BVDSS = 600 V RDS(on) typ = 9.5 Ω HFC1N60 ID = 0.5 A 600V N-Channel MOSFET TO-126 FEATURES 1 Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology 2 3 1.Gate 2. Drain 3. Source Very Low Intrinsic Capacitances Excellent Switching Characteristics Unrivalled Gate Charge : 4.0 nC (Typ.) Extended Safe Operating Area Lower RDS(ON) : 9.5 Ω (Typ.) @VGS=10V 100% Avalanche Tested Absolute Maximum Ratings Symbol TC=25℃ unless otherwise specified Parameter Value Units 600 V VDSS Drain-Source Voltage ID Drain Current – Continuous (TC = 25℃) 0.5 A Drain Current – Continuous (TC = 100℃) 0.35 A IDM Drain Current – Pulsed 2.0 A VGS Gate-Source Voltage ±30 V EAS Single Pulsed Avalanche Energy (Note 2) 50 mJ IAR Avalanche Current (Note 1) 0.5 A EAR Repetitive Avalanche Energy (Note 1) 0.75 mJ dv/dt Peak Diode Recovery dv/dt (Note 3) 5.5 V/ns PD Power Dissipation (TA = 25℃) * 2.0 W Power Dissipation (TC = 25℃) - Derate above 25℃ 7.5 W 0.06 W/℃ -55 to +150 ℃ 300 ℃ (Note 1) TJ, TSTG Operating and Storage Temperature Range TL Maximum lead temperature for soldering purposes, 1/8” from case for 5 seconds Thermal Resistance Characteristics Symbol Parameter Typ. Max. RθJC Junction-to-Case -- 17 RθJA Junction-to-Ambient -- 62.5 Units ℃/W ◎ SEMIHOW REV.A0,Sep 2006 HFC1N60 Sep 2006 Symbol Parameter unless otherwise specified Test Conditions Min Typ Max Units On Characteristics VGS RDS(ON) Gate Threshold Voltage VDS = VGS, ID = 250 ㎂ 2.5 -- 4.5 V Static Drain-Source On-Resistance VGS = 10 V, ID = 0.25 A -- 9.5 12 Ω 600 -- -- V ID = 250 ㎂, Referenced to25℃ -- 0.65 -- V/℃ VDS = 600 V, VGS = 0 V -- -- 1 ㎂ VDS = 480 V, TC = 125℃ -- -- 10 ㎂ Off Characteristics BVDSS Drain-Source Breakdown Voltage ΔBVDSS Breakdown Voltage Temperature Coefficient /ΔTJ IDSS Zero Gate Voltage Drain Current VGS = 0 V, ID = 250 ㎂ IGSSF Gate-Body Leakage Current, Forward VGS = 30 V, VDS = 0 V -- -- 100 ㎁ IGSSR Gate-Body Leakage Current, Reverse VGS = -30 V, VDS = 0 V -- -- -100 ㎁ -- 155 200 ㎊ -- 24 31 ㎊ -- 6.0 7.5 ㎊ -- 12 30 ㎱ -- 40 140 ㎱ -- 20 60 ㎱ -- 30 80 ㎱ -- 4.0 5.5 nC -- 1.0 -- nC -- 2.0 -- nC Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance VDS = 25 V, VGS = 0 V, f = 1.0 MHz Switching Characteristics td(on) Turn-On Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd VDS = 300 V, ID = 0.9 A, RG = 25 Ω (Note 4,5) VDS = 480 V, ID = 0.9 A, VGS = 10 V (Note 4,5) Gate-Drain Charge Source-Drain Diode Maximum Ratings and Characteristics IS Continuous Source-Drain Diode Forward Current -- -- 0.5 ISM Pulsed Source-Drain Diode Forward Current -- -- 2.0 VSD Source-Drain Diode Forward Voltage IS = 0.5 A, VGS = 0 V -- -- 1.4 V trr Reverse Recovery Time -- 160 -- ㎱ Qrr Reverse Recovery Charge IS = 0.9 A, VGS = 0 V diF/dt = 100 A/μs (Note 4) -- 0.45 -- μC A Notes ; 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L=115mH, IAS=0.9A, VDD=50V, RG=25Ω, Starting TJ =25°C 3. ISD≤0.5A, di/dt≤300A/μs, VDD≤BVDSS , Starting TJ =25 °C 4. Pulse Test : Pulse Width ≤ 300μs, Duty Cycle ≤ 2% 5. Essentially Independent of Operating Temperature ◎ SEMIHOW REV.A0,Sep 2006 HFC1N60 Electrical Characteristics TC=25 °C HFC1N60 Typical Characteristics Figure 1. On Region Characteristics Figure 2. Transfer Characteristics Figure 3. On Resistance Variation vs Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature 12 Ciss Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd Capacitances [pF] 200 150 Coss 100 ※ Note ; 1. VGS = 0 V 2. f = 1 MHz Crss 50 VGS, Gate-Source Voltage [V] 250 VDS = 120V 10 VDS = 300V 8 VDS = 480V 6 4 2 * Notes : ID = 0.9 A 0 -1 10 0 0 10 1 10 0 1 2 3 4 VDS, Drain-Source Voltage [V] QG, Total Gate Charge [nC] Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics 5 ◎ SEMIHOW REV.A0,Sep 2006 HFC1N60 Typical Characteristics (continued) Figure 8. On-Resistance Variation vs Temperature Figure 7. Breakdown Voltage Variation vs Temperature 1 0.6 10 ID, Drain Current [A] 0.5 100 µs 0 10 1 ms 10 ms DC -1 10 0.4 0.3 0.2 ※ Notes : o 1. TC = 25 C o 2. TJ = 150 C 3. Single Pulse 0.1 0.0 25 -2 10 0 10 1 2 10 3 10 10 50 75 Figure 9. Maximum Safe Operating Area 1 10 100 125 150 TC, Case Temperature [ ℃] VDS, Drain-Source Voltage [V] Zθ JC(t), Thermal Response ID, Drain Current [A] Operation in This Area is Limited by R DS(on) Figure 10. Maximum Drain Current vs Case Temperature D=0.5 0.2 0.1 0 ※ Notes : 1. Zθ JC(t) = 17 ℃/W Max. 2. Duty Factor, D=t1/t2 3. TJM - TC = PDM * Zθ JC(t) 0.05 10 0.02 0.01 single pulse PDM -1 10 t1 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 t2 1 10 2 10 t1, Square Wave Pulse Duration [sec] Figure 11. Transient Thermal Response Curve ◎ SEMIHOW REV.A0,Sep 2006 (continued) 1.2 3.0 RDS(ON), (Normalized) Drain-Source On-Resistance BVDSS, (Normalized) Drain-Source Breakdown Voltage HFC1N60 Typical Characteristics 1.1 1.0 ※ Note : 1. VGS = 0 V 2. ID = 250 μA 0.9 0.8 -100 -50 0 50 100 150 2.5 2.0 1.5 1.0 ※ Note : 1. VGS = 10 V 2. ID = 0.7 A 0.5 0.0 -100 200 -50 100 150 TJ, Junction Temperature [ C] Figure 7. Breakdown Voltage Variation vs Temperature Figure 8. On-Resistance Variation vs Temperature 200 0.6 1 Operation in This Area is Limited by R DS(on) ID, Drain Current [A] 0.5 100 µs 0 10 1 ms 10 ms DC -1 10 ※ Notes : o 1. TC = 25 C o 2. TJ = 150 C 3. Single Pulse -2 0 10 0.4 0.3 0.2 0.1 1 2 10 0.0 25 3 10 10 50 Figure 9. Maximum Safe Operating Area 1 10 75 100 125 150 TC, Case Temperature [ ℃] VDS, Drain-Source Voltage [V] Zθ JC(t), Thermal Response ID, Drain Current [A] 50 TJ, Junction Temperature [ C] 10 10 0 o o Figure 10. Maximum Drain Current vs Case Temperature D=0.5 0.2 0.1 0 ※ Notes : 1. Zθ JC(t) = 17 ℃/W Max. 2. Duty Factor, D=t1/t2 3. TJM - TC = PDM * Zθ JC(t) 0.05 10 0.02 0.01 single pulse PDM -1 10 t1 t2 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 t1, Square Wave Pulse Duration [sec] Figure 11. Transient Thermal Response Curve ◎ SEMIHOW REV.A0,Sep 2006 HFC1N60 Fig 12. Gate Charge Test Circuit & Waveform 50KΩ 12V VGS Same Type as DUT Qg 200nF 10V 300nF VDS VGS Qgs Qgd DUT 3mA Charge Fig 13. Resistive Switching Test Circuit & Waveforms RL VDS VDS 90% VDD RG ( 0.5 rated VDS ) Vin DUT 10V 10% tr td(on) td(off) t on tf t off Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD L VDS VDD ID BVDSS IAS RG 10V ID (t) DUT VDS (t) VDD tp Time ◎ SEMIHOW REV.A0,Sep 2006 HFC1N60 Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT + VDS _ IS L Driver RG VGS VGS ( Driver ) Same Type as DUT VDD • dv/dt controlled by RG • IS controlled by pulse period Gate Pulse Width D = -------------------------Gate Pulse Period 10V IFM , Body Diode Forward Current IS ( DUT ) di/dt IRM Body Diode Reverse Current VDS ( DUT ) Body Diode Recovery dv/dt Vf VDD Body Diode Forward Voltage Drop ◎ SEMIHOW REV.A0,Sep 2006 HFC1N60 Package Dimension TO-126 8.5max 0.2 12max 3.8±0.2 φ 2.8max ± 3.2 13max 1.2±0.2 2.5±0.2 1.27typ 0.78±0.08 2.3max 0.5±0.1 2.3max ◎ SEMIHOW REV.A0,Sep 2006