HA1630D04/05/06 Series Ultra-Small Low Voltage Operation CMOS Dual Operational Amplifier REJ03D0801-0200 Rev.2.00 Feb 07, 2007 Description The HA1630D04/05/06 are high slew rate dual CMOS Operational Amplifiers realizing low voltage operation, low input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can achieve full swing output voltage capability extending to either supply. Available in an ultra-small TSSOP-8 and MMPAK-8 package that occupy more small area against the SOP-8. Features • Low power and single supply operation • Low input offset voltage • Low supply current (per channel) • High slew rate • Maximum output voltage • Low input bias current VDD = 1.8 to 5.5 V VIO = 4.0 mV Max IDD = 200 μA Typ (HA1630D04) IDD = 400 μA Typ (HA1630D05) IDD = 800 μA Typ (HA1630D06) SR = 2 V/μs Typ (HA1630D04) SR = 4 V/μs Typ (HA1630D05) SR = 8 V/μs Typ (HA1630D06) VOH = 2.9 V Min (at VDD = 3.0 V) IIB = 1 pA Typ Ordering Information Type No. HA1630D04T HA1630D05T HA1630D06T HA1630D04MM HA1630D05MM HA1630D06MM Rev.2.00 Feb 07, 2007 page 1 of 23 Package Name Package Code TTP-8DA PTSP0008JC-B MMPAK-8 PLSP0008JC-A HA1630D04/05/06 Series Pin Arrangement VOUT1 1 VIN1(–) 2 VIN1(+) 3 VSS 4 8 VDD 7 VOUT2 − + + − 6 VIN2(–) 5 VIN2(+) Equivalent Circuit (per one channel) VDD VIN(–) VIN(+) VSS Rev.2.00 Feb 07, 2007 page 2 of 23 VOUT HA1630D04/05/06 Series Absolute Maximum Ratings (Ta = 25°C) Items Symbol Ratings Unit Note Supply voltage VDD 7 V Differential input voltage VIN(diff) –VDD to +VDD V Input voltage VIN –0.3 to +VDD V *1 Power dissipation PT 240/145 mW TTP-8DA/MMPAK-8 *2 Operating temp. Range Topr –40 to +85 °C Storage temp. Range Tstg –55 to +125 °C Notes: 1. Do not apply Input Voltage exceeding VDD or 7 V. 2. The value of PTSP0008JC-B (TTP-8DAV) / PLSP0008JC-A (MMPAK-8). It computes from heat resistance θja = 520°C/W, and 690°C/W each other. Electrical Characteristics (VDD = 3.0 V, Ta = 25°C) Items Input offset voltage Input offset current Input bias current Symbol VIO IIO IIB Output high voltage Output source current VOH IO SOURCE Min — — — Typ — (1.0) (1.0) Max 4.0 — — Unit mV pA pA 2.9 — — V 100 200 — μA 200 400 — 400 800 — Output low voltage VOL — — 0.1 V Output sink current IO SINK — (5.0) — mA — (6.0) — — (6.5) — –0.05 to 2.1 — — V VCM Common mode input voltage range 0 to 1.9 — — Slew rate SR — (2.0) — V/μs — (4.0) — — (8.0) — Voltage gain AV 60 90 — dB Gain bandwidth product BW — (2100) — kHz — (3300) — — (3600) — Power supply rejection ratio PSRR 50 70 — dB Common mode rejection ratio CMRR 50 70 — dB Supply current IDD — 400 800 μA — 800 1600 — 1600 3400 Notes: 1. In the case of continuous current flow, use a sink current of under 4 mA. 2. ( ) : Design specification Rev.2.00 Feb 07, 2007 page 3 of 23 Test Condition Vin = 1.5 V Vin = 1.5 V Vin = 1.5 V RL = 100 kΩ VOH = 2.5 V (HA1630D04) VOH = 2.5 V (HA1630D05) VOH = 2.5 V (HA1630D06) RL = 100 kΩ VOL = 0.5 V (HA1630D04) VOL = 0.5 V (HA1630D05) VOL = 0.5 V (HA1630D06) (HA1630D04, HA1630D05) (HA1630D06) CL = 20 pF (HA1630D04) CL = 20 pF (HA1630D05) CL = 20 pF (HA1630D06) CL = 20 pF (HA1630D04) CL = 20 pF (HA1630D05) CL = 20 pF (HA1630D06) RL = ∞ (HA1630D04) RL = ∞ (HA1630D05) RL = ∞ (HA1630D06) HA1630D04/05/06 Series Table of Graphs Electrical Characteristics Supply current IDD vs Supply voltage vs Ambient temperature Output high voltage VOH vs Output source current vs Supply voltage Output source current IO SOURCE vs Ambient temperature Output low voltage VOL vs Output sink current Output sink current IO SINK vs Ambient temperature Input offset voltage VIO Distribution vs Supply voltage vs Ambient temperature vs Ambient temperature VCM Common mode input voltage range HA1630D04 Figure HA1630D05 Figure HA1630D06 Figure 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 Test Circuit 2 4 6 5 6 1 7 Power supply rejection ratio PSRR vs Frequency 1-12 2-12 3-12 1 Common mode rejection ratio CMRR vs Frequency 1-13 2-13 3-13 7 Voltage gain & phase angle Input bias current AV vs Frequency 1-14 2-14 3-14 10 IIB SRr SRf 1-15 1-16 1-17 1-18 2-15 2-16 2-17 2-18 3-15 3-16 3-17 3-18 3 Slew Rate (rising) Slew Rate (falling) Slew rate vs Ambient temperature vs Input voltage vs Ambient temperature vs Ambient temperature Large signal transient response 1-19 2-19 3-19 Small signal transient response vs. Output voltage p-p 1-20 2-20 3-20 1-21 2-21 3-21 vs. Output voltage p-p vs Frequency 1-22 1-23 2-22 2-23 3-22 3-23 vs Frequency vs Frequency 1-24 1-25 2-24 2-25 3-24 3-25 Total harmonic distortion + noise (0 dB) (40 dB) Maximum p-p output voltage Voltage noise density Channel separation Rev.2.00 Feb 07, 2007 page 4 of 23 9 8 HA1630D04/05/06 Series Main Characteristics (HA1630D04) Figure 1-1. HA1630D04 Supply Current vs. Supply Voltage 400 Ta = 25°C Supply Current IDD (μA) Supply Current IDD (μA) 400 Figure 1-2. HA1630D04 Supply Current vs. Ambient Temperature 300 200 100 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.5 V VDD = 3.0 V 300 VDD = 1.8 V 200 100 0 −40 6 VDD = 5.5 V 5 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 6 Ta = 25°C VDD = 3.0 V RL = 100 kΩ 5 4 3 2 1 0 0 100 200 300 Output Source Current IOSOURCE (μA) Figure 1-5. HA1630D04 Output Source Current vs. Ambient Temperature 400 Output Source Current IOSOURCE (μA) Output High Voltage VOH (V) Output High Voltage VOH (V) Ta = 25°C 100 Figure 1-4. HA1630D04 Output High Voltage vs. Supply Voltage Figure 1-3. HA1630D04 Output High Voltage vs. Output Source Current 6 −20 0 20 40 60 80 Ambient Temperature Ta (°C) VDD = 5.5 V 300 VDD = 3.0 V VDD = 1.8 V 200 100 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 5 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630D04/05/06 Series Figure 1-7. HA1630D04 Output Sink Current vs. Ambient Temperature 10 1.5 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 1-6. HA1630D04 Output Low Voltage vs. Output Sink Current VDD = 5.5 V VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 0 0 2 4 Output Sink Current IOSINK (mA) VDD = 5.5 V VDD = 3.0 V VDD = 1.8 V 8 6 4 2 0 −40 6 Figure 1-8. HA1630D04 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 3 VDD = 1.8 V, VIN = 0.9 V VDD = 3.0 V, VIN = 1.5 V 0 −1 VDD = 5.5 V, VIN = 2.75 V −2 −3 −4 −40 6 3.0 4 1 3 4 5 Supply Voltage VDD (V) Figure 1-11. HA1630D04 Common Mode Input Voltage vs. Ambient Temperature Figure 1-10. HA1630D04 Input Offset Voltage vs. Ambient Temperature 2 100 Figure 1-9. HA1630D04 Input Offset Voltage vs. Supply Voltage 40 0 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 6 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630D04/05/06 Series Power Supply Rejection Ratio PSRR (dB) Figure 1-12. HA1630D04 Power Supply Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 1-13. HA1630D04 Common Mode Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Figure 1-14. HA1630D04 Open Loop Voltage Gain and Phase Angle vs. Frequency Open Loop Voltage Gain AVOL (dB) Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 80 60 90 40 Phase Angle 20 45 0 Phase Margin: 57 deg −45 −20 −40 10 0 100 1k 10k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 7 of 23 100k 1M −90 10M Phase Angle (deg) 225 100 HA1630D04/05/06 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 1-16. HA1630D04 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 1-15. HA1630D04 Input Bias Current vs. Ambient Temperature 25 50 75 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 Figure 1-17. HA1630D04 Slew Rate (rising) vs. Ambient Temperature VDD = 5.5 V VDD = 3.0 V VDD = 1.8 V 2 1 0 −40 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 5 Slew Rate SRf (V/μs) Slew Rate SRr (V/μs) 3 0 Figure 1-18. HA1630D04 Slew Rate (falling) vs. Ambient Temperature 5 4 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 4 VDD = 5.5 V VDD = 3.0 V VDD = 1.8 V 3 2 1 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 1-19. HA1630D04 Large Signal Transient Response Figure 1-20. HA1630D04 Small Signal Transient Response 2.0 V Vin = 2.1 Vp-p, 250 kHz Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF 1.6 V Vin = 0.2 Vp-p, 250 kHz 0V 1.4 V 2.0 V 1.6 V 0V 1.4 V Rev.2.00 Feb 07, 2007 page 8 of 23 100 Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF HA1630D04/05/06 Series Figure 1-21. HA1630D04 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 1-22. HA1630D04 Total Harmonic Distortion + Noise vs. Output Voltage p-p f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 0.001 1 f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 V = 3.0 V DD Ta = 25°C Gain = 40 dB 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 Output Voltage Vout p-p (V) 1.0 1.5 2.0 2.5 3.0 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 1-23. HA1630D04 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V 3.0 2.5 Gain = 40 dB, VIN = 0.03 Vp-p Gain = 20 dB, VIN = 0.3 Vp-p 2.0 Gain = 0 dB, VIN = 2.0 Vp-p 1.5 1.0 0.5 0 1k 10k 100k Frequency f (Hz) Voltage Noise Density (nVms/√Hz) 200 VDD = 3.0 V Ta = 25°C Gain = 40 dB RS = 1 kΩ 160 120 80 40 0 100 1k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 9 of 23 10M Figure 1-25. HA1630D04 Channel Separation vs. Frequency 10k Channel Separation C.S (dB) Figure 1-24. HA1630D04 Voltage Noise Density vs. Frequency 1M 140 120 CH2→CH1 100 CH1→CH2 80 60 40 VDD = 3.0 V Ta = 25°C 20 RL = 1 MΩ CL = 20 pF 0 100 1k 10k 100k Frequency f (Hz) 1M 10M HA1630D04/05/06 Series Main Characteristics (HA1630D05) Figure 2-1. HA1630D05 Supply Current vs. Supply Voltage 800 Ta = 25°C Supply Current IDD (μA) Supply Current IDD (μA) 800 Figure 2-2. HA1630D05 Supply Current vs. Ambient Temperature 600 400 200 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.5 V VDD = 3.0 V VDD = 1.8 V 600 400 200 0 −40 6 6 Ta = 25°C VDD = 5.5 V 5 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C VDD = 3.0 V 5 RL = 100 kΩ RL = 20 kΩ 4 3 2 1 0 100 200 300 400 500 Output Source Current IOSOURCE (μA) Figure 2-5. HA1630D05 Output Source Current vs. Ambient Temperature 800 Output Source Current IOSOURCE (μA) 100 Figure 2-4. HA1630D05 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 2-3. HA1630D05 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) VDD = 5.5 V 600 VDD = 3.0 V VDD = 1.8 V 400 200 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 10 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630D04/05/06 Series Figure 2-7. HA1630D05 Output Sink Current vs. Ambient Temperature 10 1.5 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 2-6. HA1630D05 Output Low Voltage vs. Output Sink Current VDD = 5.5 V VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 0 0 2 4 6 Output Sink Current IOSINK (mA) VDD = 5.5 V VDD = 3.0 V 8 6 4 VDD = 1.8 V 2 0 −40 8 Figure 2-8. HA1630D05 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) VDD = 1.8 V, VIN = 0.5 V VDD = 3.0 V, VIN = 1.5 V 1 0 −1 VDD = 5.5 V, VIN = 2.75 V −2 −3 −4 −40 6 3.0 4 2 3 4 5 Supply Voltage VDD (V) Figure 2-11. HA1630D05 Common Mode Input Voltage vs. Ambient Temperature Figure 2-10. HA1630D05 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 2-9. HA1630D05 Input Offset Voltage vs. Supply Voltage 40 0 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 11 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630D04/05/06 Series Power Supply Rejection Ratio PSRR (dB) Figure 2-12. HA1630D05 Power Supply Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 2-13. HA1630D05 Common Mode Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Figure 2-14. HA1630D05 Open Loop Voltage Gain and Phase Angle vs. Frequency Open Loop Voltage Gain AVOL (dB) Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 80 60 90 40 Phase Angle 20 45 0 Phase Margin: 55 deg −45 −20 −40 10 0 100 1k 10k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 12 of 23 100k 1M −90 10M Phase Angle (deg) 225 100 HA1630D04/05/06 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 2-16. HA1630D05 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 2-15. HA1630D05 Input Bias Current vs. Ambient Temperature 25 50 75 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 Ta = 25°C VDD = 3.0 V 0 Figure 2-17. HA1630D05 Slew Rate (rising) vs. Ambient Temperature Slew Rate SRf (V/μs) Slew Rate SRr (V/μs) 2.5 3.0 10 VDD = 5.5 V 8 VDD = 3.0 V VDD = 1.8 V 4 2 0 −40 1.0 1.5 2.0 Input Voltage VIN (V) Figure 2-18. HA1630D05 Slew Rate (falling) vs. Ambient Temperature 10 6 0.5 −20 0 20 40 60 80 100 8 VDD = 5.5 V VDD = 3.0 V VDD = 1.8 V 6 4 2 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 2-19. HA1630D05 Large Signal Transient Response Figure 2-20. HA1630D05 Small Signal Transient Response 2.0 V VIN = 2.1 Vp-p, 500 kHz Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF 1.6 V VIN = 0.2 Vp-p, 500 kHz 0V 1.4 V 2.0 V 1.6 V 0V 1.4 V Rev.2.00 Feb 07, 2007 page 13 of 23 100 Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF HA1630D04/05/06 Series Figure 2-21. HA1630D05 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 2-22. HA1630D05 Total Harmonic Distortion + Noise vs. Output Voltage p-p f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 0.001 f = 10 kHz f = 1 kHz f = 100 Hz 1 0.1 0.01 V = 3.0 V DD Ta = 25°C Gain = 40 dB 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 Output Voltage Vout p-p (V) 1.0 1.5 2.0 2.5 3.0 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 2-23. HA1630D05 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V 3.0 2.5 Gain = 40 dB, VIN = 0.03 Vp-p Gain = 20 dB, VIN = 0.3 Vp-p 2.0 Gain = 0 dB, VIN = 2.0 Vp-p 1.5 1.0 0.5 0 1k 10k 100k Frequency f (Hz) Voltage Noise Density (nVms/√Hz) 200 VDD = 3.0 V Ta = 25°C Gain = 40 dB RS = 1 kΩ 160 120 80 40 0 100 1k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 14 of 23 10M Figure 2-25. HA1630D05 Channel Separation vs. Frequency 10k Channel Separation C.S (dB) Figure 2-24. HA1630D05 Voltage Noise Density vs. Frequency 1M 140 120 CH2→CH1 100 80 CH1→CH2 60 40 VDD = 3.0 V Ta = 25°C 20 RL = 1 MΩ CL = 20 pF 0 100 1k 10k 100k Frequency f (Hz) 1M 10M HA1630D04/05/06 Series Main Characteristics (HA1630D06) Figure 3-1. HA1630D06 Supply Current vs. Supply Voltage 1600 Ta = 25°C Supply Current IDD (μA) Supply Current IDD (μA) 1600 Figure 3-2. HA1630D06 Supply Current vs. Ambient Temperature 1200 800 400 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.5 V VDD = 3.0 V 1200 VDD = 1.8 V 800 400 0 −40 6 6 Ta = 25°C 5 VDD = 5.5 V 4 VDD = 3.0 V 3 VDD = 1.8 V 2 1 0 6 Ta = 25°C RL = 100 kΩ 5 RL = 20 kΩ 4 3 2 1 0 200 400 600 800 1000 Output Source Current IOSOURCE (μA) Figure 3-5. HA1630D06 Output Source Current vs. Ambient Temperature 1600 Output Source Current IOSOURCE (μA) 100 Figure 3-4. HA1630D06 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 3-3. HA1630D06 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) VDD = 5.5 V VDD = 3.0 V 1200 VDD = 1.8 V 800 400 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 15 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630D04/05/06 Series Figure 3-7. HA1630D06 Output Sink Current vs. Ambient Temperature 12 1.5 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 3-6. HA1630D06 Output Low Voltage vs. Output Sink Current VDD = 5.5 V VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 VDD = 5.5 V VDD = 3.0 V 10 8 6 4 VDD = 1.8 V 2 0 0 0.2 0.4 0.6 0.8 Output Sink Current IOSINK (mA) 0 −40 1.0 Figure 3-8. HA1630D06 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 3 VDD = 1.8 V, VIN = 0.5 V VDD = 3.0 V, VIN = 1.5 V 0 −1 VDD = 5.5 V, VIN = 2.75 V −2 −3 −4 −40 6 3.0 4 1 3 4 5 Supply Voltage VDD (V) Figure 3-11. HA1630D06 Common Mode Input Voltage vs. Ambient Temperature Figure 3-10. HA1630D06 Input Offset Voltage vs. Ambient Temperature 2 100 Figure 3-9. HA1630D06 Input Offset Voltage vs. Supply Voltage 40 0 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 16 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630D04/05/06 Series Power Supply Rejection Ratio PSRR (dB) Figure 3-12. HA1630D06 Power Supply Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 3-13. HA1630D06 Common Mode Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Figure 3-14. HA1630D06 Open Loop Voltage Gain and Phase Angle vs. Frequency Open Loop Voltage Gain AVOL (dB) Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 80 60 90 40 Phase Angle 20 45 0 Phase Margin: 65 deg −45 −20 −40 10 0 100 1k 10k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 17 of 23 100k 1M −90 10M Phase Angle (deg) 225 100 HA1630D04/05/06 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 3-16. HA1630D06 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 3-15. HA1630D06 Input Bias Current vs. Ambient Temperature 25 50 75 Ambient Temperature Ta (°C) 200 Ta = 25°C VDD = 3.0 V 100 0 −100 −200 100 Figure 3-17. HA1630D06 Slew Rate (rising) vs. Ambient Temperature 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 14 12 Slew Rate SRf (V/μs) Slew Rate SRr (V/μs) 0.5 Figure 3-18. HA1630D06 Slew Rate (falling) vs. Ambient Temperature 14 VDD = 5.5 V VDD = 3.0 V 10 VDD = 1.8 V 8 6 4 −40 0 −20 0 20 40 60 80 100 12 10 VDD = 5.5 V VDD = 3.0 V VDD = 1.8 V 8 6 4 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 3-19. HA1630D06 Large Signal Transient Response Figure 3-20. HA1630D06 Small Signal Transient Response 2.0 V VIN = 1.9 Vp-p, 500 kHz Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF 1.6 V VIN = 0.2 Vp-p, 500 kHz 0V 1.4 V 2.0 V 1.6 V 0V 1.4 V Rev.2.00 Feb 07, 2007 page 18 of 23 100 Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF HA1630D04/05/06 Series Figure 3-21. HA1630D06 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 3-22. HA1630D06 Total Harmonic Distortion + Noise vs. Output Voltage p-p f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 0.001 1 f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 V = 3.0 V DD Ta = 25°C Gain = 40 dB 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 Output Voltage Vout p-p (V) 1.0 1.5 2.0 2.5 3.0 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 3-23. HA1630D06 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V 3.0 2.5 Gain = 40 dB, VIN = 0.03 Vp-p Gain = 20 dB, VIN = 0.3 Vp-p 2.0 Gain = 0 dB, VIN = 2.0 Vp-p 1.5 1.0 0.5 0 1k 10k 100k Frequency f (Hz) Voltage Noise Density (nVms/√Hz) 200 VDD = 3.0 V Ta = 25°C Gain = 40 dB RS = 1 kΩ 160 120 80 40 0 100 1k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 19 of 23 10M Figure 3-25. HA1630D06 Channel Separation vs. Frequency 10k Channel Separation C.S (dB) Figure 3-24. HA1630D06 Voltage Noise Density vs. Frequency 1M 140 120 CH2→CH1 100 CH1→CH2 80 60 40 VDD = 3.0 V Ta = 25°C 20 RL = 1 MΩ CL = 20 pF 0 100 1k 10k 100k Frequency f (Hz) 1M 10M HA1630D04/05/06 Series Test Circuits 1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO VIO VDD VIO = VO − RF = 680 kΩ VDD 2 × RS R S + RF RS = 6.8 kΩ PSRR − + VO RS = 6.8 kΩ VDD PSRR = −20log 2 VDD1 − VDD2 VO1 − VO2 × RS R S + RF Measure VO corresponding to VDD1 = 2.95 V and VDD2 = 3.05 V 2. Supply Current, IDD 3. Input Bias Current, IIB VDD VDD A − + − + VDD VDD 2 2 4. Output High Voltage, VOH VOH VDD VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 VO VIN2 RL = 100 kΩ 5. Output Low Voltage, VOL VOL VDD VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V − + VIN1 RL = 100 kΩ VIN2 Rev.2.00 Feb 07, 2007 page 20 of 23 VO A HA1630D04/05/06 Series 6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK VDD IOSOURCE VO = VDD − 0.5 V VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 A IOSINK VIN2 VO = + 0.5 V VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V VO 7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR VDD CMRR RF = 680 kΩ RS = 6.8 kΩ VIN1 − VIN2 VO1 − VO2 CMRR = −20log − + VO RS = 6.8 kΩ × RS RS + RF Measure VO corresponding to VIN1 = 1.45 V and VIN2 = 1.55 V VDD VIN 2 RF = 680 kΩ 8. Total Harmonic Distortion, THD VDD THD RF Gain Variable RS − + VO Gain Variable RF / RS = 20log (100 kΩ / 1 kΩ) = 40 dB RF / RS = 20log (100 kΩ / 100 kΩ) = 0 dB freq = 100 Hz, 1 kHz, 10 kHz 30 kHz LPF ON VIN VSS 9. Slew Rate, SR 10. Gain, AV & Phase, GBW VDD VDD RF = 680 kΩ RS = 6.8 kΩ − + VO 1 MΩ − + 20 pF VSS Rev.2.00 Feb 07, 2007 page 21 of 23 VO 1 MΩ RS = 6.8 kΩ VSS 20 pF HA1630D04/05/06 Series Package Dimensions JEITA Package Code P-TSSOP8-4.4x3-0.65 RENESAS Code PTSP0008JC-B *1 Previous Code TTP-8DAV MASS[Typ.] 0.034g D F 8 5 NOTE) 1. DIMENSIONS"*1 (Nom)"AND"*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. c HE *2 E bp Terminal cross section ( Ni/Pd/Au plating ) Reference Dimension in Millimeters Symbol Index mark L1 1 4 e *3 bp x M θ A1 A Z L Detail F y Package Name MMPAK-8 JEITA Package Code P-LSOP8-2.8 x 2.95 - 0.65 RENESAS Code PLSP0008JC-A Previous Code ⎯ 0.13 +0.12 -0.03 0.6 0 to 0.1 0.65 0.1 M 0.3 1.1 ± 0.1 1.95 0.1 Rev.2.00 Feb 07, 2007 page 22 of 23 0.2 +0.1 -0.05 Min Nom Max 3.00 3.30 4.40 0.03 0.07 0.10 1.10 0.15 0.20 0.25 0.10 0.15 0.20 0° 8° 6.20 6.40 6.60 0.65 0.13 0.10 0.805 0.40 0.50 0.60 1.00 Unit: mm 2.8 ± 0.1 4.0 ± 0.3 2.95 ± 0.2 MASS[Typ.] 0.02 g D E A2 A1 A bp b1 c c1 θ HE e x y Z L L1 HA1630D04/05/06 Series Taping & Reel Specification [Taping] W 12 12 P 8 4.0 Ao 6.9 3.15 Bo 3.6 4.35 Ko 1.7 — E 1.75 — F 5.5 5.5 4.0 φ 1.5 2.0 D1 1.5 1.05 Maximum Storage No. 3,000 pcs/reel 3,000 pcs/reel Unit: mm 1.75 Package Code TSSOP-8 MMPAK-8 Cover Tape W B0 F A0 K0 D1 P Tape withdraw direction Tape width 12 12 W1 17.4 17.0 W2 13.4 13.0 A 330 178 φA [Reel] Package TSSOP-8 MMPAK-8 φ13.0 ± 0.5 W1 [Ordering Information] Ordering Unit 3,000 pcs 2.0 2.0 W2 Mark Indication TSSOP-8 MMPAK-8 Product Name 0D04: HA1630D04 0D05: HA1630D05 0D06: HA1630D06 0 D 0 4 D 0 4 Product Name D04: HA1630D04 D05: HA1630D05 D06: HA1630D06 Trace Code Trace Code Rev.2.00 Feb 07, 2007 page 23 of 23 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes: 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document. 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples. 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations. 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com ) 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document. 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products. 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above. 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems (2) surgical implantations (3) healthcare intervention (e.g., excision, administration of medication, etc.) (4) any other purposes that pose a direct threat to human life Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications. 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges. 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment. 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas. 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 © 2007. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .7.0