PROFET® BTS 426 L1 Smart Highside Power Switch Features Product Summary Overvoltage protection Operating voltage On-state resistance Load current (ISO) Current limitation • Overload protection • Current limitation • Short circuit protection • Thermal shutdown • Overvoltage protection (including load dump) • Fast demagnetization of inductive loads • Reverse battery protection1) • Undervoltage and overvoltage shutdown with auto-restart and hysteresis • Open drain diagnostic output • Open load detection in ON-state • CMOS compatible input • Loss of ground and loss of Vbb protection • Electrostatic discharge (ESD) protection Vbb(AZ) Vbb(on) RON IL(ISO) IL(SCr) 43 V 5.0 ... 34 V 60 mΩ 7.0 A 16 A TO-220AB/5 5 5 5 1 Straight leads Standard 1 SMD Application • µC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads • All types of resistive, inductive and capacitve loads • Replaces electromechanical relays, fuses and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Fully protected by embedded protection functions. + V bb Voltage Overvoltage Current Gate source protection limit protection 3 V Logic 2 Voltage Charge pump sensor Level shifter Rectifier IN ESD 4 Limit for unclamped ind. loads OUT 5 Temperature sensor Open load Short to Vbb detection Logic Load R ST O GND PROFET GND 1 Signal GND 1) Load GND With external current limit (e.g. resistor RGND=150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load. Semiconductor Group 1 12.96 BTS 426 L1 Pin Symbol Function 1 GND - Logic ground 2 IN I Input, activates the power switch in case of logical high signal 3 Vbb + Positive power supply voltage, the tab is shorted to this pin 4 ST S Diagnostic feedback, low on failure 5 OUT (Load, L) O Output to the load Maximum Ratings at Tj = 25 °C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 3) Supply voltage for full short circuit protection Tj Start=-40 ...+150°C Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V RI3)= 2 Ω, RL= 1.7 Ω, td= 200 ms, IN= low or high Load current (Short circuit current, see page 4) Operating temperature range Storage temperature range Power dissipation (DC), TC ≤ 25 °C Inductive load switch-off energy dissipation, single pulse Vbb = 12V, Tj,start = 150°C, TC = 150°C const. IL = 7.0 A, ZL = 24 mH, 0 Ω: Electrostatic discharge capability (ESD) IN: (Human Body Model) all other pins: Symbol Vbb Vbb VLoad dump4) IL Tj Tstg Ptot EAS VESD Values 43 34 Unit V V 60 V self-limited -40 ...+150 -55 ...+150 75 A °C 0.74 1.0 2.0 J kV -10 ... +16 ±2.0 ±5.0 V mA Values typ max -- 1.67 -75 34 Unit W acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 VIN IIN IST Input voltage (DC) Current through input pin (DC) Current through status pin (DC) see internal circuit diagrams page 6 Thermal Characteristics Parameter and Conditions Thermal resistance 2) 3) 4) 5) Symbol chip - case: RthJC junction - ambient (free air): RthJA SMD version, device on PCB5): min --- K/W Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 kΩ resistor in series with the status pin. A resistor for the protection of the input is integrated. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air. Semiconductor Group 2 BTS 426 L1 Electrical Characteristics Parameter and Conditions Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Values min typ max Unit Load Switching Capabilities and Characteristics On-state resistance (pin 3 to 5) IL = 2 A Tj=25 °C: Tj=150 °C: Nominal load current, ISO Norm (pin 3 to 5) VON = 0.5 V, TC = 85 °C Output current (pin 5) while GND disconnected or GND pulled up, Vbb=30 V, VIN= 0, see diagram page 7 Turn-on time IN to 90% VOUT: to 10% VOUT: Turn-off time IN RL = 12 Ω, Tj =-40...+150°C Slew rate on 10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C Slew rate off 70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C Operating Parameters Operating voltage6) Undervoltage shutdown Undervoltage restart Tj =-40...+150°C: Tj =-40...+150°C: Tj =-40...+25°C: Tj =+150°C: Undervoltage restart of charge pump Tj =-40...+150°C: see diagram page 12 Undervoltage hysteresis ∆Vbb(under) = Vbb(u rst) - Vbb(under) Tj =-40...+150°C: Overvoltage shutdown Tj =-40...+150°C: Overvoltage restart Tj =-40...+150°C: Overvoltage hysteresis Tj =-40...+150°C: Overvoltage protection7) Ibb=40 mA Standby current (pin 3) VIN=0 Tj=-40...+25°C: Tj= 150°C: 7) IL(ISO) IL(GNDhigh) -- 50 60 120 5.8 100 7.0 -- -- ton toff 80 80 200 230 400 450 µs dV /dton 0.1 -- 1 V/µs -dV/dtoff 0.1 -- 1 V/µs Vbb(on) Vbb(under) Vbb(u rst) 5.0 3.5 -- ---- V V V Vbb(ucp) -- 5.6 34 5.0 5.0 7.0 7.0 ∆Vbb(under) -- 0.2 -- V Vbb(over) Vbb(o rst) ∆Vbb(over) Vbb(AZ) 34 33 -42 --0.5 47 43 ---- V V V V ---- 10 12 -- 25 28 12 µA Ibb(off) At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT ≈Vbb - 2 V See also VON(CL) in table of protection functions and circuit diagram page 7. Semiconductor Group 3 mΩ -10 IL(off) Leakage output current (included in Ibb(off)) VIN=0 6) RON A mA V µA BTS 426 L1 Parameter and Conditions Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Operating current (Pin 1)8), VIN=5 V, Tj =-40...+150°C Protection Functions Initial peak short circuit current limit (pin 3 to 5) Tj =-40°C: Tj =25°C: Tj =+150°C: Repetitive short circuit shutdown current limit Tj = Tjt (see timing diagrams, page 10) Output clamp (inductive load switch off) at VOUT = Vbb - VON(CL) IL= 40 mA: Thermal overload trip temperature Thermal hysteresis Reverse battery (pin 3 to 1) 9) Reverse battery voltage drop (Vout > Vbb) IL = -4 A Tj=150 °C: Diagnostic Characteristics Open load detection current (on-condition) IGND Unit -- 1.8 3.5 mA 21 15 11 32 25 17 43 35 24 A -- 16 -- A 41 150 --- 47 -10 -- 53 --32 V °C K V -- 610 -- mV 20 10 --- 850 750 mA 2 3 4 V 4 10 30 kΩ IL(SCp) IL(SCr) VON(CL) Tjt ∆Tjt -Vbb -VON(rev) Tj=-40 °C: IL (OL) Tj=25 ..150°C: Open load detection voltage10) (off-condition) VOUT(OL) Tj=-40..150°C: Internal output pull down (pin 5 to 1), VOUT=5 V, Tj=-40..150°C RO 8) Values min typ max Add IST, if IST > 0, add IIN, if VIN>5.5 V Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7). 10) External pull up resistor required for open load detection in off state. 9) Semiconductor Group 4 BTS 426 L1 Parameter and Conditions Symbol Values min typ max RI 2.5 3.5 6 kΩ VIN(T+) VIN(T-) ∆ VIN(T) IIN(off) 1.7 1.5 -1 --0.5 -- 3.5 --50 V V V µA On state input current (pin 2), VIN = 3.5 V, Tj =-40..+150°C IIN(on) 20 50 90 µA Delay time for status with open load after switch off (see timing diagrams, page 11), Tj =-40..+150°C Status invalid after positive input slope Tj=-40 ... +150°C: (open load) Status output (open drain) Zener limit voltage Tj =-40...+150°C, IST = +1.6 mA: Tj =-40...+25°C, IST = +1.6 mA: ST low voltage Tj = +150°C, IST = +1.6 mA: td(ST OL4) 100 520 1000 µs -- 250 600 µs 5.4 --- 6.1 --- -0.4 0.6 V at Tj = 25 °C, Vbb = 12 V unless otherwise specified Input and Status Feedback11) Input resistance Tj=-40..150°C, see circuit page 6 Input turn-on threshold voltage Tj =-40..+150°C: Tj =-40..+150°C: Input turn-off threshold voltage Input threshold hysteresis Off state input current (pin 2), VIN = 0.4 V, Tj =-40..+150°C 11) td(ST) VST(high) VST(low) If a ground resistor RGND is used, add the voltage drop across this resistor. Semiconductor Group 5 Unit BTS 426 L1 Truth Table Input- Output level level 425 L1 426 L1 L H L H L H L H L H L H L H H H H (L13)) L L14) H (L15)) H L H H H H Normal operation Open load Short circuit to Vbb Overtemperature Undervoltage Overvoltage L = "Low" Level H = "High" Level Status 12) H H H L L L L L L X = don't care Z = high impedance, potential depends on external circuit Status signal after the time delay shown in the diagrams (see fig 5. page 11...12) Terms Input circuit (ESD protection) Ibb I IN 2 IL PROFET V IN VST 4 I Vbb IN I ST V R IN 3 OUT ESD-ZD I VON 5 I I GND ST GND 1 bb R IGND ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). VOUT GND 12) 13) 14) Power Transistor off, high impedance with external resistor between pin 3 and pin 5 An external short of output to Vbb, in the off state, causes an internal current from output to ground. If R GND is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious. 15) Low resistance to V may be detected in ON-state by the no-load-detection bb Semiconductor Group 6 BTS 426 L1 Status output Open-load detection +5V ON-state diagnostic condition: VON < RON * IL(OL); IN high R ST(ON) ST + V bb ESDZD GND VON ON ESD-Zener diode: 6.1 V typ., max 5 mA; RST(ON) < 380 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). OUT Open load detection Logic unit Inductive and overvoltage output clamp + V bb V OFF-state diagnostic condition: VOUT > 3 V typ.; IN low Z VON R OFF OUT GND EXT PROFET V Open load detection Logic unit VON clamped to 47 V typ. Overvolt. and reverse batt. protection R OUT O Signal GND + Vbb V R IN IN RI GND disconnect Z2 Logic R ST 3 ST V 2 PROFET Z1 IN Vbb PROFET GND R GND 4 Signal GND V VZ1 = 6.2 V typ., VZ2 = 47 V typ., RGND = 150 Ω, RST= 15 kΩ, RI= 3.5 kΩ typ. bb V IN V ST OUT 5 ST GND 1 V GND Any kind of load. In case of Input=high is VOUT ≈ VIN - VIN(T+) . Due to VGND >0, no VST = low signal available. Semiconductor Group 7 BTS 426 L1 GND disconnect with GND pull up Inductive Load switch-off energy dissipation E bb 3 2 Vbb IN E AS OUT PROFET 4 5 IN ST GND PROFET 1 V V bb ELoad V bb V = V IN ST OUT ST EL GND GND ZL { L RL ER Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND >0, no VST = low signal available. Vbb disconnect with energized inductive load Energy stored in load inductance: 2 EL = 1/2·L·I L While demagnetizing load inductance, the energy dissipated in PROFET is 3 high 2 Vbb IN OUT PROFET 4 EAS= Ebb + EL - ER= ∫ VON(CL)·iL(t) dt, with an approximate solution for RL > 0 Ω: 5 ST GND EAS= 1 V bb Normal load current can be handled by the PROFET itself. Vbb disconnect with charged external inductive load high 2 S 3 IN Vbb PROFET 4 OUT 5 D ST GND 1 V bb If other external inductive loads L are connected to the PROFET, additional elements like D are necessary. Semiconductor Group 8 IL· L IL·RL ·(V + |VOUT(CL)|)· ln (1+ ) |VOUT(CL)| 2·RL bb BTS 426 L1 Transient thermal impedance chip ambient air Maximum allowable load inductance for a single switch off ZthJA = f(tp)ZthJA [K/W] 100 L = f (IL ); Tj,start = 150°C,TC = 150°C const., Vbb = 12 V, RL = 0 Ω L [mH] 10000 10 1000 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 1 100 10 0.1 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3 tp [s] 1 2 7 12 17 IL [A] Typ. transient thermal impedance chip case ZthJC = f(tp)ZthJC [K/W] 10 1 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 0.1 0.01 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 tp [s] Semiconductor Group 9 BTS 426 L1 Timing diagrams Figure 2b: Switching an inductive load Figure 1a: Vbb turn on: IN IN V bb t ST d(ST) *) V V OUT OUT ST open drain IL I L(OL) t t proper turn on under all conditions *) if the time constant of load is too large, open-load-status may occur Figure 2a: Switching a lamp, Figure 3a: Short circuit shut down by overtempertature, reset by cooling IN IN ST IL V I L(SCp) OUT IL(SCr) I L t ST Heating up may require several milliseconds, depending on external conditions Semiconductor Group 10 t BTS 426 L1 Figure 4a: Overtemperature: Reset if Tj <Tjt Figure 5b: Open load: detection in ON-state, open load occurs in on-state IN IN t d(ST OL1) ST ST V V t d(ST OL2) OUT OUT T I J normal open normal L t t td(ST OL1) = 20 µs typ., td(ST OL2) = 10 µs typ Figure 5a: Open load: detection in ON-state, turn on/off to open load Figure 5c: Open load: detection in ON- and OFF-state (with REXT), turn on/off to open load IN IN ST t d(ST) t d(ST OL4) ST t d(ST) V OUT V OUT I L I L open open t t The status delay time td(ST OL4) allows to ditinguish between the failure modes "open load" and "overtemperature". Semiconductor Group 11 BTS 426 L1 Figure 6a: Undervoltage: Figure 7a: Overvoltage: IN IN V bb V bb V ON(CL) Vbb(over) V bb(o rst) Vbb(u cp) V V bb(under) bb(u rst) V OUT V OUT ST ST open drain t t Figure 6b: Undervoltage restart of charge pump on-state off-state V V bb(u rst) V V V bb(over) off-state VON(CL) V on bb(o rst) bb(u cp) bb(under) V bb charge pump starts at Vbb(ucp) =5.6 V typ. Semiconductor Group 12 BTS 426 L1 Package and Ordering Code All dimensions in mm Standard TO-220AB/5 BTS426L1 SMD TO-220AB/5, Opt. E3062 Ordering code Ordering code BTS426L1 E3062A T&R: Q67060-S6108-A2 Changed since 04.96 Date Change td(ST OL4) max reduced from 1500 Dec 1996 to 800µs, typical from 400 to 320µs, min limit unchanged EAS maximum rating and diagram added Zth specification added Typ. reverse battery voltage drop VON(rev) added TO-220AB/5, Option E3043 Ordering code BTS426L1 E3043 Q67060-S6108-A4 Q67060-S6108-A3 Components used in life-support devices or systems must be expressly authorised for such purpose! Critical components16) of the Semiconductor Group of Siemens AG, may only be used in life supporting devices or systems17) with the express written approval of the Semiconductor Group of Siemens AG. 16) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 17) Life support devices or systems are intended (a) to be implanted in the human body or (b) support and/or maintain and sustain and/or protect human life. If they fail, it is reasonably to assume that the health of the user or other persons may be endangered. Semiconductor Group 13