
1 .9 5 (.0 7 7 )
TR
4 .1 0 (.1 6 1)
3 .9 0 (.1 5 4)
0 .3 5 (.0 1 3 )
0 .2 5 (.0 1 0 )
1 .8 5 (.0 7 2 )
1 .6 5 (.0 6 5 )
7 .5 5 (.2 9 7 )
7 .4 5 (.2 9 4 )
1 6 .3 0 (.6 4 1 )
1 5 .7 0 (.6 1 9 )
7 .6 0 (.2 9 9 )
7 .4 0 (.2 9 2 )
1 .6 0 (.0 6 2 )
1 .5 0 (.0 5 9 )
TYP .
F E E D D IR E C T IO N
1 2 .1 0 (.4 7 5 )
1 1 .9 0 (.4 6 9 )
2 .3 0 (.0 9 0 )
2 .1 0 (.0 8 3 )
7 .1 0 (.2 79 )
6 .9 0 (.2 72 )
NOTES :
1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .
2 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 41 .
3 . E A C H O 3 3 0 .0 0 (1 3 .0 0 ) R E E L C O N T A IN S 2,50 0 D E V IC E S .
1 3 .2 0 (.5 1 9 )
1 2 .8 0 (.5 0 4 )
1 5.40 (.6 0 7 )
1 1.90 (.4 6 9 )
4
330.0 0
(13.000)
M AX.
N O T ES :
1 . O U T LIN E C O M F O R M S T O E IA -4 1 8 -1 .
2 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R ..
3 . D IM E N S IO N M E A S U R E D @ H U B .
4 . IN C L U D E S F L A N G E D IS T O R T IO N @ O U T E R E D G E .
5 0.0 0 (1 .9 6 9 )
M IN .
1 4 .4 0 (.5 6 6 )
1 2 .4 0 (.4 8 8 )
3
1 8 .4 0 (.7 2 4 )
M AX .
4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 3/01
10
www.irf.com