ETC CY6212BLL-70SC

fax id: 1072
CY62128
128K x 8 Static RAM
Features
• 4.5V − 5.5V operation
• CMOS for optimum speed/power
• Low active power (70 ns, LL version)
— 330 mW (max.) (60 mA)
• Low standby power (70 ns, LL version)
— 110 µW (max.) (20 µA)
• Automatic power-down when deselected
• TTL-compatible inputs and outputs
• Easy memory expansion with CE1, CE2, and OE options
Functional Description
The CY62128 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is
provided by an active LOW chip enable (CE 1), an active HIGH
chip enable (CE2), an active LOW output enable (OE), and
three-state drivers. This device has an automatic power-down
feature that reduces power consumption by more than 75%
when deselected.
Writing to the device is accomplished by taking chip enable
one (CE1) and write enable (WE) inputs LOW and chip enable
two (CE2) input HIGH. Data on the eight I/O pins (I/O0 through
I/O7) is then written into the location specified on the address
pins (A0 through A16).
Reading from the device is accomplished by taking chip enable one (CE1) and output enable (OE) LOW while forcing
write enable (WE) and chip enable two (CE 2) HIGH. Under
these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The eight input/output pins (I/O0 through I/O7) are placed in a
high-impedance state when the device is deselected (CE1
HIGH or CE2 LOW), the outputs are disabled (OE HIGH), or
during a write operation (CE1 LOW, CE2 HIGH, and WE LOW).
The CY62128 is available in a standard 450-mil-wide SOIC,
32-pin TSOP type I and STSOP packages.
Logic Block Diagram
Pin Configurations
Top View
SOIC
NC
A16
A14
A12
I/O0
INPUTBUFFER
I/O1
512x 256x 8
ARRAY
I/O2
SENSE AMPS
ROW DECODER
A0
A1
A2
A3
A4
A5
A6
A7
A8
A7
A6
A5
A4
A3
A2
A1
A0
I/O0
I/O1
I/O2
GND
I/O3
I/O4
I/O5
COLUMN
DECODER
CE1
CE2
WE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
VCC
A15
CE2
WE
A13
A8
A9
A11
OE
A10
CE1
I/O7
I/O6
I/O5
I/O4
I/O3
I/O6
POWER
DOWN
A9
A10
A11
A12
A13
A14
A15
A16
I/O7
OE
A4
A5
A6
A7
A12
A14
A16
NC
VCC
A15
CE2
WE
A13
A8
A9
A11
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
62128-1
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
TSOP I
Reverse Pinout
Top View
(not to scale)
A3
A2
A1
A0
I/O0
I/O1
I/O2
GND
I/O3
I/O4
I/O5
I/O6
I/O7
CE1
A10
OE
A11
A9
A8
A13
WE
CE2
A15
VCC
NC
A16
A14
A12
A7
A6
A5
A4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
TSOP I/ STSOP
Top View
(not to scale)
62128-2
Cypress Semiconductor Corporation
•
3901 North First Street
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OE
A10
CE1
I/O7
I/O6
I/O5
I/O4
I/O3
GND
I/O2
I/O1
I/O0
A0
A1
A2
A3
62128-2
•
San Jose
•
CA 95134 •
408-943-2600
July 1996 - Revised June 18, 1998
CY62128
Selection Guide
CY62128-55
CY62128-70
55
70
L
50
40
LL
50
40
L
80
80
LL
15
15
Maximum Access Time (ns)
Maximum Operating Current
Commercial
Maximum CMOS Standby Current
Commercial
Maximum Ratings
Current into Outputs (LOW)......................................... 20 mA
Static Discharge Voltage ........................................... >2001V
(per MIL-STD-883, Method 3015)
(Above which the useful life may be impaired. For user guidelines, not tested.)
Latch-Up Current..................................................... >200 mA
Storage Temperature ................................. –65°C to +150°C
Ambient Temperature with
Power Applied ............................................. –55°C to +125°C
Operating Range
Supply Voltage on VCC to Relative GND[1] .... –0.5V to +7.0V
Range
DC Voltage Applied to Outputs
in High Z State[1] ....................................–0.5V to VCC + 0.5V
Commercial
Industrial
DC Input Voltage[1].................................–0.5V to VCC + 0.5V
Notes:
1. VIL (min.) = –2.0V for pulse durations of less than 20 ns.
2. TA is the “instant on” case temperature.
2
Ambient
Temperature[2]
VCC
0°C to +70°C
5V ± 10%
–40°C to +85°C
5V ± 10%
CY62128
Electrical Characteristics Over the Operating Range
62128–55
Parameter
Description
Test Conditions
VOH
Output HIGH Voltage
VCC = Min., IOH = –1.0 mA
VOL
Output LOW Voltage
VCC = Min., IOL = 2.1mA
VIH
Input HIGH Voltage
VIL
Input LOW Voltage[1]
IIX
Input Load Current
IOZ
Output Leakage Current
IOS
Output Short Circuit
Current[4]
VCC = Max., VOUT = GND
ICC
VCC Operating
Supply Current
VCC = Max.,
IOUT = 0 mA,
f = fMAX = 1/tRC
Min.
ISB2
Automatic CE
Power-Down Current
—TTL Inputs
Automatic CE
Power-Down Current
—CMOS Inputs
Min.
Typ[3] Max.
2.4
Unit
V
0.4
V
2.2
VCC
+ 0.3
2.2
VCC
+ 0.3
V
–0.3
0.8
–0.3
0.8
V
–1
+1
–1
+1
µA
+1
+1
+1
+1
µA
–300
mA
–300
Com’l
Max. VCC,
CE1 ≥ VCC – 0.3V,
or CE2 ≤ 0.3V,
VIN ≥ VCC – 0.3V,
or VIN ≤ 0.3V, f=0
Max.
0.4
GND ≤ VI ≤ VCC
GND ≤ VI ≤ VCC, Output Disabled
Max. VCC,
CE1 ≥ VIH
or CE2 < VIL,
VIN ≥ VIH or
VIN ≤ VIL, f = fMAX
62128–70
2.4
40
115
40
110
mA
L
30
70
30
60
mA
LL
30
70
30
60
mA
40
115
40
110
mA
L
30
70
30
70
mA
LL
30
70
30
70
mA
0.3
25
0.3
1
mA
L
0.15
3
0.15
1
mA
LL
0.1
2
0.1
1
mA
0.3
25
0.3
1
mA
L
0.15
3
0.15
1
mA
LL
0.1
2
0.1
1
mA
500
µA
100
µA
20
µA
500
µA
Ind.’l
ISB1
Typ[3]
Com’l
Ind.’l
Com’l
500
L
0.4
LL
0.4
100
20
Ind
500
L
LL
0.4
0.4
100
40
100
µA
40
µA
Capacitance[5]
Parameter
Description
CIN
Input Capacitance
COUT
Output Capacitance
Test Conditions
TA = 25°C, f = 1 MHz,
VCC = 5.0V
Max.
Unit
9
pF
9
pF
Notes:
3. Typical values are included for reference only and are not tested or guaranteed. Typical values are an average of the distribution across normal production
variations as measured at VCC = 5.0V, TA = 25°C, and tAA=70ns
4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.
3
CY62128
AC Test Loads and Waveforms
R1 1800 Ω
R1 1800 Ω
5V
ALL INPUT PULSES
3.0V
5V
OUTPUT
90%
OUTPUT
R2
990 Ω
100 pF
R2
990 Ω
5 pF
INCLUDING
JIG AND
SCOPE
(a)
INCLUDING
JIG AND
SCOPE
(b)
90%
10%
GND
10%
≤ 5ns
≤ 5 ns
62128-3
62128-4
Equivalent to:
THÉVENIN EQUIVALENT
639 Ω
1.77V
OUTPUT
Switching Characteristics[6] Over the Operating Range
62128–55
Parameter
Description
Min.
Max.
62128–70
Min.
Max.
Unit
READ CYCLE
tRC
Read Cycle Time
tAA
Address to Data Valid
tOHA
Data Hold from Address Change
tACE
CE1 LOW to Data Valid, CE2 HIGH to Data Valid
55
70
ns
tDOE
OE LOW to Data Valid
20
35
ns
tLZOE
OE LOW to Low Z
tHZOE
OE HIGH to High Z[7,8]
tLZCE
55
55
5
CE1 LOW to Low Z, CE2 HIGH to Low Z
70
5
[7,8]
CE1 HIGH to High Z, CE2 LOW to High Z
tPU
CE1 LOW to Power-Up, CE2 HIGH to Power-Up
tPD
CE1 HIGH to Power-Down, CE2 LOW to Power-Down
ns
25
5
20
0
ns
ns
25
0
55
ns
ns
0
20
[8]
ns
5
0
tHZCE
WRITE CYCLE
70
ns
ns
70
ns
[9]
tWC
Write Cycle Time
55
70
ns
tSCE
CE1 LOW to Write End, CE2 HIGH to Write End
45
60
ns
tAW
Address Set-Up to Write End
45
60
ns
tHA
Address Hold from Write End
0
0
ns
tSA
Address Set-Up to Write Start
0
0
ns
tPWE
WE Pulse Width
45
50
ns
tSD
Data Set-Up to Write End
25
30
ns
tHD
Data Hold from Write End
0
0
ns
5
5
ns
tLZWE
tHZWE
[8]
WE HIGH to Low Z
WE LOW to High Z
[7, 8]
20
25
ns
Notes:
6. Test conditions assume signal transition time of 5ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified
IOL/IOH and 100pF load capacitance.
7. tHZOE, tHZCE, and tHZWE are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
8. At any given temperature and voltage condition, tHZCE is less than tLZCE, tHZOE is less than tLZOE, and tHZWE is less than tLZWE for any given device.
9. The internal write time of the memory is defined by the overlap of CE1 LOW, CE2 HIGH, and WE LOW. CE1 and WE must be LOW and CE2 HIGH to initiate a write,
and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates
the write.
4
CY62128
Data Retention Characteristics (Over the Operating Range for “L” and “LL” version only)
Parameter
Conditions[10]
Description
VDR
VCC for Data Retention
ICCDR
Data Retention Current Coml.
Min.
Typ.
L
Indl.
L
Unit
V
VCC=VDR=3.0V,
CE ≥VCC – 0.3V,
VIN ≥ VCC – 0.3V or,
VIN ≤ 0.3V
LL
0.4
LL
tCDR[3]
tR[3]
Max.
2.0
100
µA
20
µA
100
µA
20
µA
Chip Deselect to Data Retention Time
0
ns
Operation Recovery Time
tRC
ns
Switching Waveforms
Read Cycle No.1[11,12]
tRC
ADDRESS
tAA
tOHA
DATA OUT
PREVIOUS DATA VALID
DATA VALID
62128-5
[12,13]
Read Cycle No. 2 (OE Controlled)
ADDRESS
tRC
CE1
CE2
tACE
OE
tHZOE
tDOE
DATA OUT
tHZCE
tLZOE
HIGH IMPEDANCE
DATA VALID
tLZCE
VCC
SUPPLY
CURRENT
HIGH
IMPEDANCE
tPD
tPU
ICC
50%
50%
ISB
62128-6
Notes:
10. No input may exceed VCC + 0.5V.
11. Device is continuously selected. OE, CE1 = VIL, CE2 = VIH.
12. WE is HIGH for read cycle.
13. Address valid prior to or coincident with CE1 transition LOW and CE2 transition HIGH.
5
CY62128
Switching Waveforms (continued)
Write Cycle No. 1 (CE1 or CE2 Controlled)[14,15]
tWC
ADDRESS
tSCE
CE1
tSA
CE2
tSCE
tHA
tAW
tPWE
WE
tSD
DATA I/O
tHD
DATA VALID
62128-7
Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[14,15]
tWC
ADDRESS
tSCE
CE1
CE2
tSCE
tAW
tHA
tSA
tPWE
WE
OE
tSD
DATA I/O
tHD
DATAIN VALID
NOTE 16
tHZOE
62128-8
Notes:
14. Data I/O is high impedance if OE = VIH.
15. If CE1 goes HIGH or CE2 goes LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.
16. During this period the I/Os are in the output state and input signals should not be applied.
6
CY62128
Switching Waveforms (continued)
Write Cycle No.3 (WE Controlled, OE LOW)[14,15]
tWC
ADDRESS
tSCE
CE1
CE2
tSCE
tAW
tSA
tHA
tPWE
WE
tSD
NOTE 16
DATAI/O
tHD
DATA VALID
tLZWE
tHZWE
62128-9
Truth Table
CE1
CE2
OE
WE
I/O 0 – I/O7
Mode
Power
H
X
X
X
High Z
Power-Down
Standby (ISB)
X
L
X
X
High Z
Power-Down
Standby (ISB)
L
H
L
H
Data Out
Read
Active (ICC)
L
H
X
L
Data In
Write
Active (ICC)
L
H
H
H
High Z
Selected, Outputs Disabled
Active (ICC)
7
CY62128
Ordering Information
Speed
(ns)
55
70
Ordering Code
Package
Name
Package Type
CY62128–55SC
S34
32-Lead 450-Mil SOIC
CY62128-55ZC
Z32
32-Lead TSOP Type I
CY62128−55ZAC
ZA32
32-Lead STSOP Type I
CY62128–70SC
S34
32-Lead 450-Mil SOIC
32-Lead TSOP Type I
CY62128−70ZC
Z32
CY62128-70ZAC
ZA32
CY62128-70ZRC
ZR32
CY62128–70SI
Commercial
Commercial
32-Lead STSOP Type I
32-Lead Reverse TSOP Type I
S34
32-Lead 450-Mil SOIC
32-Lead TSOP Type I
CY62128−70ZI
Z32
CY62128-70ZAI
ZA32
CY62128-70ZRI
ZR32
CY62128L−70SC
S34
32-Lead 450-Mil SOIC
CY62128L−70ZC
Z32
32-Lead TSOP Type I
CY62128L-70ZAC
ZA32
CY62128L-70ZRC
ZR32
CY62128L−70SI
Operating
Range
Industrial
32-Lead STSOP Type I
32-Lead Reverse TSOP Type I
Commercial
32-Lead STSOP Type I
32-Lead Reverse TSOP Type I
S34
32-Lead 450-Mil SOIC
CY62128L−70ZI
Z32
32-Lead TSOP Type I
CY62128L-70ZAI
ZA32
CY62128L-70ZRI
ZR32
CY62128LL−70SC
S34
32-Lead 450-Mil SOIC
CY62128LL−70ZC
Z32
32-Lead TSOP Type I
CY62128LL-70ZAC
ZA32
CY62128LL-70ZRC
ZR32
Industrial
32-Lead STSOP Type I
32-Lead Reverse TSOP Type I
Commercial
32-Lead STSOP Type I
32-Lead Reverse TSOP Type I
CY62128LL−70SI
Z32
32-Lead 450-Mil Type I
CY62128LL-70ZI
Z32
32-Lead TSOP Type I
CY62128LL-70ZAI
Z32
32-Lead STSOP Type I
CY62128LL-70ZRI
ZR32
32-Lead Reverse TSOP Type I
Document #: 38–00524–B
8
Industrial
CY62128
Package Diagrams
32-Lead (450 MIL) Molded SOIC S34
51-85081-A
32-Lead Thin Small Outline Package Z32
51-85056-B
9
CY62128
Package Diagrams (continued)
32-Lead Shrunk Thin Small Outline Package ZA32
51-85094
32-Lead Reverse Thin Small Outline Package ZR32
51-85089-A
© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.