GMT G1421

G1421
Global Mixed-mode Technology Inc.
2W Stereo Audio Amplifier with No Headphone
Coupling Capacitor Function
Features
General Description
„
G1421 is a stereo audio power amplifier in 24pin
TSSOP thermal pad package. It can drive 1.8W continuous RMS power into 4Ω load per channel in
Bridge-Tied Load (BTL) mode at 5V supply voltage. Its
THD is smaller than 1% under the above operation
condition. To simplify the audio system design in the
notebook application, G1421 supports the Bridge-Tied
Load (BTL) mode for driving the speakers, Single-End
(SE) mode for driving the headphone. In the HP-IN
mode, it can support a DC value to the phone-jacket
and drive the headphone without the audio amplifier
outputs coupling capacitors. G1421 can mute the output when Mute-In is activated. For the low current
consumption applications, the SHDN mode is supported to disable G1421 when it is idle. The current
consumption can be further reduced to below 5µA.
„
„
„
„
„
„
„
Depop Circuitry Integrated
Output Power at 1% THD+N, VDD=5V
--1.8W/CH (typical) into a 4Ω Load
--1.2W/CH (typical) into a 8Ω Load
Eliminates Headphone Amplifier Output Coupling Capacitors
Maximum Output Power Clamping Circuitry
Integrated
Bridge-Tied Load (BTL), Single-Ended (SE),
and Stereo Headphone Amplifier (HP-IN) modes
Supported
Stereo Input MUX
Mute and Shutdown Control Available
Surface-Mount Power Package
24-Pin TSSOP-P
G1421 also supports two input paths, that means two
different gain loops can be set in the same PCB and
choosing either one by setting HP/ LINE pin. It enhances the hardware designing flexibility. G1421 also
supports an extra function -- the maximum output
power clamping function to protect the speakers or
headphones from burned-out.
Applications
„
Stereo Power Amplifiers for Notebooks or
Desktop Computers
„ Multimedia Monitors
„ Stereo Power Amplifiers for Portable Audio
Systems
Ordering Information
ORDER
NUMBER
ORDER NUMBER
(Pb free)
TEMP.
RANGE
PACKAGE
G1421
G1421f
-40°C to +85°C
TSSOP-24 (FD)
Note: U: Tape & Reel
(FD): Thermal Pad
Pin Configuration
G1421
GND/HS
GND/HS
1
24
TJ
LOUT+
2
3
23
VOL
22
ROUT+
LLINEIN
4
21
RLINEIN
LHPIN
5
20
RHPIN
LBYPASS
6
19
RBYPASS
LVDD
18
RVDD
SHUTDOWN
7
8
17
HP-IN
MUTE OUT
9
16
HP/LINE
LOUT- 10
MUTE IN 11
15
14
ROUTSE/BTL
GND/HS 12
13
GND/HS
Thermal
Pad
14
Top View
TSSOP-24 (FD)
Bottom View
Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
1
G1421
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Power Dissipation (1)
TA ≤ 25°C…………………………………………..2.7W
TA ≤ 70°C…………………………………………..1.7W
TA ≤ 85°C………………….……………………….1.4W
Electrostatic Discharge, VESD
Human body mode
Lout- pin………………………..…………-8000 to 8000V
Other pins………………………………...-3000 to 3000(2)
Supply Voltage, VDD……………………..………...…...6V
Input Voltage, VI………………………-0.3V to VDD+0.3V
Operating Ambient Temperature Range
TA…….…………………………..….…….-40°C to +85°C
Maximum Junction Temperature, TJ…..…………150°C
Storage Temperature Range, TSTG….…-65°C to+150°C
Reflow Temperature (soldering, 10sec)…………260°C
Note:
(1)
: Recommended PCB Layout.
(2)
: Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses
Electrical Characteristics
DC Electrical Characteristics, TA=+25°C
PARAMETER
SYMBOL
CONDITION
VDD =3.3V
VDD = 5V
Supply Current
IDD
DC Differential Output Voltage
VO(DIFF)
Supply Current in Mute Mode
IDD(MUTE)
IDD in Shutdown
ISD
HP-IN
HP-IN
Stereo BTL
VDD =3.3V
Stereo SE
Stereo BTL
VDD = 5V
Stereo SE
VDD = 5V,Gain = 2
Stereo BTL
VDD = 5V
HP-IN
Stereo SE
VDD = 5V
MIN
TYP
MAX
-----------------------
5.5
6.5
7
3.5
8
4
5
8
6.5
4
2
11
14
13
8
16
10
50
16
14
10
5
MIN
TYP
MAX
-----------------------------------------------
1.8
1.12
2
1.4
500
320
650
400
90
500
150
20
10
20
60
75
85
82
80
85
2
90
55
-----------------------------------------------
UNIT
mA
mV
mA
µA
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Mute attenuation
Channel-to-channel output separation
Line/HP input separation
BTL attenuation in SE mode
Input impedance
Signal-to-noise ratio
Output noise voltage
SYMBOL
P(OUT)
THD+N
BOM
PSRR
CONDITION
THD = 1%, BTL, RL = 4Ω
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
THD = 1%, SE, RL = 4Ω
THD = 1%, SE, RL = 8Ω
THD = 10%, SE, RL = 4Ω
THD = 10%, SE, RL L = 8Ω
THD = 0.5%, SE, RL = 32Ω
PO = 1.6W, BTL, RL = 4Ω
PO = 1W, BTL, RL = 8Ω
PO = 75mW, SE, RL = 32Ω
VI = 1V, RL = 10KΩ, G = 1
G = 1, THD =1%
RL = 4Ω, Open Load
f = 120Hz
f = 1kHz
ZI
Vn
PO = 500mW, BTL
Output noise voltage
UNIT
W
mW
m%
kHz
°
dB
dB
dB
dB
dB
MΩ
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
2
G1421
Global Mixed-mode Technology Inc.
(AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Mute attenuation
Channel-to-channel output separation
Line/HP input separation
BTL attenuation in SE mode
Input impedance
Signal-to-noise ratio
Output noise voltage
SYMBOL
P(OUT)
THD+N
BOM
PSRR
CONDITION
THD = 1%, BTL, RL = 4Ω
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
THD = 1%, SE, RL = 4Ω
THD = 1%, SE, RL = 8Ω
THD = 10%, SE, RL = 4Ω
THD = 10%, SE, RL L = 8Ω
THD = 0.5%, SE, RL = 32Ω
PO = 1.6W, BTL, RL = 4Ω
PO = 1W, BTL, RL = 8Ω
PO = 75mW, SE, RL = 32Ω
VI = 1V, RL = 10KΩ, G = 1
G = 1, THD 1%
RL = 4Ω, Open Load
f = 120Hz
f = 1kHz
ZI
Vn
PO = 500mW, BTL
Output noise voltage
MIN
TYP
MAX
-----------------------------------------------
0.8
0.5
1
0.6
230
140
290
180
43
270
100
20
10
20
60
75
85
80
80
85
2
90
55
-----------------------------------------------
UNIT
W
mW
m%
kHz
°
dB
dB
dB
dB
dB
MΩ
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
3
G1421
Global Mixed-mode Technology Inc.
Typical Characteristics
Table of Graphs
FIGURE
vs Output Power
vs Frequency
THD +N Total Harmonic Distortion Plus Noise
Output Noise Voltage
Supply Ripple Rejection Ratio
Crosstalk
Closed loop Response
Supply Current
Vn
IDD
1,3,6,9,10,13,16,19,22,25,26,27,33,36,39
2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,28,29
30,31,32,34,35,37,38,40,41
42,43,44
45,46,47
48,49,50,51,52
53,54,55,56
57
58,59
60,61
62,63,64,65
vs Frequency
vs Frequency
vs Frequency
vs Frequency
vs Supply Voltage
vs Supply Voltage
vs Load Resistance
vs Output Power
PO Output Power
PD Power Dissipation
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10
5
5
20kHz
2
2
1
Po=1.8W
1
1kHz
0.5
0.5
%
%
0.2
0.1
0.2
VDD=5V
RL=3Ω
BTL
0 .05
0 .02
0 .01
3m
5m
10 m
20m
5 0m
1 00m
20 0m
500 m
1
VDD=5V
RL=3Ω
BTL
Av=-2V/V
Po=1.5W
0.1
20 Hz
0 .05
0 .02
2
0 .01
20
3
50
10 0
2 00
5 00
1k
2k
5k
W
Hz
Figure 1
Figure 2
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10 k
20k
10
5
5
Av=-4V/V
20kHz
2
2
1
1
1kHz
0.5
Av=-2V/V
0.5
%
%
0.2
0.2
0.1
0.1
VDD=5V
RL=4Ω
BTL
20 Hz
0 .05
0 .02
0 .01
3m
5m
10 m
20m
5 0m
1 00m
20 0m
500 m
1
VDD=5V
RL=4Ω
BTL
Po=1.5W
Av=-1V/V
0 .05
0 .02
2
0 .01
20
3
50
10 0
2 00
5 00
1k
W
Hz
Figure 3
Figure 4
2k
5k
10 k
20k
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
4
G1421
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Power
10
5
2
1
10
VDD=5V
RL=4Ω
BTL
Av=-2V/V
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
Po=1.5W
20kHz
2
1
Po=0.25W
0.5
0.5
%
%
0.2
0.2
0.1
0.1
Po=0.75W
0 .05
1kHz
0 .05
0 .02
20Hz
0 .02
0 .01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
0 .01
3m
20k
5m
10m
20m
5 0m
1 00m
Hz
2
1
500 m
1
2
Figure 5
Figure 6
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
5
20 0m
3
W
10
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
Po=1W
2
1
Po=0.25W
0.5
VDD=5V
RL=8Ω
BTL
Po=1W
Av=-4V/V
Av=-2V/V
0.5
%
%
0.2
0.2
0.1
0.1
Po=0.5W
0 .05
0 .05
0 .02
Av=-1V/V
0 .02
0 .01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
0 .01
20
20k
50
10 0
2 00
5 00
Hz
1k
2k
5k
10 k
20k
Hz
Figure 8
Figure 7
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Output Power
10
10
5
5
20kHz
20kHz
2
2
1
1
1kHz
0.5
1kHz
0.5
%
%
0.2
0.1
0 .05
0 .02
0 .01
1m
0.2
0.1
VDD=3.3V
RL=3Ω
BTL
2m
5m
20Hz
0 .05
VDD=3.3V
RL=4Ω
BTL
20Hz
0 .02
1 0m
20 m
50 m
10 0m
2 00 m
500 m
0 .01
1m
1
W
2m
5m
1 0m
20 m
50 m
10 0m
2 00 m
500 m
1
W
Figure 9
Figure 10
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
5
G1421
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10
5
2
1
VDD=3.3V
RL=4Ω
BTL
Po=0.65W
5
Av=-4V/V
2
Av=-2V/V
1
VDD=3.3V
RL=4Ω
BTL
Av=-2V/V
Po=0.7W
0.5
0.5
%
%
Po=0.1W
0.2
0.2
Po=0.35W
0.1
0.1
Av=-1V/V
0 .05
0 .05
0 .02
0 .02
0 .01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
0 .01
20
20k
50
10 0
2 00
5 00
1k
2k
10
10
VDD=3.3V
RL=8Ω
BTL
5
20kHz
2
5
2
1
1
VDD=3.3V
RL=8Ω
BTL
Po=0.4W
Av=-4V/V
Av=-2V/V
0.5
0.5
%
%
1kHz
0.2
0.2
0.1
0.1
0 .05
0 .05
Av=-1V/V
20Hz
0 .02
0 .02
2m
5m
1 0m
20 m
50 m
10 0m
2 00 m
500 m
0 .01
20
1
50
10 0
2 00
5 00
Figure 13
5k
10 k
20k
Total Harmonic Distortion Plus
Noise vs Output Power
10
10
VDD=3.3V
RL=8Ω
BTL
Av=-2V/V
5
2
VDD=5V
RL=4Ω
SE
Po=0.4W
20kHz
1
0.5
0.5
%
%
Po=0.1W
0.2
0.2
1kHz
0.1
0.1
0 .05
0 .05
Po=0.25W
100Hz
0 .02
0 .01
20
2k
Figure 14
Total Harmonic Distortion Plus
Noise vs Output Frequency
1
1k
Hz
W
2
20k
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Power
5
10 k
Figure 12
Figure 11
0 .01
1m
5k
Hz
Hz
0 .02
50
10 0
2 00
5 00
1k
2k
5k
10 k
0 .01
1m
20k
Hz
2m
5m
1 0m
20 m
50 m
10 0m
2 00 m
500 m
1
W
Figure 15
Figure 16
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
6
G1421
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
5
2
1
10
VDD=5V
RL=4Ω
SE
Po=0.5W
5
Av=-4V/V
2
1
0.5
Po=0.4W
0.5
Av=-2V/V
%
VDD=5V
RL=4Ω
SE
Av=-2V/V
%
0.2
0.2
0.1
0.1
0 .05
Po=0.1W
0 .05
Av=-1V/V
Po=0.25W
0 .02
0 .02
0 .01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
0 .01
20
20k
50
10 0
2 00
5 00
Hz
Figure 17
5k
10 k
20k
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10
2
2k
Figure 18
Total Harmonic Distortion Plus
Noise vs Output Power
5
1k
Hz
VDD=5V
RL=8Ω
SE
5
2
1
1
20kHz
VDD=5V
RL=8Ω
SE
Po=0.25W
Av=-2V/V
0.5
0.5
%
%
0.2
0.2
0.1
0.1
1kHz
0 .05
0 .02
0 .01
1m
100Hz
2m
Av=-4V/V
0 .05
Av=-1V/V
0 .02
5m
1 0m
20 m
50 m
10 0m
2 00 m
500 m
0 .01
20
1
50
10 0
2 00
5 00
2
1
5k
10 k
Figure 20
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Power
20k
10
5
VDD=5V
RL=8Ω
SE
Av=-2
2
1
VDD=5V
RL=32Ω
SE
20kHz
0.5
0.5
0.2
Po=0.05W
%
%
0.2
0.1
20Hz
0 .05
0.1
0 .02
Po=0.1W
0 .05
0 .01
0.0 05
Po=0.25W
0 .02
0 .01
20
2k
Figure 19
10
5
1k
Hz
W
1kHz
0.0 02
50
10 0
2 00
5 00
1k
2k
5k
10 k
0.0 01
1m
20k
2m
5m
10 m
20 m
50m
10 0m
2 00m
W
Hz
Figure 21
Figure 22
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
7
G1421
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10
5
2
1
0.5
5
VDD=5V
RL=32Ω
SE
Po=75mW
2
1
Av=-4V/V
0.5
Po=25mW
0.2
0.2
%
VDD=5V
RL=32Ω
SE
%
0.1
Av=-2V/V
0 .05
0.1
0 .05
0 .02
0 .02
0 .01
0 .01
Po=50mW
0.0 05
0.0 05
Av=-1V/V
Po=75mW
0.0 02
0.0 02
0.0 01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
0.0 01
20
20k
50
10 0
2 00
5 00
Figure 23
2
1
0.5
VDD=5V
RL=8Ω
HP-IN
Av=-2V/V
5
2
20kHz
1
0.5
20kHz
%
%
0.2
0.2
1kHz
0.1
1kHz
0.1
0 .05
0 .05
100Hz
0 .02
2m
5m
1 0m
20 m
50m
10 0m
2 00 m
0 .02
5 00 m
0 .01
1m
1
100Hz
2m
5m
1 0m
W
50m
10 0m
2 00 m
5 00 m
1
Figure 26
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Output Power
10
10
VDD=5V
RL=32Ω
HP-IN
Av=-2V/V
5
2
1
20kHz
0.2
%
20 m
W
Figure 25
1
20k
10
VDD=5V
RL=4Ω
HP-IN
Av=-2V/V
5
0.5
10 k
Total Harmonic Distortion Plus
Noise vs Output Power
10
2
5k
Figure 24
Total Harmonic Distortion Plus
Noise vs Output Power
5
2k
Hz
Hz
0 .01
1m
1k
VDD=5V
RL=4Ω
HP-IN
Po=0.5W
Av=-4V/V
0.5
0.1
%
0 .05
Av=-2V/V
0.2
1kHz
0 .02
0.1
0 .01
0 .05
0.0 05
Av=-1V/V
100Hz
0 .02
0.0 02
0.0 01
1m
2m
5m
10m
2 0m
50 m
1 00m
2 00m
0 .01
20
5 00 m
W
50
100
2 00
5 00
1k
2k
5k
10 k
20k
Hz
Figure 27
Figure 28
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
8
G1421
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
5
2
1
10
VDD=5V
RL=4Ω
HP-IN
Av=-2V/V
5
Po=0.25W
2
1
0.5
VDD=5V
RL=8Ω
HP-IN
Po=0.25W
0.5
%
Av=-4V/V
%
Po=0.1W
0.2
0.2
0.1
0 .05
0 .05
Po=0.4W
0 .02
0 .01
20
Av=-2V/V
0.1
50
100
2 00
5 00
1k
2k
Av=-1V/V
0 .02
5k
10 k
0 .01
20
20k
50
100
2 00
5 00
Hz
5
VDD=5V
RL=8Ω
HP-IN
Av=-2V/V
2
1
Po=0.1W
0.5
VDD=5V
RL=32Ω
HP-IN
Av=-2V/V
%
0 .05
0.1
0 .02
Po=0.05W
0.0 05
Po=0.25W
50
100
Po=50mW
0 .01
0 .02
2 00
5 00
1k
2k
5k
Po=70mW
0.0 02
10 k
0.0 01
20
20k
50
100
2 00
5 00
Hz
2k
5k
Figure 32
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10
VDD=3.3V
RL=4Ω ,SE
Av=-2
5
2
20kHz
1
1
0.5
VDD=3.3V
RL=4Ω
SE
Po=0.2W
Av=-4V/V
0.5
%
%
1kHz
0.2
0.1
0.1
0 .05
Av=-1V/V
100Hz
0 .02
2m
5m
1 0m
Av=-2V/V
0.2
0 .05
0 .01
1m
1k
Hz
Figure 31
2
20k
0.1
0.2
5
10 k
Po=25mW
0.2
0.5
0 .01
20
20k
10
%
0 .05
10 k
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
1
5k
Figure 30
Total Harmonic Distortion Plus
Noise vs Output Frequency
2
2k
Hz
Figure 29
5
1k
0 .02
20 m
50 m
10 0m
2 00 m
500 m
0 .01
20
1
W
50
10 0
2 00
5 00
1k
2k
5k
10 k
20k
Hz
Figure 33
Figure 34
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
9
G1421
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Power
10
10
R R
5
2
1
VDD=3.3V
RL=4Ω
SE
Av=-2
5
Po=50mW
2
VDD=3.3V
RL=8Ω ,SE
Av=-2
1
0.5
20kHz
0.5
%
%
0.2
0.2
Po=100mW
0.1
0.1
0 .05
0 .05
0 .02
0 .01
20
50
10 0
2 00
5 00
Po=150mW
0 .02
1k
0 .01
1m
2k
5k
10 k
20k
1kHz
100Hz
2m
5m
10 m
20 m
Hz
2
1
10 0m
Figure 35
Figure 36
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
2 00m
10
10
5
50m
W
5
VDD=3.3V
RL=8Ω
SE
Po=100mW
2
VDD=3.3V
RL=8Ω
SE
1
Av=-4V/V
Po=25mW
0.5
0.5
%
%
0.2
0.2
Av=-2V/V
0.1
0 .05
0 .05
Av=-1V/V
0 .02
0 .01
20
Po=50mW
0.1
50
10 0
2 00
5 00
1k
2k
5k
10 k
Po=100mW
0 .02
0 .01
20
20k
50
10 0
2 00
5 00
Total Harmonic Distortion Plus
Noise vs Output Power
10 k
20k
10
5
VDD=3.3V
RL=32Ω
2
1kHz
SE
1
0.5
1
20kHz
0.5
VDD=3.3V
RL=32Ω
SE
Po=30mW
Av=-4V/V
Av=-2V/V
0.2
%
%
0.2
0.1
0 .05
0.1
0 .02
20Hz
0 .01
0 .05
Av=-1V/V
0.0 05
0 .02
0 .01
1m
5k
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
2
2k
Figure 38
Figure 37
5
1k
Hz
Hz
0.0 02
2m
5m
1 0m
2 0m
50 m
0.0 01
20
1 00m
W
50
10 0
2 00
5 00
1k
2k
5k
10 k
20k
Hz
Figure 39
Figure 40
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
10
G1421
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Output Noise Voltage
vs Frequency
10
5
2
1
10 0u
9 0u
8 0u
VDD=3.3V
RL=32Ω
SE
7 0u
6 0u
4 0u
0.2
%
BW=22Hz to 20kHz
RL=4Ω
5 0u
Po=10mW
0.5
VDD=5V
0.1
V
Vo BTL
3 0u
Po=20mW
0 .05
0 .02
Vo SE
2 0u
0 .01
0.0 05
Po=30mW
0.0 02
0.0 01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
1 0u
20
20k
50
10 0
2 00
5 00
Hz
Figure 41
10 0u
9 0u
10 0u
9 0u
8 0u
8 0u
7 0u
7 0u
6 0u
6 0u
BW=22Hz to 20kHz
10 k
20k
VDD=3.3V
5k
10k
20k
5k
10k
20k
BW=22Hz to 20kHz
RL=4Ω
5 0u
Vo BTL
4 0u
A- Weighted Filter
3 0u
2 0u
5k
Output Noise Voltage
vs Frequency
4 0u
V
2k
Figure 42
Output Noise Voltage
vs Frequency
5 0u
1k
Hz
V
VDD=5V
HP-IN
3 0u
2 0u
Vo SE
RL=4Ω
1 0u
20
50
1 00
2 00
5 00
1k
2k
5k
10k
1 0u
20
20k
50
1 00
2 00
5 00
Hz
Figure 43
Supply Ripple Rejection
Ratio vs Frequency
+0
+0
-10
-10
T
-30
T
VDD=5V
RL=4Ω
CB=4.7uF
-20
-30
-40
-40
d
B
-50
d
B
BTL
-60
-70
-70
-80
-90
-1 00
20
-1 00
20
2 00
5 00
1k
2k
5k
T
VDD=5V
HP-IN
RL=4Ω
CB=4.7uF
-80
SE
-90
1 00
T
-50
-60
50
2k
Figure 44
Supply Ripple Rejection
Ratio vs Frequency
-20
1k
Hz
10k
20k
50
1 00
2 00
5 00
1k
2k
Hz
Hz
Figure 45
Figure 46
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
11
G1421
Global Mixed-mode Technology Inc.
Supply Ripple Rejection
Ratio vs Frequency
Crosstalk vs Frequency
+0
-20
T
-10
-20
-30
-25
VDD=3.3V
RL=4Ω
CB=4.7uF
-30
-35
-40
-45
VDD=5V
Po=1.5W
RL=4Ω
BTL
-50
-40
-55
d
B
-50
d
B
BTL
-60
-60
-65
L to R
-70
-75
-70
-80
-80
-85
SE
-90
-90
R to L
-95
-1 00
20
50
1 00
2 00
5 00
1k
2k
5k
10k
-100
20
20k
50
100
200
Hz
Crosstalk vs Frequency
-35
-40
-45
-50
-35
-40
-45
-50
-55
d
B
-60
L to R
-65
-70
VDD=5V
Po=75mW
RL=32Ω
SE
-65
R to L
-70
-75
-75
-80
-80
-85
-85
-90
R to L
-90
-100
20
50
100
L to R
-95
-95
200
500
1k
2k
5k
10k
-1 00
20
20k
50
10 0
20 0
Hz
1k
2k
5k
10 k
20k
10 k
20 k
Figure 50
Crosstalk vs Frequency
Crosstalk vs Frequency
-30
-2 0
-2 5
VDD=3.3V
Po=35mW
RL=32Ω
SE
-3 0
-3 5
-4 0
-4 5
-5 0
-60
d
B
50 0
Hz
Figure 49
-55
20k
-60
-55
-50
10k
Crosstalk vs Frequency
VDD=3.3V
Po=0.75W
RL=4Ω
BTL
-30
-45
5k
-30
-25
-40
2k
Figure 48
-20
-35
1k
Hz
Figure 47
d
B
500
VDD=5V
Po=75mW
RL=32Ω
HP-IN
R to L
-5 5
-65
d
B
R to L
-70
-6 0
-6 5
L to R
-7 0
-75
-7 5
-80
-8 0
-85
-8 5
-90
-95
-1 00
20
-9 0
L to R
50
10 0
20 0
50 0
1k
2k
5k
-9 5
10 k
-10 0
20
20k
Hz
50
100
20 0
50 0
1k
2k
5k
Hz
Figure 52
Figure 51
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
12
G1421
Global Mixed-mode Technology Inc.
Closed Loop Response
Closed Loop Response
Figure 54
Figure 53
Closed Loop Response
Closed Loop Response
Figure 55
Figure 56
Supply Current vs Supply Voltage
Output Power vs Supply Voltage
10
2.5
9
8
2
Po-Output Power (W)
Supply Current(mA)
THD+N=1%
BTL
Each Channel
Stereo BTL
7
6
5
4
3
Stereo SE
2
RL=4Ω
1.5
RL=3Ω
1
RL=8Ω
0.5
1
0
0
3
4
5
Supply Voltage (V)
6
2.5
3.5
4.5
Supply Voltage (V)
5.5
6.5
Figure 58
Figure 57
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
13
G1421
Global Mixed-mode Technology Inc.
Output Power vs Supply Voltage
Output Power vs Load Resistance
0.7
2
0.5
RL=8Ω
0.4
RL=4Ω
0.3
0.2
RL=32Ω
1.4
1.2
1
VDD=3.3V
0.8
0.6
0.4
0.1
0.2
0
0
2.5
3.5
4.5
5.5
6.5
0
8
12
16
20
24
Load Resistance(Ω)
Figure 59
Figure 60
28
32
Power Dissipation vs Output Power
1.8
0.7
0.6
1.6
THD+N=1%
SE
Each Channel
0.5
Power Dissipation(W)
Po-Output Power(W)
4
Supply Voltage(V)
Output Power vs Load Resistance
VDD=5V
0.4
0.3
0.2
0.1
RL=3Ω
1.4
1.2
1
RL=4Ω
0.8
0.6
0.4
VDD=5V
BTL
Each Channel
RL=8Ω
0.2
VDD=3.3V
0
0
0
4
8
12
16
20
24
28
0
32
0.5
Load Resistance(Ω)
1
1.5
Po-Output Pow er(W)
2
2.5
Figure 62
Figure 61
Power Dissipation vs Output Power
Power Dissipation vs Output Power
0.35
0.8
0.7
0.3
RL=3Ω
0.6
Power Dissipation(W)
Power Dissipation(W)
THD+N=1%
BTL
Each Channel
VDD=5V
1.6
Po-Output Power(W)
Po-Output Power(W)
1.8
THD+N=1%
SE
Each Channel
0.6
0.5
RL=4Ω
0.4
0.3
0.2
RL=8Ω
0.1
VDD=3.3V
BTL
Each Channel
RL=4Ω
0.25
0.2
RL=8Ω
0.15
0.1
0.05
0
RL=32Ω
VDD=5V
SE
Each Channel
0
0
0.25
0.5
Output Pow er(W)
0.75
0
1
Figure 63
0.2
0.4
Output Pow er(W)
0.6
0.8
Figure 64
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
14
Global Mixed-mode Technology Inc.
G1421
Recommended Minimum Footprint
Power Dissipation vs Output Power
0.16
TSSOP-24 (FD)
Power Dissipation (W)
0.14
RL=4Ω
0.12
0.1
VDD=3.3V
SE
Each Channel
0.08
0.06
0.04
RL=8Ω
RL=32Ω
0.02
0
0
0.05
0.1
0.15
0.2
0.25
0.3
Output Pow er (W)
Figure 65
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
15
Global Mixed-mode Technology Inc.
G1421
Pin Description
PIN
NAME
1,12,13,24
2
GND/HS
TJ
I/O
O
3
4
5
LOUT+
LLINE IN
LHP IN
O
I
I
6
7
8
LBYPASS
LVDD
SHUTDOWN
I
I
9
10
MUTE OUT
LOUT-
O
O
11
14
15
16
MUTE IN
SE/
ROUTHP/
I
I
O
I
17
HP-IN
18
19
20
21
22
23
RVDD
RBYPASS
RHP IN
RLINE IN
ROUT+
VOL
FUNCTION
Ground connection for circuitry, directly connected to thermal pad.
Source a current inversely to the junction temperature. This pin should be left unconnected during normal operation. For more information, see the junction temperature
measurement section of this document.
Left channel + output in BTL mode, + output in SE mode.
Left channel line input, selected when HP/ pin is held low.
Left channel headphone input, selected when HP/pin is held high.
Thermal Pad
Connect to voltage divider for left channel internal mid-supply bias.
Supply voltage input for left channel and for primary bias circuits.
Shutdown mode control signal input, places entire IC in shutdown mode when held
high, IDD = 5µA.
Follows MUTE IN pin, provides buffered output.
Left channel - output in BTL mode, high impedance state in SE mode. Supply VDD/2 to
the phone jacket in HP-IN mode.
Mute control signal input, hold low for normal operation, hold high to mute.
Mode control signal input, hold low for BTL mode, hold high for SE mode.
Right channel - output in BTL mode, high impedance state in SE mode.
MUX control input, hold high to select headphone inputs (5,20), hold low to select line
inputs (4,21).
This pin can activate the HP-IN mode to supplied the VDD/2 at LOUT- onto the phone
jacket. So the DC blocking capacitors can be removed in HP-IN type (like SE mode
except no DC blocking capacitors). Hold high to activate this function. If this function is
not used, it should be strongly tied to low.
Supply voltage input for right channel.
Connect to voltage divider for right channel internal mid-supply bias.
Right channel headphone input, selected when HP/pin is held high.
Right channel line input, selected when HP/pin is held low.
Right channel + output in BTL mode, + output in SE mode.
The output power can be clamped by setting a low bound voltage to this pin. The high
bound voltage will be generated internally. The output voltage will be clamped between
high/low bound voltages. Then the output power is limited. It is weakly pull-low internally, let this pin floating or tied to GND can deactivate this function.
Recommend connecting the Thermal Pad to the GND for excellent power dissipation.
Ver: 1.6
Aug 04, 2005
TEL: 886-3-5788833
http://www.gmt.com.tw
I
I
I
O
I
16
G1421
Global Mixed-mode Technology Inc.
Block Diagram
20k
21
RLINE IN
20
RHPIN
19
RBYPASS
11
22
ROUT-
15
RVDD
18
HP-IN
17
HP/LINE
16
SE/BTL
14
TJ
2
LVDD
7
+
LOUT-
10
_
LOUT+
3
MUTEIN
MUTEOUT
8
SHUTDOW N
6
ROUT+
+
9
23
_
RIGHT
MUX
VOL
BIAS C IRCU ITS
MODES CON TROL
CIRCU ITS
LBYPASS
5
LHPIN
4
LLINE IN
LEFT
MUX
20k
Parameter Measurement Information
11
8
23
MUTEIN
SHUTDOWN
VOL
HP-IN
17
HP/LINE
16
SE/BTL
14
LVDD
7
RL 4/8/32ohm
6
LBYPASS
CB
4.7µF
CI
AC source
5
LHPIN
4
LLINEIN
LEFT
MUX
+
LOUT-
10
_
LOUT+
3
RI
RF
BTL Mode Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
17
G1421
Global Mixed-mode Technology Inc.
Parameter Measurement Information (Continued)
11
8
HP-IN
17
HP/LINE
16
SE/BTL
14
LVDD
7
+
LOUT-
10
_
LOUT+
3
MUTEIN
SHUTDOWN
VDD
23
6
VOL
LBYPASS
CB
4.7µF
CI
AC source
5
LHPIN
4
LLINEIN
LEFT
MUX
RI
RL 32ohm
RF
SE Mode Test Circuit
VDD
11
8
23
AC source
17
HP/LINE
16
SE/BTL
14
LVDD
7
+
LOUT-
10
_
LOUT+
3
SHUTDOWN
VOL
6
LBYPASS
5
LHPIN
4
LLINEIN
CB
4.7µF
CI
HP-IN
MUTEIN
LEFT
MUX
RL 32ohm
RI
RF
HP-IN Mode (Non-DC Blocking Cap) Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
18
G1421
Global Mixed-mode Technology Inc.
Application Circuits
With DC blocking Capacitors Application
GND/HS
TJ
LOUT+
CIR
RFL
20KΩ
CFR
AUDIO SOURCE 1µF
RIR
10KΩ
LLINEIN
LHPIN
LBYPASS
RBYPASS
4.7µF
SHUTDWON
MUTE OUT
LOUTMUTE IN
GND/HS
1
24
2
23
3
22
4
21
5
20
6
7
19
G1421
18
8
17
9
16
10
15
11
14
12
13
GND/HS
VOL
ROUT+
RLINEIN
RIL
10KΩ
RHPIN
CIL
RFL
1µF AUDIO SOURCE
20KΩ
CFL
LVDD
RVDD
HP-IN
4.7µF
R
CSR
4.7µF
100KΩ
COUTR
HP/LINE
220µF
ROUTR
SE/BTL
100KΩ
1KΩ
1
3
4
2
GND/HS
0.1µF
PHONOJACK
COUTR
220µF
1KΩ
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
19
G1421
Global Mixed-mode Technology Inc.
Application Circuits (Continued)
No DC Blocking Capacitors Application
GND/HS
TJ
LOUT+
RFR
20KΩ
CIR
RIR
1µF
10KΩ
CFR
AUDIO SOURCE
LLINEIN
LHPIN
LBYPASS
RBYPASS
CBL
4.7µF
24
2
23
3
22
4
21
5
20
6
7
19
SHUTDWON
MUTE OUT
LOUTMUTE IN
RC
4.7Ω
1
GND/HS
G1421
GND/HS
VOL
ROUT+
RLINEIN
17
9
16
10
15
11
14
10KΩ
1µF
RFL
20KΩ
CFL
RC
4.7Ω
AUDIO SOURCE
CC
0.1µF
RVDD
4.7µF
HP-IN
4.7µF
HP/LINE
ROUT-
1
2
3
4
SE/BTL
5
GND/HS
13
12
CIL
RHPIN
LVDD
18
8
RIL
PHONOJACK
CC
0.1µF
Logical Truth Table
SE/ BTL
HP/ LINE
INPUTS
HP-IN
X
Low
High
X
X
X
X
X
X
X
X
High
---High
High
High
High
----------
---High
High
High
X
X
X
X
Low
Low
Low
Low
Low
Low
L/R Line
Low
High
Low
Low
Low
Low
L/R HP
High
Low
Low
Low
Low
Low
L/R Line
High
High
Low
Low
Low
Low
L/R HP
X
Low
High
Low
Low
Low
L/R Line
X
High
High
Low
Low
Low
L/R HP
Mute In Shutdown
OUTPUT
Mute Out
Input
AMPLIFIER STATES
L/R Out+ L Out- R Out---VDD/2
VDD/2
VDD/2
BTL
Output
BTL
Output
SE
Output
SE
Output
SE
Output
SE
Output
Mode
---VDD/2
---VDD/2
BTL
Output
BTL
Output
---VDD/2
------BTL
Output
BTL
Output
Mute
Mute
Mute
Mute
----
----
SE
----
----
SE
VDD/2
----
HP-IN
VDD/2
----
HP-IN
BTL
BTL
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
20
G1421
Global Mixed-mode Technology Inc.
Application Information
Input MUX Operation
There are two input signal paths – HP & Line. With the
prompt setting, G1421 allows the setting of different
gains for BTL and SE modes. Generally, speakers
typically require approximately a factor of 10 more
gain for similar volume listening levels as compared
with headphones.
SE Gain(HP) =
-3 dB
-(RF(HP)/RI(HP))
BTL Gain(LINE) =
fc
-2(RF(LINE)/RI(LINE))
To achieve headphones and speakers listening parity,
(RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)/
RI(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by
the applications. When the optimum distortion performance into the headphones (clear sound) is important, gain of –1 ((RF(HP) / RI(HP)) = 1) is suggested.
Figure B
Bridged-Tied Load Mode Operation
G1421 has two linear amplifiers to drive both ends of
the speaker load in Bridged-Tied Load (BTL) mode
operation. Figure C shows the BTL configuration. The
differential driving to the speaker load means that
when one side is slewing up, the other side is slewing
down, and vice versa. This configuration in effect will
double the voltage swing on the load as compared to a
ground reference load. In BTL mode, the peak-to-peak
voltage VO(PP) on the load will be two times than a
ground reference configuration. The voltage on the
load is doubled, this will also yield 4 times output
power on the load at the same power supply rail and
loading. Another benefit of using differential driving
configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is
needed to cancelled dc offsets in the ground reference
configuration. Low-frequency performance is then limited only by the input network and speaker responses.
Cost and PCB space can be minimized by eliminating
the dc coupling capacitors.
Single Ended Mode Operation
G1421 can drive clean, low distortion SE output power
into headphone loads (generally 16Ω or 32Ω) as in
Figure A. Please refer to Electrical Characteristics to
see the performances. A coupling capacitor is needed
to block the dc offset voltage, allowing pure ac signals
into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass
filter network, as Figure B.
fC=1/(2πRLCC)
For example, a 68uF capacitor with 32Ω headphone
load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well
chosen to achieve the excellent bass performance
when in SE mode operation.
VDD
VDD
Vo(PP)
Vo(PP)
CC
VDD
RL
Vo(PP)
RL
2xVo(PP)
-Vo(PP)
Figure A
Figure C
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
21
Global Mixed-mode Technology Inc.
G1421
MUTE and SHUTDOWN Mode Operations
G1421 implements the mute and shutdown mode
operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for
battery-power conservation. When the shutdown
pin (pin 8) is pulled high, all linear amplifiers will be
deactivated to mute the amplifier outputs. And
G1421 enters an extra low current consumption
state, IDD is smaller than 5µA. If pulling mute-in pin
(pin 11) high, it will force the activated linear amplifier to supply the VDD/2 dc voltage on the output to
mute the AC performance. In mute mode operation,
the current consumption will be a little different between BTL, SE and HP-IN modes. (SE < HP-IN <
BTL) Typically, the supply current is about 2.5mA in
BTL mute operation. Shutdown and Mute-In pins
should never be left unconnected, this floating condition will cause the amplifier operations unpredictable.
HP-IN Mode Operation
An internal weakly pull-up circuit is connected to
HP-IN control pin (pin 17). When this pin is left unconnected or tied to VDD, HP-IN mode is activated,
ignoring SE/ BTL setting. In normal SE/ BTL mode
operations, this HP-IN pin should be tied to GND. In
HP-IN mode, the linear amplifiers of LOUT+ (pin 3)
/ROUT+ (pin 22) are still alive, the linear amplifier of
ROUT- (pin 15) is deactivated, the linear amplifier of
LOUT- (pin 10) supplies VDD/2 on this pin to cancel
the dc offsets. (Please refer to Logical Truth Table and
No DC CAP Application Circuit for detailed operation.)
If connected VDD/2 on the LOUT- (pin 10) to the
phone jacket, the dc offset can be eliminated without
using coupling capacitors in headphone applications.
By using HP-IN mode, cost and PCB space can be
further minimized than traditional headphone applications with coupling capacitors. The HP-IN configuration is shown on Figure D.
Maximum Power Clampping Function
G1421 supports the maximum output power clamping
function to avoid damaging the speaker when the amplifier output a power beyond the speaker tolerance.
The Vol pin (pin 23) is weakly pull-low internally. If
inputting a non-zero voltage (low boundary voltage) to
the Vol pin, G1421 will generate a high boundary
voltage which the difference between the VDD/2 and
the high boundary voltage is the same as the difference between the VDD/2 and the low boundary voltage. ( i.e. VOH – VDD/2 = VDD/2 – VOL ) Then the outputs of linear amplifiers will be effectively limited between the high/low boundary voltage, the maximum
output power is clamped. By setting the voltage of Vol,
the maximum output power can be well controlled.
When the maximum power clamping function is not
used, the Vol pin should be floated or tied to GND.
VDD
Vo(PP)+VDD/2
RL
VDD/2
Vo(PP)
VDD/2
Figure D
Short circuit protection is implemented on LOUT(pin10) to avoid the short-circuit damage caused by
the sleeve of the phone jack connected to ground accidentally during the module assembling. When
short-circuit is detected, the linear amplifier of LOUT(pin 10) will turn off for a period. After this period, it
activates again. If the short circuit condition still exists,
it will be turned off again. With this protection, the
damage caused by larger dc short circuit current (from
VDD/2 to GND) can be avoided.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
22
G1421
Global Mixed-mode Technology Inc.
Optimizing DEPOP Operation
Junction Temperature Measurement
Circuitry has been implemented in G1421 to minimize the amount of popping heard at power-up and
when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the
speaker and making the differential voltage generated at the two ends of the speaker. To avoid the
popping heard, the bypass capacitor should be
chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)).
Where 100kΩ is the output impedance of the
mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the
input impedance, RF is the gain setting impedance
which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the
popping, CB can also determine the rate at which
the amplifier starts up during startup or recovery
from shutdown mode.
Characterizing a PCB layout with respect to thermal
impedance is very difficult, as it is usually impossible to know the junction temperature of the IC.
G1421 TJ (pin 2) sources a current inversely proportional to the junction temperature. Typically TJ
sources–120µA for a 5V supply at 25°C. And the
slope is approximately 0.22µA/°C. As the resistors
have a tolerance of ±20%, these values should be
calibrated on each device. When the temperature
sensing function is not used, TJ pin can be left
floating or tied to VDD to reduce the current consumption.
Temperature sensing circuit is shown on Figure F.
VDD
De-popping circuitry of G1421 is shown on Figure E.
The PNP transistor limits the voltage drop across
the 50kΩ by slewing the internal node slowly when
power is applied. At start-up, the voltage at
BYPASS capacitor is 0. The PNP is ON to pull the
mid-point of the bias circuit down. So the capacitor
sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while
the PNP transistor is conducting), followed by the
expected exponential ramp of an R-C circuit.
R
R
5R
TJ
Figure F
VDD
100 kΩ
50 kΩ
Bypass
100 kΩ
Figure E
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
23
G1421
Global Mixed-mode Technology Inc.
Package Information
C
D
24
L
D1
E2
E1 E
1
Note 5
θ
A2
A
A1
e
b
TSSOP-24(FD) Package
NOTE:
1. Package body sizes exclude mold flash protrusions or gate burrs
2. Tolerance ±0.1mm unless otherwise specified
3. Coplanarity : 0.1mm
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.
5. Die pad exposure size is according to lead frame design.
6. Follow JEDEC MO-153
SYMBOLS
A
A1
A2
b
C
D
D1
E
E1
E2
e
L
θ
MIN
DIMENSION IN MM
NOM
----0.00
0.80
0.19
0.20
7.7
4.4
4.30
2.7
0.45
0º
--------1.00
--------7.8
----6.40 BSC
4.40
----0.65 BSC
0.60
-----
MAX
MIN
1.20
0.15
1.05
0.30
----7.9
4.9
----0.000
0.031
0.007
0.008
0.303
0.173
4.50
3.2
0.169
0.106
0.75
8º
0.018
0º
DIMENSION IN INCH
NOM
--------0.039
--------0.307
----0.252 BSC
0.173
----0.026 BSC
0.024
-----
MAX
0.047
0.006
0.041
0.012
----0.311
0.193
0.177
0.126
0.030
8º
Taping Specification
PACKAGE
Q’TY/REEL
TSSOP-24 (FD)
2,500 ea
Feed Direction
Typical TSSOP Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.6
Aug 04, 2005
24