PD-94152 AUTOMOTIVE MOSFET Typical Applications ● ● ● ● ● IRLL024NQ HEXFET® Power MOSFET Electronic Fuel Injection Active Suspension Power Doors, Windows & Seats Cruise Control Air Bags D Benefits ● ● ● ● ● ● Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Dynamic dv/dt Rating Automotive [Q101] Qualified VDSS = 55V RDS(on) = 0.065Ω G S ID = 3.1A Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET in a SOT-223 package utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this Automotive qualified HEXFET Power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. SOT-223 The efficient SOT-223 package is designed for surface mount and the enlarged tab provides improved thermal characteristics making it ideal in a variety of power applications. Power dissipation of 1.0W is possible in a typical surface mount application. Available in Tape & Reel. Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 70°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ, TSTG Continuous Drain Current, V GS @ 4.5V Continuous Drain Current, V GS @ 4.5V Pulsed Drain Current Q Power DissipationS Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche EnergyT Avalanche CurrentQ Repetitive Avalanche EnergyV Peak Diode Recovery dv/dt U Junction and Storage Temperature Range Max. Units 3.1 2.6 12 1.3 8.3 ±16 87 See Fig.16c, 16d, 19, 20 9.9 -55 to + 175 A W mW/°C V mJ A mJ V/ns °C Thermal Resistance Parameter RθJA RθJA Junction-to-Amb. (PCB Mount, steady state)* Junction-to-Amb. (PCB Mount, steady state)** Typ. Max. Units 90 50 120 60 °C/W * When mounted on FR-4 board using minimum recommended footprint. ** When mounted on 1 inch square copper board, for comparison with other SMD devices. www.irf.com 1 03/16/01 IRLL024NQ Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 55 ––– ––– ––– 1.0 4.5 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.057 ––– ––– ––– ––– ––– ––– ––– ––– 11 1.9 4.3 12 41 48 39 508 141 62 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.065 VGS = 10V, ID = 3.1A R mΩ 0.080 VGS = 5.0V, ID = 2.5A R 2.0 V VDS = VGS, ID = 250µA ––– S VDS = 25V, ID = 1.9A 25 VDS = 55V, VGS = 0V µA 250 VDS = 44V, VGS = 0V, TJ = 125°C 100 VGS = 16V nA -100 VGS = -16V 17 ID = 1.9A ––– nC VDS = 44V ––– VGS = 10V ––– VDD = 28V R ––– ID = 1.9A ns ––– RG = 24Ω ––– RD = 15Ω ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Q Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– 3.1 ––– ––– 12 ––– ––– ––– ––– 40 65 1.0 60 97 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 1.9A, VGS = 0VR TJ = 25°C, IF = 1.9A di/dt = 100A/µs R D S Notes: Q Repetitive rating; pulse width limited by max. junction temperature. R Pulse width ≤ 400µs; duty cycle ≤ 2%. S Surface mounted on 1 in square Cu board 2 T Starting TJ = 25°C, L = 18mH RG = 25Ω, IAS = 3.1A. (See Figure 12). U ISD ≤ 1.9A, di/dt ≤ 197A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C VLimited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. www.irf.com IRFLL024NQ 100 100 VGS 15V 10V 7.0V 5.5V 4.5V 4.0V 3.5V BOTTOM 2.7V 10 2.7V 1 20µs PULSE WIDTH TJ = 25 °C 0.1 0.1 1 10 10 2.7V 1 2.5 R DS(on) , Drain-to-Source On Resistance (Normalized) ID , Drain-to-Source Current (Α ) T J = 175°C T J = 25°C 10.00 VDS = 15V 20µs PULSE WIDTH 5.0 7.0 9.0 11.0 13.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 100.00 3.0 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1.00 20µs PULSE WIDTH TJ = 175 °C 0.1 0.1 100 VDS , Drain-to-Source Voltage (V) 1.0 VGS 15V 10V 7.0V 5.5V 4.5V 4.0V 3.5V BOTTOM 2.7V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 15.0 I D = 3.1A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRLL024NQ VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd C, Capacitance(pF) Coss = Cds + Cgd 1000 Ciss Coss 100 Crss VGS, Gate-to-Source Voltage (V) 6 10000 ID = 3.1A 5 4 2 1 10 0 1 10 0 100 3 100 12 15 100 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 9 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 TJ = 175 ° C TJ = 25 ° C 1 0.1 0.3 6 QG , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) V GS = 0 V 0.5 0.7 1.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS = 44V VDS = 27V VDS = 11V OPERATION IN THIS AREA LIMITED BY R DS(on) 10 100µsec 1msec 1 10msec Tc = 25°C Tj = 175°C Single Pulse 0.1 1.2 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFLL024NQ 5.0 RD VDS VGS I D , Drain Current (A) 4.0 D.U.T. RG + -VDD 3.0 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2.0 Fig 10a. Switching Time Test Circuit 1.0 VDS 90% 0.0 25 50 75 100 125 150 175 TC , Case Temperature ( ° C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1000 100 D = 0.50 0.20 0.10 10 0.05 PDM 0.02 t1 0.01 1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 0.10 R DS (on) , Drain-to-Source On Resistance ( Ω) R DS(on) , Drain-to -Source On Resistance ( Ω ) IRLL024NQ 0.09 0.08 ID = 3.1A 0.07 0.06 0.05 3.0 5.0 7.0 9.0 11.0 13.0 0.400 0.350 0.300 0.250 0.200 VGS = 10V 0.150 0.100 0.050 15.0 0 -V GS, Gate -to -Source Voltage (V) 1.8 50 20 1.0 10 60 70 80 0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 14. Typical Threshold Voltage Vs. Junction Temperature 6 50 30 1.2 0.8 40 40 Power (W) VGS(th) Gate threshold Voltage (V) 60 1.4 30 Fig 13. Typical On-Resistance Vs. Drain Current 2.0 ID = 250µA 20 ID , Drain Current (A) Fig 12. Typical On-Resistance Vs. Gate Voltage 1.6 10 1.00 10.00 100.00 1000.00 Time (sec) Fig 15. Typical Power Vs. Time www.irf.com IRFLL024NQ EAS , Single Pulse Avalanche Energy (mJ) 250 TOP 200 BOTTOM ID 1.3A 2.6A 3.1A 1 5V 150 D .U .T RG 100 D R IV E R L VDS + V - DD IA S 20V tp 50 A 0 .0 1 Ω Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( °C) V (B R )D SS Fig 16a. Maximum Avalanche Energy Vs. Drain Current tp IAS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 17. Gate Charge Test Circuit www.irf.com Charge Fig 18. Basic Gate Charge Waveform 7 IRLL024NQ 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 10 1 0.01 0.05 0.10 0.1 0.01 0.001 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth 90 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 3.1A EAR , Avalanche Energy (mJ) 80 70 60 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC ∆T/ [1.3·BV·Zth] Iav = 2∆ EAS (AR) = PD (ave)·tav www.irf.com IRFLL024NQ Package Outline SOT-223 Part Marking Information SOT-223 E X A M P L E : T H IS IS A N IR FL 0 14 P A R T NU M B E R IN TE RN A TIO NA L RE CT IF IE R LO G O F L0 14 31 4 TOP www.irf.com W A FER LO T CO D E XXXXXX D A TE CO D E (Y W W ) Y = LA S T D IG IT O F TH E Y E A R W W = W E EK B O TT O M 9 IRLL024NQ Tape & Reel Information SOT-223 2 .0 5 (.0 8 0 ) 1 .9 5 (.0 7 7 ) TR 4 .1 0 (.1 6 1) 3 .9 0 (.1 5 4) 0 .3 5 (.0 1 3 ) 0 .2 5 (.0 1 0 ) 1 .8 5 (.0 7 2 ) 1 .6 5 (.0 6 5 ) 7 .5 5 (.2 9 7 ) 7 .4 5 (.2 9 4 ) 1 6 .3 0 (.6 4 1 ) 1 5 .7 0 (.6 1 9 ) 7 .6 0 (.2 9 9 ) 7 .4 0 (.2 9 2 ) 1 .6 0 (.0 6 2 ) 1 .5 0 (.0 5 9 ) TYP . F E E D D IR E C T IO N 1 2 .1 0 (.4 7 5 ) 1 1 .9 0 (.4 6 9 ) 2 .3 0 (.0 9 0 ) 2 .1 0 (.0 8 3 ) 7 .1 0 (.2 79 ) 6 .9 0 (.2 72 ) NOTES : 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 41 . 3 . E A C H O 3 3 0 .0 0 (1 3 .0 0 ) R E E L C O N T A IN S 2,50 0 D E V IC E S . 1 3 .2 0 (.5 1 9 ) 1 2 .8 0 (.5 0 4 ) 1 5.40 (.6 0 7 ) 1 1.90 (.4 6 9 ) 4 330.0 0 (13.000) M AX. N O T ES : 1 . O U T LIN E C O M F O R M S T O E IA -4 1 8 -1 . 2 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .. 3 . D IM E N S IO N M E A S U R E D @ H U B . 4 . IN C L U D E S F L A N G E D IS T O R T IO N @ O U T E R E D G E . 5 0.0 0 (1 .9 6 9 ) M IN . 1 4 .4 0 (.5 6 6 ) 1 2 .4 0 (.4 8 8 ) 3 1 8 .4 0 (.7 2 4 ) M AX . 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 3/01 10 www.irf.com