INTERSIL HI3197

HI3197
Data Sheet
October 1998
10-Bit, 125 MSPS D/A Converter
• Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Bits
• Conversion Rate
HI3197JCQ
-20 to 75
125 MSPS (PECL)
100 MSPS (TTL)
• Data Input Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TTL
• Low Power Consumption . . . . . . . . . . . . . . . 400mW (Typ)
• Low Glitch Energy . . . . . . . . . . . . . . . . . . . . . . . . 1.5pV•s
• Clock, Reset Input Level: TTL and PECL Compatible 2:1
Multiplexed Input Function
• 1/2 Frequency-Divided Clock Output Possible by the BuiltIn Clock Frequency Divider Circuit
Ordering Information
PART NUMBER
4356.1
Features
The HI3197 is a high-speed D/A converter which can
perform the multiplexed input of the two system 10-bit data.
The maximum conversion rate achieves 125 MSPS. The
multiplexed operation is possible by the 1/2 frequencydivided clock or by halving the frequency of the clock with
the clock frequency divider circuit having the reset pin in
the IC. The data input is TTL; the clock input pin and reset
input pin can select either TTL or PECL according to the
application.
TEMP.
RANGE (oC)
File Number
• Voltage Output (50Ω Load Drive Possible)
PACKAGE
PKG. NO.
48 Ld MQFP/
PQFP
Q48.7x7-S
• Single Power Supply or ±Dual Power Supplies
• Polarity Switching Function of Reset Signal
Applications
• LCD
• DDS
• HDTV
• Communications (QPSK, QAM)
Pinout
DGND2
C3
C2
C1
AVCC0
DVCC2
AOUTN
VREF
AGND2
AOUTP
PS
41
20
DVCC1
42
43
19
CLKN/E
CLKP/E
CLK/T
18
DIV2OUT
44
17
45
16
DIV2IN
DB0 (LSB)
46
15
DB1
47
48
14
DB2
13
9 10 11 12
DB3
DA7
DA6
1
2
3
DA3
DA2
(MSB) DA9
DA8
DA4
DGND1
DA5
NC
4
5
6
7
8
DB4
21
DB5
RESET/T
40
DB7
DB6
RESETP/E
22
(MSB) DB9
DB8
23
VOCLP
DA1
RESETN/E
38
39
37
(LSB) DA0
36 35 34 33 32 31 30 29 28 27 26 25
24
AGND2
R POLARITY
INV
1
VSET
AVCC2
HI3197 (MQFP)
TOP VIEW
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999
HI3197
Block Diagram
VREF
34
VSET
BGR
35
CURRENT
CONT.
+
-
36
AVCC2
30
AVCC0
32
AOUTP
31
AOUTN
37
AGND2
33
AGND2
18
DIV2OUT
AGND2
DVCC1 42
DVCC2 29
D/A
10-BIT
DA0 TO DA9
1 TO 6
45 TO 48
10-BIT
RO = 50Ω
INPUT LATCH
10-BIT
LATCH
MUX
10-BIT
DB0 TO DB9
7 TO 16
10-BIT
10-BIT
INPUT LATCH
AGND2
D
DIV2IN 17
Q
Q
CLK/T 19
CLKP/E 20
CLKN/E 21
RESET/T 22
RESETP/E 23
RESETN/E 24
R POLARITY 39
2
44
25
26
27
28
41
40
38
DGND1
DGND2
C1
C2
C3
PS
INV
VOCLP
HI3197
Pin Descriptions and I/O Pin Equivalent Circuits
PIN NO
SYMBOL
I/O
1 to 6
45 to 48
DA0 to DA9
I
7 to 16
DB0 to DA9
TYPICAL
VOLTAGE
LEVEL
EQUIVALENT CIRCUIT
DESCRIPTION
TTL
Side A Data Input.
DVCC1
I
TTL
Side B Data Input.
1
6
TO
45 TO 48
VREF
7
TO 16
DGND1
17
DIV2IN
I
TTL
1/ Frequency-Divided Clock Input.
2
Use this pin for MUX.1A or MUX.2
mode. Leave open for other modes.
DVCC1
17
VREF
DGND1
18
DIV2OUT
O
TTL
DVCC1
1/ Frequency-Divided Clock Out2
put. The signal with the 1/2 fre-
quency divided clock (DIV2OUT) is
output for MUX.1A mode. Leave
open for other modes.
18
DGND1
19
CLK/T
I
TTL
Clock Input. Use this pin when the
clock is input in the TTL level. At
this time, leave Pins 20 and 21
open.
DVCC1
19
VREF
DGND1
20
CLKP/E
I
PECL
21
CLKN/E
I
PECL
DVCC1
20
21
DGND1
3
Clock Input. Use this pin when the
clock is input in PECL level. At this
time, leave Pin 19 open.
CLKP/E Complementary Input.
When left open, this pin goes to
the threshold potential. Operation
is possible only with CLKP/E, but
complementary input is recommended to attain fast and stable
operation.
HI3197
Pin Descriptions and I/O Pin Equivalent Circuits
PIN NO
SYMBOL
I/O
22
RESET/T
I
TYPICAL
VOLTAGE
LEVEL
TTL
(Continued)
EQUIVALENT CIRCUIT
DESCRIPTION
DVCC1
VREF
22
DGND1
23
RESETP/E
I
PECL
24
RESETN/E
I
PECL
DVCC1
23
24
Reset signal input. When the multiple HI3197 are operated at a time
for MUX.1A or MUX.1B mode, the
start timing of the internal 1/2 frequency divider circuits should be
matched.
At this time, the reset signal is
used; when the reset signal is the
TTL level, Pin 22 is used and Pins
23 and 24 are left open. When the
reset signal is the PECL level, Pins
23 and 24 are used and Pin 22 is
left open. For the PECL level, operation is possible only with RESETP/E as with the case for the
clock. The reset signal polarity can
be set by Pin 39 (RPOLARITY).
Leave the reset pin open when the
other modes are used.
DGND1
25
DGND2
Single Power
Supply: GND Dual
Power Supplies:
-5V
26
C1
I
TTL
27
C2
I
TTL
28
C3
I
TTL
Digital Power Supply.
Function setting.
DVCC1
26
VREF
27
28
DGND1
29
DVCC2
30
AVCC0
31
OUTN
Single Power
Supply: +5V Dual
Power Supplies:
GND
Digital Power Supply.
Analog Output Power Supply.
O
AVCC0
AVCC0 - VFS
RO
RO
31
32
32
AOUTP
O
AVCC0 - VFS
D/A Negative Output. The inversion
of the D/A positive output pin is output. Terminate the inversion without
pin with 50Ω when the inversion output is not used and the positive output is terminated with 50Ω.
D/A positive output.
AGND2
33
AGND2
Single Power
Supply: GND
Dual Power
Supplies: -5V
4
Analog Ground.
HI3197
Pin Descriptions and I/O Pin Equivalent Circuits
PIN NO
SYMBOL
I/O
34
VREF
O
TYPICAL
VOLTAGE
LEVEL
(Continued)
EQUIVALENT CIRCUIT
AGND +1.2V
DESCRIPTION
Analog Reference Voltage Output.
AVCC2
34
AGND2
35
VSET
I
AGND2 + 0.7V to
AGND2 + 1.03V
Full scale adjustment.
AVCC2
35
36
AVCC2
Single Power
Supply: +5V
Dual Power
Supplies: GND
Analog Power Supply.
37
AGND2
Single Power
Supply: GND
Dual Power
Supplies: -5V
Analog Power Supply
38
VOCLP
I
Clamp Voltage
DVCC1
38
TTL Output High Level Clamp. The
TTL level signal is output from the
DIV2OUT pin for MUX.1A mode.
The TTL high level voltage is
clamped to the value approximately equivalent to the voltage supplied to this pin. Leave the VOCLP
pin open for other modes.
DGND1
39
P Polarity
I
TTL
Reset signal polarity switching. At
high level, the reset polarity is active high; at low level, active low.
DVCC1
39
DGND1
5
VREF
HI3197
Pin Descriptions and I/O Pin Equivalent Circuits
PIN NO
SYMBOL
I/O
40
INV
I
TYPICAL
VOLTAGE
LEVEL
(Continued)
EQUIVALENT CIRCUIT
DESCRIPTION
TTL
Analog Output polarity inversion.
The analog output is inverted at low
level.
DVCC1
40
VREF
DGND1
41
PS
I
TTL
DVCC1
Power saving. Power saving at low
level. Normally pull up the PS pin
to high level as this pin is open low.
41
DGND1
42
DVCC1
43
NC
44
DGND1
5V
Digital Power Supply.
No connection.
0V
6
Digital Ground.
HI3197
Absolute Maximum Ratings
TA = 25oC
Thermal Information
Supply Voltage (AVCC0 , AVCC2 , DVCC2) . . . . . . . . . . -0.5 to +7.0V
AGND2, DGND2 . . . . . . . . . . . . . . . . . . . . . . . . . . . -7.0 to +0.5V
DVCC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7.0V
AVCC2 - AGND2. . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7.0V
AVCC0 - AGND2. . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7.0V
DVCC2 - DGND2 . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7.0V
Input Voltage
VSET, . . . . . . . . . . . . . . . . . . . . . . . . AGND2 -05 to AVCC2 + 0.5V
TTL Pin . . . . . . . . . . . . . . . . . . . . . DGND1 -0.5 to DVCC1 + 0.5V
PECL Pin, . . . . . . . . . . . . . . . . . . . DGND1 -0.5 to DVCC1 + 0.5V
PS. . . . . . . . . . . . . . . . . . . . . . . . . . DGND1 -0.5 to DVCC1 + 0.5V
(Others), VOCLP . . . . . . . . . . . . . . . . . DGND1 -0.5 to DVCC1 + 5V
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
MQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
Maximum Power Dissipation, PD . . . . . . . . . . . . . . . . . . . . . . . .1.4W
(When mounted on a glass fabric base epoxy board with 76mm x
114mm, 1.6mm thick)
Maximum Junction Temperature (Hermetic Package or Die) . . .175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range, TSTG . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300oC
Recommended Operating Conditions
WITH A SINGLE POWER SUPPLY
Supply Voltage
AVCC0 , AVCC2 . . . . . . . . . . . . . . . . . . . . .
AGND2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
DVCC1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
DGND1. . . . . . . . . . . . . . . . . . . . . . . . . . .
DVCC2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
DGND2. . . . . . . . . . . . . . . . . . . . . . . . . . .
MIN
TYP
MAX
+4.75
-0.05
+4.75
-0.05
-4.75
-0.05
+5.0
0
+5.0
0
+5.0
0
+5.25V
+0.05V
+5.25V
+0.05V
+5.25V
+0.05V
Recommended Operating Conditions
WITH DUAL POWER SUPPLIES
Supply Voltage
AVCC0 , AVCC2 . . . . . . . . . . . . . . . . . . . . .
AGND2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
DVCC1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
DGND1. . . . . . . . . . . . . . . . . . . . . . . . . . .
DVCC2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
DGND2. . . . . . . . . . . . . . . . . . . . . . . . . . .
MIN
TYP
MAX
-0.05
-5.50
4.75
-0.05
-0.05
-5.50
0
-5.0
5.0
0
0
-5.0
+0.05V
-4.75V
+5.25V
+0.05V
+0.05V
-4.75V
(Applying to Single and Dual Power Supplies)
MIN
TYP
MAX
AGND2 + 1.03V
Analog Input Voltage, VSET . . .AGND2 + 0.7
Digital Input Voltage
PECL, VIH . . . . . . . . . . . . . . .DGND1 + 2.6
DVCC1
PECL, VIL . . . . . . . . . . . . . . .
VIH - 0.8 VIH - 0.4V
TTL, VIH . . . . . . . . . . . . . . . . .DGND1 + 2.0
TTL, VIL . . . . . . . . . . . . . . . . .
DGND1 + 0.8V
PS, VIH. . . . . . . . . . . . . . . . . .DGND1 + 2.0
PS, VIL . . . . . . . . . . . . . . . . . .
DGND1 + 0.8V
Other, VOCLP . . . . . . . . . . . .DGND1 + 2.7
DVCC1
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . -20oC to 75oC
Clock Pulse Width
tPW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4ns (Min)
tPW0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4ns (Min)
Load Resistance, RL . . . . . . . . . . . . . . . . . .
Analog Output Full Scale Voltage
RL ≥ 10kΩ, VFS . . . . . . . . . . . . . . . . . . . . .
RL = 50Ω, VFS . . . . . . . . . . . . . . . . . . . . . .
MIN
50
TYP
50
MAX
≥10kΩ
1.5
0.75
2.0
1.0
2.2V
1.2V
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
VSUPPLY = ±5V, AV = +1, RL = 100Ω
Electrical Specifications
PARAMETER
SYMBOL
Resolution
TEST CONDITIONS
n
Maximum Conversion Rate
MIN
TYP
MAX
UNITS
-
10
-
Bit
fCECL
PECL Operation
-
-
125
MSPS
fCTTL
TTL Operation
-
-
100
MSPS
VFS = 1V
-
-
±1.2
LSB
-
-
-0.85 to 0.5
LSB
Integral Linearity Error
INL
Differential Linearity Error
DNL
DNL
AOUTP Transitions from
0000111111 - 0001000000
-
-
-1.2 to 0.5
LSB
DNL
AOUTN Transitions from
1111000000 - 1110111111
-
-
-1.2 to 0.5
LSB
Output Full-Scale Voltage
VFS
RL = 50Ω
0.75
1
1.05
V
RL ≥ 10kΩ
1.5
2.0
2.2
V
Compliance Voltage
VOC(MIN): (AVCC0-VFS - DVCC2) ≥ -2.V,
VOC(MAX): (AVCC0-VOF - DVCC2) ≥ 1.5
VOC
Measured to DVCC2
-2.1
-
1.5
V
ANALOG OUTPUT
7
HI3197
VSUPPLY = ±5V, AV = +1, RL = 100Ω (Continued)
Electrical Specifications
PARAMETER
SYMBOL
Output Zero Offset Voltage
VOF
TEST CONDITIONS
MIN
TYP
MAX
UNITS
RL ≥ 10kΩ,
VSET = AGND2 + 0.9375V
0
-
20
mV
RL = 50Ω,
VSET = AGND2 + 0.9375V
0
-
10
mV
Output Resistance
RO
-
50
-
Ω
Output Capacitance
CO
-
10
-
pF
VSET = AGND2 + 0.9375V
-4
-
4
% of FS
VFS = 1V at 25oC
-
-
60
ppm/ oC
0.85
-
1.05
ns
Absolute Amplitude Error
EG
Absolute Amplitude Error
Temperature Characteristics
TCG
Analog Output Rise Time
tr
Analog Output Fall Time
tf
RL = 50Ω, VFS = 1V,
10 - 90%
0.75
-
0.85
ns
Settling Time
tSET
-
-
3.5
ns
Glitch Energy
GE
-
1.5
5.0
pVS
REFERENCE
VREF Pin Voltage
VREF
IREF = 1mA
VREF Temperature Drift
AGND2+1.18 AGND2+1.25 AGND2+1.32
-
VREF Multiplying Bandwidth
100mVP-P Sinewave at -3dB
Digital Input (TTL Pin)
Digital Output (DIV2OUT TTL Pin)
Digital Input (PECL Pin)
Digital Input Current (PS)
Clamp Pin Input Current (VOCLP)
Digital Input Capacitance
-
V
250
ppm/ oC
50
-
-
MHz
VIH
2
-
-
V
VIL
-
-
0.8
V
VTH
-
1.5
-
V
IIH
VIH = 3.5V
-1
-
1
µA
IIL
VIL = 0.2V
-2
-
0
µA
VOH
IOH = -2mA
2.4
-
-
V
VOL
IOL = 1mA
-
-
0.5
V
IOZ
VO = 5V
10
-
100
µA
IOZ
VO = 0V
-1
-
1
µA
tr
0.8 to 2.4V (CL = 10pF)
1.0
-
1.5
ns
tf
2.4 to 0.8V (CL = 10pF)
0.6
-
1.2
ns
VIH
DVCC1 - 1.5
-
DVCC1 - 0.5
V
VIL
DVCC1 - 3.2
-
DVCC1 - 1.4
V
IIH
VIH = DVCC1 - 0.8V
0
-
20
µA
IIL
VIL = DVCC1 - 1.5V
-30
-
0
µA
VIH
2
-
-
V
VIL
-
-
0.8
V
IIH
VIH = 3.5V
-1
-
100
µA
IIL
VIL = 0.2V
-1
-
0
µA
ICCLP
VCCLP = DVCC1
ICCLP
VCCLP = 2.4V
CIN
-
-
5
µA
-60
-
-10
µA
-
3
5
pF
CURRENT CONSUMPTION
Supply Current (Operating)
ICC
8
63
96
129
mA
DICC1
Total Operating
7
15.5
24
mA
DICC2
13
19
25
mA
AICC2
6
8.5
11
mA
AICC0
37
53
68
mA
HI3197
VSUPPLY = ±5V, AV = +1, RL = 100Ω (Continued)
Electrical Specifications
PARAMETER
SYMBOL
Supply Current (PS Mode)
NOTE: The current consumption in power
saving mode does not include the voltage
reference (VREF) current. When using the internal reference the additional current IREF =
VREF / RREF should be added to the table
values for an accurate estimate of total
standby current.
AC Specifications
TEST CONDITIONS
MIN
TYP
MAX
UNITS
ICC
Power Saving Mode
-
0.432
4
mA
DICC1
Power Saving Mode
-
0.38
1.5
mA
DICC2
Power Saving Mode
-
0.001
0.2
mA
AICC2
Power Saving Mode
-
0.05
0.3
mA
AICC0
Power Saving Mode
-
0.001
2
mA
MUX.1A and MUX.1B Modes
CLK SIGNAL LEVEL
PECL
RESET SIGNAL LEVEL
PARAMETER
SYMBOL
TTL
PECL
CONDITIONS
PECL
TTL
TTL
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
fC
125
-
-
100
-
-
125
-
-
MSPS
Clock High Pulse Width
tPW1
3.5
-
-
4.5
-
-
3.5
-
-
ns
Clock Low Pulse Width
tPW0
3.5
-
-
3.0
-
-
3.5
-
-
ns
MUX.1A MODE
Maximum Conversion Rate
Reset Signal Setup Time
tS-RST
0
-
-
1.0
-
-
4.0
-
-
ns
Reset Signal Hold Time
tH-RST
1.0
-
-
3.0
-
-
0
-
-
ns
DIV2OUT Output Delay
tD-DIV
5.5
6.5
8
8.0
9.5
12.0
5.5
6.5
8
ns
DIV2OUT to DIV2IN Maximum
Delay Time
2T-tm
-
-
2T - 7
-
-
2T - 7
-
-
2T - 7
ns
tS
1.0
-
-
1.0
-
-
1.0
-
-
ns
tH
5.0
-
-
5.0
-
-
5.0
-
-
ns
tPD (A)
-
4
-
-
4
-
-
4
-
CLK
Data Input Setup Time
Data Input Hold Time
Analog Output Pipeline Delay
CL = 10pF
tPD (B)
-
5
-
-
5
-
-
5
-
CLK
tDO
5.0
5.5
6.0
6.5
7.5
8.5
5.0
5.5
6.0
ns
fC
125
-
-
100
-
-
125
-
-
MSPS
Clock High Pulse Width
tPW1
3.5
-
-
4.5
-
-
3.5
-
-
ns
Clock Low Pulse Width
tPW0
3.5
-
-
3.0
-
-
3.5
-
-
ns
Analog Output Delay
MUX.1B MODE
Maximum Conversion Rate
Reset Signal Setup Time
tS-RST
0
-
-
1.0
-
-
4.0
-
-
ns
Reset Signal Hold Time
tH-RST
1.0
-
-
3.0
-
-
0
-
-
ns
Data Input Setup Time
tS
1.0
-
-
1.0
-
-
1.0
-
-
ns
Data Input Hold Time
tH
4.0
-
-
6.0
-
-
4.0
-
-
ns
Analog Output Pipeline Delay
tPD (A)
-
2
-
-
2
-
-
2
-
CLK
tPD (B)
-
3
-
-
3
-
-
3
-
CLK
tDO
5.0
5.5
6.0
6.5
7.5
8.5
5.0
5.5
6.0
ns
Analog Output Delay
AC Specifications
MUX.2, SEL.A, and SEL.B Modes
CLK SIGNAL LEVEL
PECL
RESET SIGNAL LEVEL
PARAMETER
SYMBOL
CONDITIONS
TTL
(NOTE 2)
(NOTE 2)
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
fC
125
-
-
100
-
-
MSPS
Clock High Pulse Width
tPW1
3.5
-
-
4.5
-
-
ns
Clock Low Pulse Width
tPW0
3.5
-
-
3.0
-
-
ns
DIV2IN Signal Setup Time
tS-DIV
4.5
-
-
2.0
-
-
ns
MUX.2 MODE
Maximum Conversion Rate
9
HI3197
AC Specifications
MUX.2, SEL.A, and SEL.B Modes
CLK SIGNAL LEVEL
PECL
RESET SIGNAL LEVEL
PARAMETER
SYMBOL
DIV2IN Signal Hold Time
Data Input Setup Time
Data Input Hold Time
Analog Output Pipeline Delay
CONDITIONS
TTL
(NOTE 2)
MIN
TYP
(NOTE 2)
MAX
MIN
TYP
MAX
UNITS
tH-DIV
0
-
-
3.5
-
-
ns
tS
1.0
-
-
1.0
-
-
ns
tH
5.0
-
-
5.0
-
-
ns
tPD (A)
-
2
-
-
2
-
CLK
tPD (B)
-
3
-
-
3
-
CLK
tDO
5.0
5.5
6.0
6.5
7.5
8.5
ns
fC
125
-
-
100
-
-
MSPS
Clock High Pulse Width
tPW1
3.5
-
-
4.5
-
-
ns
Clock Low Pulse Width
tPW0
3.5
-
-
3.0
-
-
ns
C2 Signal Setup Time
tS-C2
1.0
-
-
1.0
-
-
ns
C2 Signal Hold Time
tH-C2
2.5
-
-
3.5
-
-
ns
Data Input Setup Time
tS
1.0
-
-
1.5
-
-
ns
Data Input Hold Time
tH
2.0
-
-
3.5
-
-
ns
tPD (A)
-
1
-
-
1
-
CLK
tPD (B)
-
1
-
-
1
-
CLK
tDO
5.0
5.5
6.0
6.5
7.5
8.5
ns
Analog Output Delay
SEL. A, SEL. B MODES
Maximum Conversion Rate
Analog Output Pipeline Delay
Analog Output Delay
NOTE:
2. The RESET signal is not input in MUX.2, SEL. A, or SEL. B modes.
Electrical Characteristics Measurement Circuits
+5V
DVCC1
10
DGND1
DVCC2
AVCC2
AVCC0
DA0
TO
DA9
AOUTP
50Ω
10-BIT DATA INPUT
10
HI3197
DB0
TO
DB9
DVM
(DIGITAL VOLTMETER)
AOUTN
50Ω
VSET
CLK/T
937.5mV
1MHz TTL CLK
C1
C2
C3
DGND2
AGND2
PC
-5V
-5V
+5V
FIGURE 1. DIFFERENTIAL LINEARITY ERROR, INTEGRAL LINEARITY ERROR
10
HI3197
Electrical Characteristics Measurement Circuits
(Continued)
+5V
I1
I2
I3
ICC = I1 + I2 + I3 + I4
DICC1 = I1
DICC2 = I2
ALCC2 = I3
ALCC0 = I4
I4
DVCC1 DVCC2 AVCC2 AVCC0
HIGH FOR ALL SIDE A DATA
10
DA0
TO
DA9
AOUTP
10
DB0
TO
DB9
AOUTN
LOW FOR ALL SIDE B DATA
HI3197
VSET
CLK/T
1MHz TTL CLK
+5V
937.5mV
DIV2IN
DIV2OUT
DGND1
DGND2
AGND2
PS
C1 C2 C3
FIGURE 2. CURRENT CONSUMPTION
+5V
DGND1
DVCC2
AVCC2
AVCC0
DVCC1
HIGH FOR ALL SIDE A DATA
10
DA0
TO
DA9
10
DB0
TO
DB9
LOW FOR ALL SIDE B DATA
AOUTP
V
50Ω
HI3197
CLK/T
AOUTN
V
1MHz TTL CLK
50Ω
+5V
PS
C1 C2 C3
DGND2
AGND2
VSET
937.5mV
-5V
-5V
+5V
FIGURE 3. ANALOG OUTPUT CHARACTERISITCS, OUTPUT FULL-SCALE ABSOLUTE AMPLITUDE ERROR, OUTPUT ZERO OFFSET
VOLTAGE
11
HI3197
Electrical Characteristics Measurement Circuits
(Continued)
OSCILLOSCOPE
+5V
DGND1
DVCC2
AVCC2
AVCC0 AOUTP
DVCC1
DA0
TO
DA9
DB0
TO
DB9
10
DPG
(DIGITAL
PATTERN
GENERATOR)
10
50Ω 50Ω
AOUTN
HI3197
CLKP/E
VREF
CLKN/E
100MHz PECL CLK
C1
DGND2
AGND2
C2 C3
+5V
VSET
-5V
-5V
FIGURE 4. ANALOG OUTPUT RISE TIME, ANALOG OUTPUT FALL TIME, SETTLING TIME AND GLITCH ENERGY
+5V
OSCILLOSCOPE
DGND1
DVCC2
AVCC2
AVCC0
DVCC1
HIGH FOR ALL SIDE A DATA
HIGH FOR ALL SIDE B DATA
50Ω
10
DA0
TO
DA9
AOUTP
10
DB0
TO
DB9
AOUTN
AVCC0
(= 0V)
CLKP/E
CLKN/E
VREF
AOUTP
OUTPUT
V
1mA
20MHz PECL CLK
0.1µF
VSET
+5V
PS
C1
VFS
50Ω
HI3197
C2 C3
DGND2
AGND2
50Ω
VSET PIN
OUTPUT
100mVP-P
AGND2
+937.5mV
-5V
+5V
-5V
FIGURE 5. REFERENCE/CONTROL AMPLIFIER CHARACTERISITCS, VREF PIN OUTPUT VOLTAGE, VREF PIN OUTPUT VOLTAGE IN
POWER SAVING MODE, MULTIPLYING BANDWIDTH
12
HI3197
Electrical Characteristics Measurement Circuits
(Continued)
AVCC0
AVCC0 - VOF
AOUTP OUTPUT
(INV = 1)
AVCC0 - VFS
(AVCC0 - VOF) - (AVCC0 - VFS)
= 1 LSB
1023
V(n + 1) - V(n)
D.L.E. =
I.L.E. =
V (n + 1)
-1
1 LSB
(V(n) - n x 1 LSB
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
1
0
0
1
1 LSB
V (n)
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
D9
DATA INPUT CODE
(MSB)
0
D0
(LSB)
FIGURE 6.
TABLE 1. I/O CORRESPONDENCE TABLE
DATA INPUT CODE
INV = 1
(MSB)
D9
ANALOG OUTPUT LEVEL
INV = 0
(LSB)
D0
(MSB)
D9
(LSB)
D0
AOUTP
AOUTN
1111111111
0000000000
AVCC0 - VOF
AVCC0 - VFS
•
•
•
•
•
•
•
•
•
•
•
•
0000000000
1111111111
AVCC0 - VFS
AVCC0 - VOF
13
HI3197
Description of Operation
The HI3197 has four types of operation modes to support
various applications. The operation mode is set by switching
the function setting pins (C1, C2 and C3).
The HI3197 can input data divided into two systems: A (DA0
to DA9) and B (DB0 to DB9), internally multiplex the data,
and output it as an analog signal, making it possible to halve
the data rate. This lets the HI3197 support the TTL data
input level in contrast to the ECL data input level for
conventional high-speed D/A converters. The clock signal
and reset signal input levels can be selected from either TTL
or PECL according to the application. (However, setting both
signals to either TTL or PECL input level is recommended.)
MUX.1A Mode
Set C1, C2 and C3 all Low for this mode.
In MUX.1A mode, the frequency of the clock input from the
clock input pin is halved internally, and the 1/2 frequencydivided signal is output at TTL level from the DlV2OUT pin.
Data synchronized with the DlV2OUT signal (the signal
output from the DlV2OUT pin) can be obtained by operating
the HI3197 front-end system with the DlV2OUT signal. The
timing at which the data output delay of the HI3197 front-end
system matches with the hold time during HI3197 data input
can be easily set by inputting this synchronized data to the
data input pins and the DlV2OUT signal to the DlV2lN pin.
The data can be divided and input to two systems: A (DA0 to
DA9) and B (DB0 to DB9), internally multiplexed, and
extracted as analog output.
When using the multiple HI3197 in MUX.1A mode, the start
timing of the 1/2 frequency-divided clocks becomes out of
phase, producing operation such as that shown in Figure 7.
As a countermeasure, the MUX.1A mode has a function that
matches the start timing of the 1/2 frequency-divided clocks
with the reset signal. When using a PECL level reset signal,
input the reset signal to Pins 23 and 24 (RESETP/E,
RESETN/E) and leave Pin 22 (RESET/T) open. When using
a TTL level reset signal, input the reset signal to Pin 22
(RESET/T) and leave Pins 23 and 24 (RESETP/E,
RESETN/E) open. The reset polarity can be switched by the
R POLARITY pin (Pin 39). When the R POLARITY pin is
High or open, reset is active Low; when Low, reset is active
High. See Figure 7 for the detailed timing.
TABLE 2. OPERATING MODES
C1
C2
C3
CLK IN
(MSPS)
DATA IN
(Mbps)
AOUT
(Mbps)
MUX.1A
0
0
0
125
62.5
125
Outputs CLK/2 at TTL Level
MUX Operation by the Internal CLK/2
MUX.1B
0
0
1
125
62.5
125
High Impedance
MUX Operation by the Internal CLK/2
MUX.2
0
1
0
125
62.5
125
High Impedance
MUX Operation by DIV2IN
SELE.A
1
0
0
125
125
125
High Impedance
D/A Conversion of Side A Data Input
SELE.B
1
1
0
125
125
125
High Impedance
D/A Conversion of Side B Data Input
MODE
DIV2OUT PIN
DESCRIPTION OF OPERATION
CLOCK INPUT PIN
CLOCK INPUT
1/2
tD - DIV
DIV2OUT PIN
(DIV2OUT SIGNAL)
DIV2IN PIN
10-BIT DATA A
HI3197
FRONT-END
SYSTEM
DA0 TO DA9
10-BIT
10-BIT DATA B
DB0 TO DB9
10-BIT
DATA INPUT PINS
FRONT-END SYSTEM DATA OUTPUT DELAY
II
HI3197 DATA INPUT HOLD TIME
FIGURE 7A. MUX.1A
14
HI3197 (MUX.1A MODE)
HI3197
CLK
HI3197
CLK
CLK DIV2OUT
DIV2OUT
HI3197
DIV2OUT
CLKDIV2OUT
FIGURE 7B. MUX.1A EXAMPLE WHEN NOT USING THE RESET SIGNAL
CLK
RESET SIGNAL
(WHEN ACTIVE LOW)
HI3197
CLK
CLK DIV2OUT
DIV2OUT
RESET
HI3197
CLKDIV2OUT
RESET
SIGNAL
DIV2OUT
RESET
FIGURE 7C. MUX.1A EXAMPLE WHEN USING THE RESET SIGNAL
FIGURE 7. MUX.1A MODE
MUX.1B Mode
Set C1 and C2 Low and C3 High for this mode.
In MUX.1B mode, the frequency of the clock input from the
clock input pin is halved internally, and the data is loaded by
this 1/2 frequency-divided signal. The 1/2 frequency-divided
signal cannot be observed at this time, so the data is actually
loaded by observing the clock and reset signals to estimate
the rising edge of the internally 1/2 frequency-divided signal.
The data can be divided and input to two systems: A (DA0 to
DA9) and B (DB0 to DB9). The data is internally multiplexed,
then the system A data is output as an analog signal with a
2-clock pipeline delay, and the system B data as an analog
signal with a 3-clock pipeline delay after loading by the clock.
15
Like MUX.1A mode, when using the multiple HI3197 in
MUX.1B mode, the start timing of the 1/2 frequency-divided
clocks becomes out of phase, producing operation such as
that shown in the example below. As a countermeasure, the
MUX.1B mode also has a function that matches the start
timing of the 1/2 frequency-divided clocks with the reset
signal. When using a PECL level reset signal, input the reset
signal to Pins 23 and 24 (RESETP/E, RESETN/E) and leave
Pin 22 (RESET/T) open. When using a TTL level reset signal,
input the reset signal to Pin 22 (RESET/T) and leave Pins 23
and 24 (RESETP/E, RESETN/E) open. The reset polarity can
be switched by the R POLARITY pin (Pin 39). When the R
POLARITY pin is High or open, reset is active Low; when
Low, reset is active High. See Figure 8 for the detailed timing.
HI3197
HI3197 (MUX. 1B MODE)
CLOCK INPUT PIN
CLOCK
1/2
tH-RST
RESET SIGNAL
(WHEN ACTIVE LOW)
tS-RST
RESET INPUT PIN
INTERNALLY 1/2
FREQUENCY-DIVIDED SIGNAL
(THIS SIGNAL CANNOT BE OBSERVED)
tS
tH
DA0 TO DA9
DB0 TO DB9
DATA INPUT SIGNAL
AFTER THE RESET IS RELEASED, THE INTERNAL 1/2 FREQUENCY-DIVIDED SIGNAL COMMENCES AT THE FIRST CLOCK EDGE, SO BE SURE TO INPUT
THE DATA IN A MANNER THAT SATISFIES THE SETUP TIME (TS) AND HOLD TIME (TH) WITH RESPECT TO THIS CLOCK EDGE.
FIGURE 8A.
CLK
HI3197
CLK
CLK
INTERNALLY 1/2
FREQUENCY-DIVIDED
SIGNAL
HI3197
CLK
INTERNALLY 1/2
FREQUENCY-DIVIDED
SIGNAL
FIGURE 8B. EXAMPLE WHEN NOT USING THE RESET SIGNAL
CLK
HI3197
CLK
CLK
RESET SIGNAL
(WHEN ACTIVE LOW)
INTERNALLY 1/2
FREQUENCY-DIVIDED
SIGNAL
RESET
HI3197
INTERNALLY 1/2
FREQUENCY-DIVIDED
SIGNAL
CLK
RESET
SIGNAL
RESET
FIGURE 8C. EXAMPLE WHEN USING THE RESET SIGNAL
FIGURE 8. MUX.1B MODE
16
HI3197
MUX.2 Mode
SELECT.A Mode and SELE.B Mode
Set C1 and C3 Low and C2 High for this mode.
Set C1 High and C2 and C3 Low for SELE.A mode.
In MUX.2 mode, the clock is input to the clock input pin, and
the signal with a cycle half that of the clock (hereafter,
DlV2lN signal) is input to the DlV2IN pin at TTL level. The
DlV2lN signal is internally latched by the clock, so
consideration must be given to the setup time (tS_DIV) and
hold time (tH_DIV) with respect to the clock. In addition, the
data is loaded by the DlV2lN signal, so consideration must
also be given to the setup time (tS) and hold time (tH) with
respect to the DlV2IN signal. The data can be divided and
input to two systems: A (DA0 to DA9) and B (DB0 to DB9).
The data `is internally multiplexed, then the system A data is
output as an analog signal with a 2-clock pipeline delay, and
the system B data as an analog signal with a 3-clock pipeline
delay from the clock that loads the DIV2IN signal. See
Figure 9 for the detailed timing.
In SELE.A mode, the clock is input to the clock input pin, and
the data is input to the system A (DA0 to DA9) data input pins.
Set C1 and C2 High and C3 Low for SELE.B mode.
In SELE.B mode, the clock is input to the clock input pin, and
the data is input to the system B (DB0 to DB9) data input
pins. In either mode, consideration must be given to the
setup time, (tS) and hold time (tH) with respect to the clock.
Also, the data is output as an analog signal with a 1-clock
pipeline delay after loading by the clock.
Switching between SELE.A mode and SELE.B mode is
done by switching the C2 pin between High and Low levels.
Also, the mode can be switched at high speed in sync with
the clock by inputting the switching signal (02 signal) to the
C2 pin. The C2 signal is internally latched by the clock, so
consideration must be given to the setup time (tS_C2) and
hold time (tH_C2) with respect to the clock. See Figure 10 for
the detailed timing.
tPD (B)
CXA3197 (MUX.2 MODE)
tPD (A)
0
1
2
3
CLOCK INPUT PIN
CLOCK
tS_DIV
DIV2IN SIGNAL
tS
A0
SYSTEM A DATA
DIV2IN INPUT
PIN
tH_DIV
tH
A1
A2
B1
B2
DA0 TO DA9
DB0 TO DB9
SYSTEM B DATA
B0
ANALOG OUTPUT SIGNAL
A1
B0
A0
B1
FIGURE 9. MUX.2 MODE
tPD (A)
0
tPD (B)
0
1
CXA3197
(SELE.A MODE/SELE.B MODE)
1
CLOCK INPUT PIN
CLOCK
tA_C2
tH_C2
C2 INPUT
PIN
C2 SIGNAL
tS tH
DA0 TO DA9
SYSTEM A DATA
A0
A1
A2
A6
A8
SELECT
B3
SYSTEM B DATA
ANALOG OUTPUT SIGNAL
A0
A1
B5
B4
A2
B3
DB0 TO DB9
B7
B4
B5
A6
FIGURE 10. SELECT A MODE AND SELECT B MODE
17
HI3197
Block Diagram and Timing Charts
CLK
RESET
R
Q
D
Q
CLK/2
(INTERNAL)
DIV2OUT
DIV2IN
INPUT DATA A
INPUT LATCH A
LATCH
INPUT LATCH B
LATCH
MUX
INPUT DATA B
DAC
LATCH
ANALOG OUT
FIGURE 11A. BLOCK DIAGRAM (MUX.1A MODE)
tPD
tPD (A)
tPW1 tPW0
CLK
tS-RST
0
tH-RST
1
2
4
3
5
ACTIVE HIGH
RESET
ACTIVE LOW
tD-DIV
CLK/2
(INTERNAL)
tM
DIV2OUT
TO
DIV2IN
tS
2t-tM
tH
INPUT DATA A
N$
N$
N
N+2
N+4
INPUT DATA B
N$
N$
N+1
N+3
N+5
tDO
N$
N$
N$
N$
N+1
N
tDO
FIGURE 11B. TIMING CHART (MUX.1A MODE)
CLK
PECL
±1/2 LSB
2.0V
2.0V
TTL
0.8V
0.8V
ANALOG
OUTPUT
±1/2 LSB
tDO
tSET
FIGURE 11C. TIMING JUDGMENT POINTS
NOTE: In MUX.1A mode, Data A and Data B are internally multiplexed and then the resulting signal can be analog output. The frequency of the
clock is halved by the built-in clock frequency divider circuit and the CLK/2 can be output at TTL level (D1V201.~). CLK/2 can be reset by the reset
signal.
18
HI3197
Block Diagram and Timing Charts
(Continued)
CLK
R Q
RESET
CLK/2
D Q
(INTERNAL)
INPUT LATCH A
INPUT DATA A
LATCH
MUX
DAC
ANALOG OUT
INPUT LATCH B
INPUT DATA B
FIGURE 12A. BLOCK DIAGRAM (MUX.1B MODE)
tPD (B)
tPW1 tPW0
CLK
RESET
(ACTIVE HIGH)
tS-RST
tH-RST
tPD (A)
0
1
2
3
(ACTIVE HIGH)
(ACTIVE LOW)
D-FF OUT
CLK/2
(INTERNAL)
tS
tH
INPUT DATA A
N-2
N
N+2
N+4
N+6
N+8
INPUT DATA B
N-1
N+1
N+3
N+5
N+7
N+9
tDO
N
N+1
N+2
N+3
N+4
N+5
tDO
FIGURE 12B. TIMING CHART (MUX.1B MODE)
NOTE: In MUX.1B mode, Data A and Data B are internally multiplexed and then the resulting signal can be analog output. The frequency of the
clock is halved by the built-in clock frequency divider circuit. CLK/2 can be reset by the reset signal.
19
HI3197
Block Diagram and Timing Charts
(Continued)
CLK
R Q
DIV2IN
A
INPUT DATA A
CLK/2
D Q
(INTERNAL)
LATCH
INPUT LATCH A
LATCH
MUX
DAC
ANALOG OUT
B
INPUT DATA B
INPUT LATCH B
LATCH
FIGURE 13A. BLOCK DIAGRAM (MUX.2 MODE)
tPD (B)
tPW1 tPW0
tPD (A)
CLK
tS-DIV
tH-DIV
0
1
2
3
DIV1IN
tH
tS
M/S DATA A
N-2
N
N+2
N+4
N+6
N+8
M/S DATA B
N-1
N+1
N+3
N+5
N+7
N+9
tDO
N+3
N
N+1
N+4
N+5
N+2
tDO
FIGURE 13B. TIMING MODE (MUX.2 MODE)
NOTE: In MUX.2 mode, the 1/2 frequency-divided clock signal (DlV2lN) and Data A and Data B, which are synchronized with DlV2lN, are provided
simultaneously. These signals are internally multiplexed and the resulting signal can be analog output.
20
HI3197
Block Diagram and Timing Charts
(Continued)
CLK
C2
LATCH
INPUT DATA A
INPUT LATCH A
SELECT
INPUT DATA B
LATCH
ANALOG OUT
DAC
INPUT LATCH B
FIGURE 14A. BLOCK DIAGRAM (SELE.A, SELE.B MODE)
tPW1
tPW0
CLK
tPD (B)
tPD (A)
0
1
0
tH-C2
1
tS-C2
C2
tS
tH
INPUT DATA A N - 2
N
N+2
N+4
N+6
N+8
INPUT DATA B N - 1
N+1
N+3
N+5
N+7
N+9
SELE. A
C2 M/S OUT
SELE. B
tDO
tDO
N-4
N+5
N
N+7
N+2
N-2
FIGURE 14B. TIMING CHART (SELE.A, SELE.B MODE)
NOTE: In SELE.A and SELE.B modes, input Data A or Data B is selected and the selected data can be analog output. When C1 = 1 and C3 = 0,
Data A is selected for C2 = 0, and Data B is selected for C2 = 1.
21
HI3197
Typical Performance Curves
1100
OUTPUT FULL-SCALE VOLTAGE (mV)
OUTPUT FULL-SCALE VOLTAGE (mV)
1100
RL = 50Ω
1000
900
800
700
0.65
0.84
VSET PIN VOLTAGE (V)
950
7
1260
1240
0
50
25
AMBIENT TEMPERATURE (oC)
75
ANALOG OUTPUT AMPLITUDE (dB)
FIGURE 17. VREF PIN VOLTAGE vs AMBIENT TEMPERATURE
75
RL = 50Ω
VSET = AGND2 + 937.5mW
6
5
4
3
-25
0
50
25
AMBIENT TEMPERATURE (oC)
FIGURE 18. OUTPUT ZERO OFFSET VOLTAGE vs AMBIENT
TEMPERATURE
0
-3
1
10
VSET PIN INPUT FREQUENCY (MHz)
FIGURE 19. MULTIPLYING BANDWIDTH
22
25
0
50
AMBIENT TEMPERATURE (oC)
FIGURE 16. OUTPUT FULL-SCALE VOLTAGE vs AMBIENT
TEMPERATURE
OUTPUT ZERO OFFSET VOLTAGE (mV)
VREF PIN VOLTAGE (mV)
1000
900
-25
1280
1220
-25
1050
1.03
FIGURE 15. OUTPUT FULL-SCALE VOLTAGE vs VSET PIN
VOLTAGE
RL = 50Ω
VSET = AGND2 + 937.5mW
100
75
HI3197
Application Circuit
The circuit shown below is the basic circuit when the analog output is terminated with the external resistance of 50Ω in the dual
±5V power supplies for MUX.2 mode.
The analog output full scale voltage VFS is obtained with the following equation:
R = RO //RL
RO : Output impedance ( = 50Ω)
V SET
63
V FS = --------------- x  15 + ------ x R

375
64
RL : External termination resistance
R2
Here, V SET = ---------------------- V REF
R1 + R2
( V REF ≈ 1.2V )
-5V
(A)
0V
(D)
+5V
(A)
( R1 + R2 ≥ 1.2k Ω )
0V(A)
VOCLP
AGND2
INV
POLARITY
PS
DVCC1
NC
VSET 35
DA3
VREF 34
DA2
AGND2 33
5
DA1
AOUTP 32
6
DA0 (LSB)
AOUTN 31
7
DB9 (MSB)
AVCC0 30
8
DB8
DVCC2 29
9
DB7
C3 28
10 DB6
C2 27
0V(A)
R1
R2
-5V(A)
-5V(A)
0V(A)
0V(A)
RL
RL
0V(A)
0V(D)
0V(A)
-5V(D)
RESETN/E
RESETP/E
RESET/T
CLKN/E
DIV2N
CLKP/E
DGND2 25
CLK/T
C1 26
12 DB4
DIV2OUT
11 DB5
DB3
DB0
TO
DB9
DGND1
DA4
3
DB0 (LSB)
ETC.
DA8
2
DB1
LATCH
(MSB) DA9
DA5
4
RAM
AVCC2 36
1
DB2
DA0
TO
DA9
DA7
DA6
48 47 46 45 44 43 42 41 40 39 38 37
13 14 15 16 17 18 19 20 21 22 23 24
130
+5V(D)
82
TTL CLK/2
0V(D)
82
130
PECL CLK
VBB
NOTE: Application circuits shown are typical examples illustrating the operation of the devices. Intersil Corporation cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
23
HI3197
Notes on Use
• The HI3197 has PECL and TTL input pins for the clock
and reset inputs. When the clock is input at PECL level, it
is recommended to also input the reset signal at PECL
level. Likewise, when the clock is input at TTL level, it is
recommended to also input the reset signal at TTL level.
• The input signal impedance should be properly matched
to ensure the stable HI3197 operation at high speed.
Particularly when ringing appears in the input clock in the
MUX.1A and MUX.1B modes. If this ringing exceeds the
clock input threshold value, the internal 1/2 frequency
divider circuit may misoperate.
• All TTL input pins of the HI3197 except for the PS pin go to
High level when left open, and only the PS pin goes to Low
level when left open. Set the PS pin to High level to
operate the IC. When the PECL input pins are left open,
the P (positive) side goes to High level and the N
(negative) side goes to Low level. The PECL input pins are
complementary, so be sure to use the P and N sides
together.
• When the clock and reset input signal level is TTL, ***/T
pins should be used and ***/E pins left open. When the
clock and reset input signal level is PECL, ***/E pins
should be used and ***/T pins left open.
• The power supply and grounding have a profound influence on converter characteristics. The power supply and
grounding method are particularly important during highspeed operation.
General points for caution are as follows:
- The ground pattern should be as wide as possible. It is
recommended to make the power supply and ground
wider at an inner layer using a multi-layer board. To
prevent a DC offset from being generated between the
analog and digital power supply patterns, it is
recommended to connect the patterns at one point via a
ferrite-bead filter, etc.
24
- When using the HI3197 with a single power supply,
connect DGND1 and DGND2 to a common digital
ground, and AGND2 to an analog ground. Also, DVCC1
and DVCC2 should use a common digital power supply,
and AVCC2 should be connected to an analog power
supply. AVCC0 serves as the analog output reference,
so while it does not need to share the analog power
supply, it should be used within the range that satisfies
the analog output compliance voltage.
- When using the HI3197 with dual power supply, connect
DGND1 and DVCC2 to the digital ground, and AVCC2 to
the analog ground. DVCC1 uses a positive digital power
supply (+5V, typ.), DGND2 uses a negative digital power
supply (-5V, typ.), and AGND2 uses a negative analog
power supply (-5V, typ.). Like when using a single power
supply, the AVCC0 pin can be used within the range that
satisfies the analog output compliance voltage.
However, connecting it to the analog ground and using
the analog ground as the reference for the analog
output is recommended.
• Ground the power supply pins as close to each pin as
possible with a 0.1µF or more ceramic chip capacitor.
When using a single power supply, connect DVCC1 and
DVCC2 to the digital ground, and AVCC2 and AVCC0 to the
analog ground. When using dual power supply, connect
DVCC1 and DGND2 to the digital ground, and AGND2 to
the analog ground. In this case, when using AVCC0 within
the range that satisfies the compliance voltage, be sure to
also connect the AVCC0 pin to the analog ground using a
ceramic chip capacitor.
• The HI3197 is designed with an analog output impedance
of 50Ω. The analog outputs are wired with a characteristic
impedance of 50Ω, and waveforms free of reflection can
be obtained by terminating the analog outputs with 50Ω.
Even when using only one of either AOUTP or AOUTN, if
one analog output is terminated with 50Ω, be sure to also
terminate the other analog output with 50Ω. (See
Application Circuit Diagram)
HI3197
Metric Plastic Quad Flatpack Packages (MQFP/PQFP)
D
Q48.7x7-S
D1
48 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE
INCHES
E
E1
e
MILLIMETERS
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.056
0.066
1.40
1.70
-
A1
0.000
0.007
0.00
0.20
-
B
0.006
0.010
0.15
0.26
5
D
0.347
0.362
8.80
9.20
2
D1
0.272
0.279
6.90
7.10
3, 4
E
0.347
0.362
8.80
9.20
2
E1
0.272
0.279
6.90
7.10
3, 4
L
0.012
0.027
0.30
0.70
N
48
48
e
0.020 BSC
0.500 BSC
6
Rev. 1 4/95
PIN 1
NOTES:
-H-
SEATING
PLANE
A
1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
2. Dimensions D and E to be determined at seating plane -C- .
0.10
0.004
-C-
0.24 M
B
3. Dimensions D1 and E1 to be determined at datum plane
-H- .
4. Dimensions D1 and E1 do not include mold protrusion.
5. Dimension B does not include dambar protrusion.
6. “N” is the number of terminal positions.
A1
0o-10o
L
0.107/0.177
0.004/0.007
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
25
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029